## Leftist Heap - Supplements

## Facts about leftist heaps:

- Right path is a shortest path from root to leaf.
- Length of this path $\leq \lg n$
[Proof: Induction]

What about building a leftist heap ?

- can use repeated insert

$$
\sum_{1}^{n-1} \lg k=O(n \lg n) \quad[C L R 90] C h 2
$$

A nalysis of Heapify : How did we get

$$
\begin{aligned}
& \mathrm{O}\left(\sum_{i=1}^{\lg k} \frac{k}{2^{i}} \cdot \max \left\{1, \lg \frac{n \cdot 2^{i}}{k}\right\}\right)=O\left(k \cdot \max \left\{1, \lg \frac{n}{k}\right\}\right) \\
& \sum_{i=1}^{\lg k} \frac{k}{2^{i}}=k\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{\lg k}}\right)<2 k \\
& \text { Note: } \lg \frac{n \cdot 2^{i}}{k}=\lg \frac{n}{k}+\lg 2^{i}=\lg \frac{n}{k}+i \\
& \sum_{i=1}^{\lg k} \frac{k}{2^{i}} \cdot \lg \frac{n \cdot 2^{i}}{k}<2 k \cdot \lg \frac{n}{k}+k \cdot \sum_{i=1}^{\lg k \frac{i}{2^{i}}}
\end{aligned}
$$

$$
\sum_{i=1}^{\lg k} \frac{i}{2^{i}}<\sum_{i=1}^{\infty} \frac{i}{2^{i}}<2
$$

