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What does a Hoare tuple mean?

{Á} P {Ã}

Informal meaning (already given):

“If the program P is run in a state that satisfies 
Á and P terminates, then the state resulting 
from P’s execution will satisfy Ã.”
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We would like to formalize

{Á} P {Ã}

Informal meaning (already given):

“If the program P is run in a state that satisfies 
Á and P terminates, then the state resulting 
from P’s execution will satisfy Ã.”
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We would like to formalize

{Á} P {Ã}

Need to define:

1. Running a program P

2. P terminates 

3. State satisfies Á

4. Resulting state satisfies Ã.
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Operational Semantics

• Numeric Expressions E:

– n | x | (−E) | (E + E) | (E − E) | (E ∗ E)

• Boolean Expressions B:

– true | false | (!B) | (B&B) | (B||B) | (E < E)

• Commands C:

– x = E | C;C | if B {C} else {C} | while B {C}
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Expressions: syntax and semantics

• Numeric Expressions E:
– n | x | (−E) | (E + E) | (E − E) | (E ∗ E)

Now, what does evaluation of an E mean?

We want to write E n to mean “the expression

E evaluates to the numeric n”

But what about E = x?  By itself, we don’t know 

what to do...
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We have to specify exactly
how each evaluates

• Numeric Expressions E:

– n | x | (−E) | (E + E) | (E − E) | (E ∗ E)

Define a context ° to be a function from

variables to numbers.
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We have to specify exactly
how each evaluates

• Numeric Expressions E:

– n | x | (−E) | (E + E) | (E − E) | (E ∗ E)

Now define ° ` E n to mean “in context °,

the expression E evaluates to the numeric n.”
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Boolean Evaluation
• Boolean Expressions B:

– true | false | (!B) | (B&B) | (B||B) | (E < E)

Since B includes E, we will need contexts to 

evaluate Bs.

What do we evaluate to?  How about propositions? 

So define ° ` B P to mean “in context °, the

expression B evaluates to the proposition P.”
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Commands

• Commands C:

– x = E | C;C | if B {C} else {C} | while B {C} | crash

All of these look normal except for “crash” – which 

you can think of as dividing by zero.  We add it to

make the language a bit more interesting.
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Command Evaluation
• Idea: executing command C for one step moves the 

machine from one state to the next

• What is a state ¾?

• Pair of context ° (data) and control k (code)

• Control k is either kStop (we are done) or kSeq C k
– We can write C ² k for kSeq if that is easier

– We can also write ¥ for kHalt
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Step relation, assign

We now define the step relation, written

¾1 ¾2

that is, “state ¾1 steps to state ¾2”, in parts:

° ` E n °’ = *x ! n] °

(°, (x = E) ² k)  (°’, k)
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Step relation, seq

(°, (C1 ; C2) ² k)  (°, C1 ² (C2 ² k))
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Step relation, if (1 and 2)

° ` B True

(°, (if B then {C1} else {C2}) ² k)  (°, C1 ² k)

° ` B False

(°, (if B then {C1} else {C2}) ² k)  (°, C2 ² k)
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Step relation, while (1 and 2)

° ` B True

(°, (while B {C}) ² k)  (°, C ² (while B {C} ² k))

° ` B False

(°, (while B {C}) ² k)  (°, k))
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Entire step relation
° ` E n °’ = *x ! n] °

(°, (x = E) ² k)  (°’, k)

(°, (C1 ; C2) ² k)  (°, C1 ² (C2 ² k))

° ` B True
(°, (if B then {C1} else {C2}) ² k)  (°, C1 ² k)

° ` B False
(°, (if B then {C1} else {C2}) ² k)  (°, C2 ² k)

° ` B True
(°, (while B {C}) ² k)  (°, C ² (while B {C} ² k)) 

° ` B False
(°, (while B {C}) ² k)  (°, k)) 16



What about crash??

• The point is that crash does not step 
anywhere – it just stops the machine in some 
kind of invalid state.

• This is different from ¥, which also does not 

step anywhere but which is consider to be a 
“proper” way to stop the program.
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From step to step*

• Usually we want to run our program for more 
than one step.

• We write ¾* ¾’ to mean that the state ¾
steps to the state ¾’ in some number of steps.
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From step to step*

¾* ¾

¾ ¾’ ¾’ * ¾’’

¾* ¾’’
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We would like to formalize

{Á} P {Ã}

Need to define:

1. Running a program P

2. P terminates

3. State satisfies Á

4. Resulting state satisfies Ã.
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First Attempt:
Terminates means eventually halted

• We say a state (°, k) is halted when k = ¥

(First Attempt:)

• ¾ terminates if 9 ¾’ such that ¾* ¾’ and ¾’ is 
halted.

• This works well… except that it is terrible when we 
want to use it as a hypothesis.
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Example: sequence rule
• Consider trying to prove the following rule

{Ã} c1 {Â}        {Â} c2 {Á}

{Ã} c1 ; c2 {Á}

Premise 1: if … c1 terminates … then …

Premise 2: if … c2 terminates … then …

c1 ; c2 *does not terminate* after running c1 – it then 

starts on c2.  But that means that we can’t use premise 

1 in our proof (or at least not very easily).
22



We would like to formalize

{Á} P {Ã}

Need to define:

1. Running a program P

2. P terminates      (Deferred until step 4)

3. State satisfies Á

4. Resulting state satisfies Ã.
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What is an assertion?

The idea is that an assertion is a formula whose 

truth depends on the context:

Ã, Á :      °! {T, F}

We can even write ° ² Ã as shorthand for Ã(°)

We will see that this approach is very similar to

modal logic (but not for a few more weeks)
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Lifting Assertions to Metalogic

Now we want to define how the logical operators:

° ² Á Æ Ã ´ (° ² Ã) Æ (° ² Á)

° ² B    ´ ° ` B True

° ² [x ! e] Ã ´ [x ! n] ° ² Ã

(where ° ` e n)

etc.
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Implication of Assertions

It is also useful to have a notion that one formula 

implies another for any context.

Á ` Ã ´ 8 °, (° ² Á) ) (° ² Ã)

Note that this is very different from implication at the 

object level:

° ² Ã) Á ´ (° ² Ã) ) (° ² Á)
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We would like to formalize

{Á} P {Ã}

Need to define:

1. Running a program P

2. P terminates 

3. State satisfies Á

4. Resulting state satisfies Ã.
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Better Approach

• Define safe(¾) as,
– 8 ¾’.   ¾* ¾’   )

(9 ¾’’. ¾’  ¾’’)    Ç  (¾’ is halted)

• Among other things, if ¾ is safe then it never reaches 
crash.

• Define guards(P, k) as,
– 8 °.   ° ² P   ) safe(°, k)

• The idea is that if P guards the control k, then as 
long as P is true then k is safe to run.
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Putting it all together

{Ã} C {Á}    ´ 8 k. guards(Á, k) )

guards (Ã, C ² k)

That is, for any continuation (rest of program) k, if Á

is enough to make k safe, then Ã is enough to make

C followed by k safe.

Question: does Á hold after executing C?
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Testers

• Answer: yes!  We pick a k that “tests Á”.

• For example, if Á ´ x = 3, then we pick
– k ´ if x = 3 then x = x else crash
– (this is why crash is useful to add to the language!)

• Obviously, if ° ² Á, then this k is safe (since x=x 
does no harm).

• But if Á does not hold, then this program will not 
be safe.
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Putting it all together

{Ã} C {Á}    ´ 8 k. guards(Á, k) )

guards (Ã, C ² k)

Thus in fact, if we know {Ã} C {Á}, we know that C

must make Á true after it executes (assuming that Ã

was true before running C)
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Now what?
• Prove the Hoare rules as lemmas from 

definitions!

{Ã} c1 {Â}        {Â} c2 {Á}

{Ã} c1 ; c2 {Á}

{[x ! E] Ã}    x = E    {Ã}
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If, While Rules

{Á Æ B}  C1 {Ã}       {Á Æ : B}   C2 {Ã}

{Á}  if B {C1} else {C2}   {Ã}

{Ã Æ B}  C   {Ã}

{Ã} while B {C} {Ã Æ : B}

33



Implied Rule

Á’  ` Á {Á} C {Ã}      Ã `Ã’

{Á’} C {Ã’}
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Your task on the next homework: 
Prove these lemmas

HT_Seq : 10 points

HT_Asgn : 10 points

HT_If : 10 points

HT_Implied : 5 points

HT_While : 20 points extra credit

(good luck!)
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Finally
Definition x : var := 0.

Definition y : var := 1.

Definition z : var := 2.

Open Local Scope Z_scope.

Definition neq (ne1 ne2 : nExpr) : bExpr :=

Or (LT ne1 ne2) (LT ne2 ne1).

Definition factorial_prog : Coms := 

Seq (Assign y (Num 1))            (* y := 1 *)

(Seq (Assign z (Num 0))            (* z := 0 *)

(While (neq (Var z) (Var x))       (* while z <> x { *)

(Seq (Assign z (Plus (Var z) (Num 1)))

(* z := z + 1 *)

(Assign y (Times (Var y) (Var z)))(* y := y * z *)

)                               (* } *) 

)

).
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Statement of Theorem

Definition Top : assertion := fun _ => True.

Open Local Scope nat_scope.

Fixpoint factorial (n : nat) :=

match n with

| O => 1

| S n' => n * (factorial n')

end.

Open Local Scope Z_scope.

Lemma factorial_good:

HTuple Top factorial_prog

(fun g => g y = Z_of_nat (factorial (Zabs_nat (g x)))).
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Casts

Definition Top : assertion := fun _ => True.

Open Local Scope nat_scope.

Fixpoint factorial (n : nat) :=

match n with

| O => 1

| S n' => n * (factorial n')

end.

Open Local Scope Z_scope.

Lemma factorial_good:

HTuple Top factorial_prog

(fun g => g y = Z_of_nat (factorial (Zabs_nat (g x)))).
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Proof of Theorem
Lemma factorial_good:

HTuple Top factorial_prog (fun g => g y = 
Z_of_nat (factorial (Zabs_nat (g 
x)))).

Proof.

apply HT_Seq with (fun g => g y = 1).

replace Top with ([y => (Num 1) @ (fun g : 
ctx => g y = 1)]).

apply HT_Asgn.

extensionality g.

unfold assertReplace, Top, upd_ctx.

simpl.

apply prop_ext.

firstorder.

apply HT_Seq with (fun g :ctx => g z = 0 
/\ g y = 1).

replace (fun g : var -> Z => g y = 1)  
with 

([z => (Num 0) @ (fun g :ctx
=> g z = 0 /\ g y = 1)]).

apply HT_Asgn.

extensionality g.

unfold assertReplace, Top, upd_ctx.

simpl.

apply prop_ext.

firstorder.

apply HT_Implied with 

(fun g => g z >= 0 /\ g y = Z_of_nat
(factorial (Zabs_nat (g z))))

((fun g => g z >= 0 /\ g y = Z_of_nat
(factorial (Zabs_nat (g z)))) && 

[bNeg (neq (Var z) (Var x))]).

repeat intro.

destruct H.

rewrite H, H0.

simpl.

firstorder.

apply HT_While.

apply HT_Implied with

(fun g => g z >=0 /\ (g y) * ((g z) + 1) 
= Z_of_nat (factorial (Zabs_nat ((g z) 
+ 1))))

(fun g : ctx => g z - 1 >= 0 /\ g y = 
Z_of_nat (factorial (Zabs_nat (g 
z)))).

repeat intro.

destruct H.

destruct H.

clear H0.

rewrite H1.

split; auto.

remember (g z) as n.

clear -H.

destruct n; auto.

simpl.

rewrite <- Pplus_one_succ_r.

rewrite nat_of_P_succ_morphism.

simpl.

remember (factorial (nat_of_P p)).

clear.

rewrite Zpos_succ_morphism.

rewrite inj_plus.

rewrite inj_mult.

rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P.

ring.

elimtype False.

auto with zarith.

apply HT_Seq with (fun g => g z - 1 >= 0 
/\ g y * g z = Z_of_nat (factorial 
(Zabs_nat (g z)))).

replace (fun g : var -> Z => g z >= 0 /\ g 
y * (g z + 1) = Z_of_nat (factorial 
(Zabs_nat (g z + 1)))) with

[z => (Plus (Var z) (Num 1)) @ (fun g : 
var -> Z => g z - 1 >= 0 /\ g y * g z 
= Z_of_nat (factorial (Zabs_nat (g 
z))))].

apply HT_Asgn.

extensionality g.

apply prop_ext.

firstorder.

unfold upd_ctx in H.

simpl in H.

auto with zarith.

simpl.

unfold upd_ctx.

simpl.

auto with zarith.

replace (fun g : var -> Z => g z - 1 >= 0 
/\ g y * g z = Z_of_nat (factorial 
(Zabs_nat (g z)))) with 

[y => (Times (Var y) (Var z)) @ (fun g : 
var -> Z => g z - 1>= 0 /\ g y = 
Z_of_nat (factorial (Zabs_nat (g 
z))))].

apply HT_Asgn.

extensionality g.

apply prop_ext.

firstorder.

repeat intro; firstorder.

repeat intro.

destruct H.

destruct H.

rewrite H1.

simpl in H0.

destruct (Ztrichotomy (g z) (g x)).

contradiction H0; auto.

destruct H2.

rewrite <- H2.

trivial.

contradiction H0.

right.

apply Zgt_lt .

trivial.

Qed.
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The good news…

Your HW does not require you to do one of 

these yourself (we are not without mercy…)

Still… why did I show it to you?
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Seems like a lot of work… why bother?

Lemma factorial_good:

HTuple Top factorial_prog (fun g => g y = 
Z_of_nat (factorial (Zabs_nat (g 
x)))).

Proof.

apply HT_Seq with (fun g => g y = 1).

replace Top with ([y => (Num 1) @ (fun g : 
ctx => g y = 1)]).

apply HT_Asgn.

extensionality g.

unfold assertReplace, Top, upd_ctx.

simpl.

apply prop_ext.

firstorder.

apply HT_Seq with (fun g :ctx => g z = 0 
/\ g y = 1).

replace (fun g : var -> Z => g y = 1)  
with 

([z => (Num 0) @ (fun g :ctx
=> g z = 0 /\ g y = 1)]).

apply HT_Asgn.

extensionality g.

unfold assertReplace, Top, upd_ctx.

simpl.

apply prop_ext.

firstorder.

apply HT_Implied with 

(fun g => g z >= 0 /\ g y = Z_of_nat
(factorial (Zabs_nat (g z))))

((fun g => g z >= 0 /\ g y = Z_of_nat
(factorial (Zabs_nat (g z)))) && 

[bNeg (neq (Var z) (Var x))]).

repeat intro.

destruct H.

rewrite H, H0.

simpl.

firstorder.

apply HT_While.

apply HT_Implied with

(fun g => g z >=0 /\ (g y) * ((g z) + 1) 
= Z_of_nat (factorial (Zabs_nat ((g z) 
+ 1))))

(fun g : ctx => g z - 1 >= 0 /\ g y = 
Z_of_nat (factorial (Zabs_nat (g 
z)))).

repeat intro.

destruct H.

destruct H.

clear H0.

rewrite H1.

split; auto.

remember (g z) as n.

clear -H.

destruct n; auto.

simpl.

rewrite <- Pplus_one_succ_r.

rewrite nat_of_P_succ_morphism.

simpl.

remember (factorial (nat_of_P p)).

clear.

rewrite Zpos_succ_morphism.

rewrite inj_plus.

rewrite inj_mult.

rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P.

ring.

elimtype False.

auto with zarith.

apply HT_Seq with (fun g => g z - 1 >= 0 
/\ g y * g z = Z_of_nat (factorial 
(Zabs_nat (g z)))).

replace (fun g : var -> Z => g z >= 0 /\ g 
y * (g z + 1) = Z_of_nat (factorial 
(Zabs_nat (g z + 1)))) with

[z => (Plus (Var z) (Num 1)) @ (fun g : 
var -> Z => g z - 1 >= 0 /\ g y * g z 
= Z_of_nat (factorial (Zabs_nat (g 
z))))].

apply HT_Asgn.

extensionality g.

apply prop_ext.

firstorder.

unfold upd_ctx in H.

simpl in H.

auto with zarith.

simpl.

unfold upd_ctx.

simpl.

auto with zarith.

replace (fun g : var -> Z => g z - 1 >= 0 
/\ g y * g z = Z_of_nat (factorial 
(Zabs_nat (g z)))) with 

[y => (Times (Var y) (Var z)) @ (fun g : 
var -> Z => g z - 1>= 0 /\ g y = 
Z_of_nat (factorial (Zabs_nat (g 
z))))].

apply HT_Asgn.

extensionality g.

apply prop_ext.

firstorder.

repeat intro; firstorder.

repeat intro.

destruct H.

destruct H.

rewrite H1.

simpl in H0.

destruct (Ztrichotomy (g z) (g x)).

contradiction H0; auto.

destruct H2.

rewrite <- H2.

trivial.

contradiction H0.

right.

apply Zgt_lt .

trivial.

Qed.
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Bug in Paper Proof
Lemma factorial_good:

HTuple Top factorial_prog (fun g => g y = 
Z_of_nat (factorial (Zabs_nat (g 
x)))).

Proof.

apply HT_Seq with (fun g => g y = 1).

replace Top with ([y => (Num 1) @ (fun g : 
ctx => g y = 1)]).

apply HT_Asgn.

extensionality g.

unfold assertReplace, Top, upd_ctx.

simpl.

apply prop_ext.

firstorder.

apply HT_Seq with (fun g :ctx => g z = 0 
/\ g y = 1).

replace (fun g : var -> Z => g y = 1)  
with 

([z => (Num 0) @ (fun g :ctx
=> g z = 0 /\ g y = 1)]).

apply HT_Asgn.

extensionality g.

unfold assertReplace, Top, upd_ctx.

simpl.

apply prop_ext.

firstorder.

apply HT_Implied with 

(fun g => g z >= 0 /\ g y = Z_of_nat
(factorial (Zabs_nat (g z))))

((fun g => g z >= 0 /\ g y = Z_of_nat
(factorial (Zabs_nat (g z)))) && 

[bNeg (neq (Var z) (Var x))]).

repeat intro.

destruct H.

rewrite H, H0.

simpl.

firstorder.

apply HT_While.

apply HT_Implied with

(fun g => g z >=0 /\ (g y) * ((g z) + 1) 
= Z_of_nat (factorial (Zabs_nat ((g z) 
+ 1))))

(fun g : ctx => g z - 1 >= 0 /\ g y = 
Z_of_nat (factorial (Zabs_nat (g 
z)))).

repeat intro.

destruct H.

destruct H.

clear H0.

rewrite H1.

split; auto.

remember (g z) as n.

clear -H.

destruct n; auto.

simpl.

rewrite <- Pplus_one_succ_r.

rewrite nat_of_P_succ_morphism.

simpl.

remember (factorial (nat_of_P p)).

clear.

rewrite Zpos_succ_morphism.

rewrite inj_plus.

rewrite inj_mult.

rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P.

ring.

elimtype False.

auto with zarith.

apply HT_Seq with (fun g => g z - 1 >= 0 
/\ g y * g z = Z_of_nat (factorial 
(Zabs_nat (g z)))).

replace (fun g : var -> Z => g z >= 0 /\ g 
y * (g z + 1) = Z_of_nat (factorial 
(Zabs_nat (g z + 1)))) with

[z => (Plus (Var z) (Num 1)) @ (fun g : 
var -> Z => g z - 1 >= 0 /\ g y * g z 
= Z_of_nat (factorial (Zabs_nat (g 
z))))].

apply HT_Asgn.

extensionality g.

apply prop_ext.

firstorder.

unfold upd_ctx in H.

simpl in H.

auto with zarith.

simpl.

unfold upd_ctx.

simpl.

auto with zarith.

replace (fun g : var -> Z => g z - 1 >= 0 
/\ g y * g z = Z_of_nat (factorial 
(Zabs_nat (g z)))) with 

[y => (Times (Var y) (Var z)) @ (fun g : 
var -> Z => g z - 1>= 0 /\ g y = 
Z_of_nat (factorial (Zabs_nat (g 
z))))].

apply HT_Asgn.

extensionality g.

apply prop_ext.

firstorder.

repeat intro; firstorder.

repeat intro.

destruct H.

destruct H.

rewrite H1.

simpl in H0.

destruct (Ztrichotomy (g z) (g x)).

contradiction H0; auto.

destruct H2.

rewrite <- H2.

trivial.

contradiction H0.

right.

apply Zgt_lt .

trivial.

Qed.
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Forgot to track boundary condition
(z >= 0 at all times in the loop)

Lemma factorial_good:

HTuple Top factorial_prog (fun g => g y = 
Z_of_nat (factorial (Zabs_nat (g 
x)))).

Proof.

apply HT_Seq with (fun g => g y = 1).

replace Top with ([y => (Num 1) @ (fun g : 
ctx => g y = 1)]).

apply HT_Asgn.

extensionality g.

unfold assertReplace, Top, upd_ctx.

simpl.

apply prop_ext.

firstorder.

apply HT_Seq with (fun g :ctx => g z = 0 
/\ g y = 1).

replace (fun g : var -> Z => g y = 1)  
with 

([z => (Num 0) @ (fun g :ctx
=> g z = 0 /\ g y = 1)]).

apply HT_Asgn.

extensionality g.

unfold assertReplace, Top, upd_ctx.

simpl.

apply prop_ext.

firstorder.

apply HT_Implied with 

(fun g => g z >= 0 /\ g y = Z_of_nat
(factorial (Zabs_nat (g z))))

((fun g => g z >= 0 /\ g y = Z_of_nat
(factorial (Zabs_nat (g z)))) && 

[bNeg (neq (Var z) (Var x))]).

repeat intro.

destruct H.

rewrite H, H0.

simpl.

firstorder.

apply HT_While.

apply HT_Implied with

(fun g => g z >=0 /\ (g y) * ((g z) + 1) 
= Z_of_nat (factorial (Zabs_nat ((g z) 
+ 1))))

(fun g : ctx => g z - 1 >= 0 /\ g y = 
Z_of_nat (factorial (Zabs_nat (g 
z)))).

repeat intro.

destruct H.

destruct H.

clear H0.

rewrite H1.

split; auto.

remember (g z) as n.

clear -H.

destruct n; auto.

simpl.

rewrite <- Pplus_one_succ_r.

rewrite nat_of_P_succ_morphism.

simpl.

remember (factorial (nat_of_P p)).

clear.

rewrite Zpos_succ_morphism.

rewrite inj_plus.

rewrite inj_mult.

rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P.

ring.

elimtype False.

auto with zarith.

apply HT_Seq with (fun g => g z - 1 >= 0 
/\ g y * g z = Z_of_nat (factorial 
(Zabs_nat (g z)))).

replace (fun g : var -> Z => g z >= 0 /\ g 
y * (g z + 1) = Z_of_nat (factorial 
(Zabs_nat (g z + 1)))) with

[z => (Plus (Var z) (Num 1)) @ (fun g : 
var -> Z => g z - 1 >= 0 /\ g y * g z 
= Z_of_nat (factorial (Zabs_nat (g 
z))))].

apply HT_Asgn.

extensionality g.

apply prop_ext.

firstorder.

unfold upd_ctx in H.

simpl in H.

auto with zarith.

simpl.

unfold upd_ctx.

simpl.

auto with zarith.

replace (fun g : var -> Z => g z - 1 >= 0 
/\ g y * g z = Z_of_nat (factorial 
(Zabs_nat (g z)))) with 

[y => (Times (Var y) (Var z)) @ (fun g : 
var -> Z => g z - 1>= 0 /\ g y = 
Z_of_nat (factorial (Zabs_nat (g 
z))))].

apply HT_Asgn.

extensionality g.

apply prop_ext.

firstorder.

repeat intro; firstorder.

repeat intro.

destruct H.

destruct H.

rewrite H1.

simpl in H0.

destruct (Ztrichotomy (g z) (g x)).

contradiction H0; auto.

destruct H2.

rewrite <- H2.

trivial.

contradiction H0.

right.

apply Zgt_lt .

trivial.

Qed.
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Coercions (easily forgotten about…)

Fixpoint factorial (n : nat) :=

match n with

| O => 1

| S n' => n * (factorial n')

end.

fun g => 

g y = Z_of_nat (factorial (Zabs_nat (g x)))).

We define factorial on nats because that way we have the 
best chance of not making a mistake in our specification.

But there is a cost: we must coerce from Z to N and back to Z…
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Where you need this fact in the proof

Our “x!” has an implicit coercion in it: first we take the 

integer x, get the absolute value of it, and then 

calculate factorial on nats (and then coerce back to Z)…

while (z <> x) {

{y = z! Æ z <> x}             Now use Implied

{y * (z + 1) = (z + 1)!}
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Where you need this fact in the proof

Our “x!” has an implicit coercion in it: first we take the 

integer x, get the absolute value of it, and then 

calculate factorial on nats (and then coerce back to Z)…

while (z <> x) {

{y = z! Æ z <> x}             Now use Implied

{y * (z + 1) = (z + 1)!}     But wait!  What if z < 0?

Try y = 3, z = -4:

3 * (-4 + 1) = -9

(-4 + 1)! = (-3)! = 3! = 6 46



The Explosion of the Ariane 5
• On June 4, 1996 an unmanned Ariane 5 rocket launched by the 

European Space Agency exploded just forty seconds after its lift-
off from Kourou, French Guiana.

• The rocket was on its first voyage, after a decade of development 
costing $7 billion. The destroyed rocket and its cargo were valued 
at $500 million.

• A board of inquiry investigated the causes of the explosion and in 
two weeks issued a report. 

• It turned out that the cause of the failure was a software error in 
the inertial reference system. Specifically a 64 bit floating point 
number relating to the horizontal velocity of the rocket with 
respect to the platform was converted to a 16 bit signed integer. 
The number was larger than 32,767, the largest integer storable in 
a 16 bit signed integer, and thus the conversion failed. 
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