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Hoare Logic so far
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 The Hoare Logic presented in class in the past two weeks 

was very simple:

 Simple control flow

 Sequence

 While

 If-Then

 Simple data model

 Local variables as the only places to store data

 Only kinds of values are numeric

 This is not very realistic for computation



Features we would like to reason about
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 More complex control flow

 Other kinds of loops (for, do-while, etc.)

 Goto (well, maybe we don’t want to encourage this… but what 
if we want to reason about assembly code?)

 Case/Switch analysis

 Exceptions

 Functions



Features we would like to reason about
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 More complex data

 Memory

 Different kinds of data (strings, arrays, records, objects, …)

 Input / Output

 Hybrid features

 Function pointers, …



The obvious problem

6

 As we continue to add features, the logic becomes 

increasingly complex, both to use and to prove sound.

8 x: ¿. (P x) = ( (P x)) 8 x : ¿. (Q x) = ( (Q x))

G ² > * f :¼ ¿ {P} {Q} G = ° G

G, R, B ` {P(vi)} call f (vi) {Q(vi)} 

This rule comes from a language called C minor, which has

a number of these features.



The obvious problem

7

 As we continue to add features, the logic becomes 

increasingly complex, both to use and to prove sound.

8 x: ¿. (P x) = ( (P x)) 8 x : ¿. (Q x) = ( (Q x))

G ² > * f :¼ ¿ {P} {Q} G = ° G

G, R, B ` {P(vi)} call f (vi) {Q(vi)} 

Actually, the real rule here is more complex – this is only 

half of the premises…



The full rule in Coq…
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Axiom semax_call_basic : 
forall G R B A Z P Q x F sig ret id sh a bl (v: val) vl

(necP: forall x, boxy necM (P x))
(necQ: forall x, boxy necM (Q x))
(Hret: List.length (opt2list ret) = List.length (opt2list (sig_res sig)))
(HG: G |-- TT * (fun_id id sh A P Q))
(Gclosed: closed G),
semax G R B 
(global_id id =# v && a =# v && bl =#* vl && 
prepost_match_sig (P x) (Q x) sig &&
([]F * ^rho own_all (opt2list ret) * apply (P x) vl))

(Scall ret (sig_args sig) a bl Z)
(Ex_ vl' :_ , 

idlist2exprlist (opt2list ret) =#* vl' &&
([]F * ^rho own_all (opt2list ret) * apply (Q x) vl')).



Memory
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 We will start with only one new feature: memory

 A memory m is a function from addresses to values

 To keep things simpler, both will be numeric values

 We need to add two new instructions

 x := [e] (Load)

 [e1] := [e2] (Store)



Semantics
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 Recall from previous lecture that our states ¾ were pairs 

of locals ° and code k.

 We will add a new element to the state: states ¾ are now 

triples of memory m, locals °, and code k.

 ¾ = (m, °, k)

 It is simple to define the operational semantics of load 

and store.



Semantics
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° ` e n °’ := [x ! m(n)] °

(m, °, x := [e] ² k)  (m, °’, k)

° ` e1 n1 ° ` e2 n2 m’ = [n1 ! n2] m

(m, °, [e1] := e2 ² k)  (m’, °, k)



New assertion
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 We also define a new assertion, written e1  e2, which 

means that the memory location e1 contains e2.

(m, °) ² e1  e2

´

9 n1, n2.  (° ` e1 n1) Æ (° ` e2 n2) Æ (m(n1) = n2)

 Using this new assertion, we can write some natural-

looking Hoare rules for load and store.



Two reasonable (but not perfect) rules
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 Rule for Load:

{e1  e2}    v := [e1]     {v = e2}

 Rule for Store:

{ True }     [e1] := e2 {e1  e2}



Two reasonable (but not perfect) rules
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 Rule for Load:

{e1  e2}    v := [e1]     {v = e2}

 Rule for Store:

{ True }     [e1] := e2 {e1  e2}

These rules are not quite perfect since, for example, in the 

load rule if e2 contains v then {v =e2} will not hold.



Two reasonable (but not perfect) rules
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 Rule for Load:

{e1  e2}    v := [e1]     {v = e2}

 Rule for Store:

{ True }     [e1] := e2 {e1  e2}

But as a first approximation,  they are ok.  We have more 

significant concerns to worry about.



Reasoning about multiple pointers

16

 Consider the following proposed Hoare program/proof:

{ x  2  Æ y  3 }     [x] := 4     {x  4  Æ y  3 }

Is it reasonable?



Reasoning about multiple pointers
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 Consider the following proposed Hoare program/proof:

{ x  2  Æ y  3 }     [x] := 4     {x  4  Æ y  3 }

Is it reasonable?

Ya, it looks ok.



Reasoning about multiple pointers
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 What about this one:

{ x  2  Æ y  2 }     [x] := 4     {x  4  Æ y  2 }

Is it reasonable?



Reasoning about multiple pointers
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 What about this one:

{ x  2  Æ y  2 }     [x] := 4     {x  4  Æ y  2 }

Is it reasonable?

Unfortunately, maybe not: what if x and y are aliased?



Reasoning about multiple pointers
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 What about this one:

{ x  2  Æ y  2 }     [x] := 4     {x  4  Æ y  2 }

Is it reasonable?

Unfortunately, no: what if x and y are aliased?

In that case, the postcondition is {x  4  Æ y  4 }



Reasoning about multiple pointers
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 So really:

{ x  2  Æ y  2 }

[x] := 4

{(x  4  Æ y  2) Ç (x  4  Æ y  4) }

This is a sound rule.



Reasoning about multiple pointers
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 So really:

{ x  2  Æ y  2 }

[x] := 4

{(x  4  Æ y  2) Ç (x  4  Æ y  4) }

This is a sound rule.

But… it’s pretty ugly as a pattern: the size of the 

postcondition just doubled!



Reasoning about multiple pointers
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 What about if we had three pointers?

{ x  2  Æ y  2 Æ z  2 }

[x] := 4

{(x  4  Æ y  2 Æ z  2) Ç

(x  4  Æ y  4 Æ z  2) Ç

(x  4  Æ y  2 Æ z  4) Ç

(x  4  Æ y  4 Æ z  4)  }

Uh oh… the size of the postcondition is growing 

exponentially in the number of variables.



Reasoning about multiple pointers
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 Maybe we can explicitly reason about aliasing in the 

precondition:

{ x  2  Æ y  2 Æ x y }

[x] := 4

{(x  4  Æ y  2)}

 At least the postcondition is not too bad now.



Reasoning about multiple pointers
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 Maybe we can explicitly reason about aliasing in the 

precondition:

{ x  2  Æ y  2 Æ x y }

[x] := 4

{(x  4  Æ y  2)}

 At least the postcondition is not too bad now.



Reasoning about multiple pointers
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 What about if we had three pointers?

{ x  2  Æ y  2 Æ z  2 Æ x y Æ x z Æ y z }

[x] := 4

{(x  4  Æ y  2 Æ z  2)}

 The postcondition is ok, but our precondition is growing 

larger.



Reasoning about multiple pointers
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 What about if we had three pointers?

{ x  2  Æ y  2 Æ z  2 Æ x y Æ x z Æ y z }

[x] := 4

{(x  4  Æ y  2 Æ z  2)}

 In fact, the precondition is growing with the square of the 
number of variables.

 So this is better than before (exponential is much worse 
than polynomial), but it is still not ideal.



Reasoning about multiple pointers
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 Pointer aliasing was the major problem with using Hoare 

logic to verify real programs for 30 years.

 Real programs can have hundreds of pointers.  Tracking 

aliasing information was effectively impossible by hand, 

and even by machine was not easy (and led to other 

problems).

 Other approaches were needed…



Separation Logic
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 Around 10 years ago, Peter O’Hearn and John Reynolds 

developed an idea that allowed logical formulas to reason 

about resource usage.

 The idea is that you add a new operator, “*”, called the 

separating conjunction, to your formulas.

 ¾ ² P * Q means, you can divide ¾ into two parts, ¾1 and 

¾2, such that ¾1 ² P and ¾2 ² Q.



Separation, pictorially
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¾



Separation, pictorially
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¾1

¾2

Where ¾ = ¾1 © ¾2



Separation, pictorially
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P * Q

¾ ² P * Q



Separation, pictorially

33

P

Q

¾1 ² P Æ ¾2 ² Q



Formally

34

 The separating conjunction is defined as follows:

¾ ² P * Q

´

9 ¾1, ¾2. ¾1 © ¾2 = ¾ Æ

¾1 ² P    Æ ¾2 ² Q



Joining

35

 What does this symbol “©” mean?

¾1 © ¾2 = ¾

 Can be a bit tricky to define, but informally it means that 
¾ is the union of all of the resources “owned” by ¾1 and 
all of the resources “owned’ by ¾2.

 It has nice properties, like:
 ¾1 © ¾2 =   ¾2 © ¾1

 ¾1 © (¾2 © ¾3)   =   (¾1 © ¾2) © ¾3



Disjoint union
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 However, there is one important point: we (almost 

always) require that ¾1 and ¾2 be disjoint.  That is, 

resources owned by one cannot be owned by the other.

 That is, the two resources are separate.

 What resources do we care about here?



Resources
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 Memory cells!

 Each memory cell will be its own resource. 

 So what does { x  2   *   y  2 } mean?



Resources
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 Memory cells!

 Each memory cell will be its own resource. 

 So what does { x  2   *   y  2 } mean?

 That the memory can be split into two disjoint regions; 

the first region satisfies x  2 and the second also 

satisfies y  2



Resources
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 Memory cells!

 Each memory cell will be its own resource. 

 So what does { x  2   *   y  2 } mean?

 That the memory can be split into two disjoint regions; 
the first region satisfies x  2 and the second also 
satisfies y  2

 That is, x and y are not aliased.



Store rule for separation logic
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 Separating conjunction means that the store rule’s 

postcondition is easy to state:

{ x  2  *  y  2 }

[x] := 4

{x  4  *  y  2}

 The point is that y is not used in this store



Store rule for separation logic
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 The rule looks just as easy with three variables

{ x  2  *  y  2 *  z  2}

[x] := 4

{x  4  *  y  2  * z  2}

 So this is looking much nicer… but it gets better.



Frame Rule
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 Consider these two examples a bit closer:

{ x  2  *  y  2 }

[x] := 4

{x  4  *  y  2}

{ x  2  *  y  2 *  z  2}

[x] := 4

{x  4  *  y  2  * z  2}



Frame Rule
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 Consider these two examples a bit closer:

{ x  2  *  (y  2) }

[x] := 4

{x  4  *  (y  2)}

{ x  2  *  (y  2 *  z  2)}

[x] := 4

{x  4  *  (y  2  * z  2)}



Frame Rule
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 The red part of the formula is completely unusued – and 
unaffected – by the statement in question

{ x  2  *  (y  2) }

[x] := 4

{x  4  *  (y  2)}

{ x  2  *  (y  2 *  z  2)}

[x] := 4

{x  4  *  (y  2  * z  2)}



Frame Rule
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 Really something very general is going on:

{ x  2  *  F }

[x] := 4

{x  4  *  F}

{ x  2  * F }

[x] := 4

{x  4  *  F}



Frame Rule
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 F here is called the frame

{ x  2  *  F }

[x] := 4

{x  4  *  F}

 And in fact, there is a general rule called the Frame Rule:

{Ã}  c  {Á}

{Ã * F}  c  {Á * F}



Frame Rule
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 Note that the Frame Rule is only true because of the *

 Good:

{Ã}  c  {Á}

{Ã * F}  c  {Á * F}

 No good:

{Ã}  c  {Á}

{Ã Æ F}  c  {Á Æ F}

 Why?



Frame Rule
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 Because F might contain pointers and we need to know 

that there is no aliasing.

 Good:

{x  3}  [x] := 4  {x  4}

{x  3 * y  3} [x] := 4  {x  4 * y  3}

 No good since x and y may be aliased:

{x  3}  [x] := 4  {x  4}

{x  3 Æ y  3} [x] := 4  {x  4 Æ y  3}



I have cheated a bit so far…
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 The definition of e1  e2 given before:

(m, °) ² e1  e2

´

9 n1, n2.  (° ` e1 n1) Æ (° ` e2 n2) Æ (m(n1) = n2)

 This turns out to be not quite what we want in 
separation logic.  With this definition, ¾ ² x  3 could be 

true of many memories, as long as at location x the 

memory contained a 3.



Two memories (only 5 locations total)
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1     4

2     8

3    15

4    16

5    23

m ² 3  15

1     8

2    16

3    15

4    23

5    42

m ² 3  15



What if memories were partial functions?
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3    15

m ² 3  15

1     8

2    16

m ² 1  8 * 2  16



Emp
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 We’d like to add a special predicate, called emp, that is 

only true of the empty heap

3    15

m ² 3  15 m ² emp



The revised definitions
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 The definition of e1  e2 given before:

(m, °) ² e1  e2

´

9 n1, n2.  (° ` e1 n1) Æ (° ` e2 n2) Æ (m(n1) = n2)

 The new definition:

(m, °) ² e1  e2

´

9 n1, n2.  (° ` e1 n1) Æ (° ` e2 n2) Æ (m(n1) = n2) Æ
dom(m) = {n1}



Emp
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(m, °) ² e1  e2 ´

9 n1, n2.  (° ` e1 n1) Æ (° ` e2 n2) Æ (m(n1) = n2) Æ

dom(m) = {n1}

 That is, this is only true of the singleton heap that only 

contains the resource at location n1.

 We define emp as: 

(m, °) ² emp ´

dom(m) = { }



What if memories were partial functions?
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3    15

m1 ² 3  15

1     8

2    16

m2 ² 1  8 * 2  16



What if memories were partial functions?
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3    15

m ² 3  15 *1  8 * 2  16

Where m1 © m2 = m

1     8

2    16



Advantages of this approach
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 We can now explicitly reason about memory 

allocation/freeing

{ emp }     v = new (3)     {v  3}

{e1  e2}     free e1 { emp }

Let us suppose we have some program P, and we know

{emp} P {emp}

What can we conclude?



Advantages of this approach
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 We can now explicitly reason about memory 

allocation/freeing

{ emp }     v = new (3)     {v  3}

{e1  e2}     free e1 { emp }

That P has freed all the memory it allocated before exiting.



Advantages of separation logic
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 Many programs have these kinds of bugs:

 Use of memory before allocation

 Inadvertent use of aliased memory

 Double free of memory (usually segfaults)

 Allocate memory but never free it (memory leak)

 Separation logic allows one to verify that a program does 

not have those kinds of bugs



Advantages of separation logic
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Also, the frame rule

{Ã}  c  {Á}

{Ã * F}  c  {Á * F}

is hugely powerful, since it enables local reasoning.

 That is, when you are verifying some statement, you can 
ignore all of the parts of the state that are unrelated.

 The result is that tools based on separation logic can 
mechanically verify programs that are 50k lines long (size 
of many embedded systems and device drivers).



Using Separation Logic for other resources
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 A natural observation is that there are many other kinds 

of resources that programs use

 Network ports

 Disk space

 Portions of the graphical interface

 OS resources

 CPU time

 …

 One active area of research is extending separation logic 

to reason about these kinds of resources.



Resource management
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 It turns out, many of these resources are used in a similar 

way to memory cells.

 For example, network connections:

Network Connections Memory Cells

require initialization require allocation

should be released before exit should be freed before exit

should not be released twice should not be freed twice

connection aliasing dangerous memory aliasing dangerous



Resource management
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 Given these kinds of similarities, one could imagine how a 

network-connection-aware separation logic might work:

 {emp} x = newHTTP(addr) { Conn (x, 80, addr)}

 {Conn (x, 80, addr)} releaseHTTP(x) {emp}

 {Conn (x, 80, addr)} send(x, y) {Conn (x, 80, addr)}

 Etc.



Concurrency

64

 As you probably know, a concurrent program is a 

program that is executing multiple pieces of code at the 

same time.

 Almost all non-safety-critical machines today are running 

many programs at the same time; in turn many of those 

programs have multiple threads of execution.

 It’s easy to have a simple Windows machine with 100+ 

threads running at the same time.



Concurrency and Formal Reasoning

65

 Why “non-safety-critical”?

 Because concurrent programming is really hard – and so 

the code is always filled with bugs.

 This is (kind of) acceptable if it means that you lose a few 

pages of your paper…

 … but totally unacceptable if the airplane decides to 

reboot in the middle of the trip



Scary fact…
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 Most Airbus planes in the sky today use a PowerPC 

processor to run their flight guidance systems.

 Unfortunately, the processor they use is known to have 

bugs in the way it handles concurrency.

 Good thing all of the code is single-threaded…



Why not verify concurrent programs?
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 Historically, it was much too hard.  Consider:

S1; C1;

S2; C2;

S3; C3;

S4; C4;

Here we write C1 || C2 to mean that we execute C1

and C2 in parallel.



Why not verify concurrent programs?
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 Historically, it was much too hard.  Consider:

S1; C1;

S2; C2;

S3; C3;

S4; C4;

The problem is that these instructions can be executed (say,

from the perspective of the memory controlled) in any 

order:  S1  S2  C1  …



Why not verify concurrent programs?
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 Historically, it was much too hard.  Consider:

S1; C1;

S2; C2;

S3; C3;

S4; C4;

With only 4 instructions in each thread, there are a huge

number of choices.  The pre/postconditions almost instantly

become too large to handle (large disjunctions).



Why not verify concurrent programs?
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 Historically, it was much too hard.  Consider:

S1; C1;

S2; C2;

S3; C3;

S4; C4;

Actually, the real picture is even worse: real processors 

execute instructions out of order – in a way that can be

observed from other threads.  (Let’s have mercy and ignore 

this ugly truth for the rest of this lecture.)



Why not verify concurrent programs?
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 Historically, it was much too hard.  Consider:

S1; C1;

S2; C2;

S3; C3;

S4; C4;

Of course, all of this complexity is directly related to the 

reason that concurrent programs are so hard to write!



Applying Hoare Logic
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 We would like to have a rule that looked like this:

{P1} C1 {Q1}      {P2} C2 {Q2}

{P1 Æ P2}     C1 || C2 {Q1 Æ Q2}

 Unfortunately, this rule is very hard to use since it usually 

unsound.   Where does the difficulty come in?



Applying Hoare Logic
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 We would like to have a rule that looked like this:

{P1} C1 {Q1}      {P2} C2 {Q2}

{P1 Æ P2}     C1 || C2 {Q1 Æ Q2}

 The problem is that C_1 and C_2 may interfere with 

each other: then the postconditions will not hold.



Applying Separation Logic
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 What happens if we replace Æ with * ?

{P1} C1 {Q1}      {P2} C2 {Q2}

{P1 * P2}     C1 || C2 {Q1 * Q2}

 Is this rule sound?



Applying Separation Logic
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 What happens if we replace Æ with * ?

{P1} C1 {Q1}      {P2} C2 {Q2}

{P1 * P2}     C1 || C2 {Q1 * Q2}

 Yes!  Since the separating conjunction requires that the 

state satisfying P1 is disjoint from the state satisfying P2, 

we can run C1 and C2 in parallel and they will not hurt 

each other.



Applying Separation Logic
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 What happens if we replace Æ with * ?

{P1} C1 {Q1}      {P2} C2 {Q2}

{P1 * P2}     C1 || C2 {Q1 * Q2}

 Still, those of you familiar with concurrency may detect a 

problem: it is not that the rule is unsound, but maybe it 

won’t be very useful for proving things about common 

programs.  What might the problem be?



Applying Separation Logic
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 What happens if we replace Æ with * ?

{P1} C1 {Q1}      {P2} C2 {Q2}

{P1 * P2}     C1 || C2 {Q1 * Q2}

 The issue is that usually when we run things in parallel, 

we want the threads to be able to cooperate towards a 

common goal.  This means that threads must 

communicate somehow – but the rule above seems to 

imply that each thread is running in isolation.



Concurrency 101: Locks
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 How do threads usually (safely) communicate?  The most 

basic technique is called a lock.

 A lock is just a memory location.  There is a protocol that 

is used: for example, if the location contains “0” then the 

lock is “locked” and if it contains “1” then the lock is 

“unlocked”

 There are two basic operations on a lock: an operation 
called lock, and another called unlock. 



Informal semantics
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 The command lock(v) does the following: first it reads 
the location v; if it is 0 (“locked”) then it waits for awhile 
and then tries again.  Once it is 1 “unlocked” then it sets 
it to 0 (and then the lock command is done).

 The key point is that between reading the “1” and writing 
the “0”, no other thread can execute.  That is, the read-
write pair is atomic.

 Assuming that this is the only way to change a “1” to a 
“0”, this means that at most one thread holds the lock at 
a time.



Informal semantics
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 The command unlock(v) is operationally much simpler: 

just set the memory cell v to 1 “unlocked”.

 Of course, it is extremely dangerous to just unlock locks 

that the thread has not previously locked…

 … since in that case, more than one thread would think 

that it has exclusive ownership of the lock.



Why are locks used?
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 The basic reason is that a lock protects some resource 

(usually piece of memory) that the threads use.  When a 

thread wants to use the shared resource, it (starts to) 

grab the lock.

 Once it has it, then the thread uses the shared resource, 

confident that no other thread will use the resource in an 

invalid way.

 When it is done, the thread unlocks the lock (and 

afterwards does not use the resource).



How can we model this behavior?
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 Idea: associate each lock with a formula R – this formula 

is called the resource invariant.

 The resource invariant will describe which resources are 

used.

 It is usually also very useful for the invariant to state the 

protocol that must be followed when using the resource.

 Example: R = 9 n.   3  n + n



What does it mean?
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 Example: R = 9 n.   3  n + n

1. The lock protects memory cell 3.

2. Once a thread locks the lock it can assume that the 

contents of memory cell 3 is even.

3. The thread will have to ensure that memory cell 3 

contains an even number before unlocking.



A new assertion and Hoare rules
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 We write l ⇝ R to mean that l is a lock with resource 

invariant R.

 We can now define some very nice Hoare rules for lock 

and unlock:

{l ⇝ R} lock l {(l ⇝ R) * R}

{(l ⇝ R) * R} unlock l {l ⇝ R}  



A new assertion and Hoare rules
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 We write l ⇝ R to mean that l is a lock with resource 
invariant R.

 We can now define some very nice Hoare rules for lock 
and unlock:

{l ⇝ R} lock l {(l ⇝ R) * R}

{(l ⇝ R) * R} unlock l {l ⇝ R}  

 Perhaps a picture would help…
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Verification of Example Program

[l] := 0;

makelock l (∃y. x ↦ y+y);

[x] := 0;

unlock l;

fork child(l);

…

lock l;

[x] := [x] + 1;

[x] := [x] + 1;

unlock l;

87



Verification of Example Program

{F   *   l ⇝ (∃y. x ↦ y+y)}

lock l;

{F   *   l ⇝ (∃y. x ↦ y+y)   *   (∃y. x ↦ y+y)}

[x] := [x] + 1;

[x] := [x] + 1;

unlock l;
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Verification of Example Program

lock l;

{F   *   l ⇝ (∃y. x ↦ y+y)   *   (∃y. x ↦ y+y)}

[x] := [x] + 1;

{F   *   l ⇝ (∃y. x ↦ y+y)   *   (∃y. x ↦ y+y + 1)}

[x] := [x] + 1;

unlock l;
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Verification of Example Program

lock l;

[x] := [x] + 1;

{F   *  l ⇝ (∃y. x ↦ y+y)  *  (∃y. x ↦ y+y + 1)}

[x] := [x] + 1;

{F   *  l ⇝ (∃y. x ↦ y+y)  *  (∃y. x ↦ y+y + 2)}

unlock l;
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Verification of Example Program

lock l;

[x] := [x] + 1;

{F   *  l ⇝ (∃y. x ↦ y+y)  *  (∃y. x ↦ y+y + 1)}

[x] := [x] + 1;

{F   *  l ⇝ (∃y. x ↦ y+y)  *  (∃y. x ↦ y+y + 2)}

unlock l;
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(∃y. x ↦ y+y)



Verification of Example Program

lock l;

[x] := [x] + 1;

{F   *  l ⇝ (∃y. x ↦ y+y)  *  (∃y. x ↦ y+y + 1)}

[x] := [x] + 1;

{F   *  l ⇝ (∃y. x ↦ y+y)  *  (∃y. x ↦ y+y)}

unlock l;
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Verification of Example Program

lock l;

[x] := [x] + 1;

[x] := [x] + 1;

{F  *  l ⇝ (∃y. x ↦ y+y)  *  (∃y. x ↦ y+y)}

unlock l;

{F  *  l ⇝ (∃y. x ↦ y+y)}
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Verification of Example Program

{F * l ⇝ (∃y. x ↦ y+y)}

lock l;

{F * l ⇝ (∃y. x ↦ y+y) * (∃y. x ↦ y+y)}

[x] := [x] + 1;

{F * l ⇝ (∃y. x ↦ y+y) * (∃y. x ↦ y+y + 1)}

[x] := [x] + 1;

{F * l ⇝ (∃y. x ↦ y+y) * (∃y. x ↦ y+y + 2)}

{F * l ⇝ (∃y. x ↦ y+y) * (∃y. x ↦ y+y)}

unlock l;

{F * l ⇝ (∃y. x ↦ y+y)}
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Verification of Example Program
{x ↦ _ * l ↦ _}

[l] := 0;

{x ↦ _ * l ↦ 0}

makelock l (∃y. x ↦ y+y);

{x ↦ _  * l ⇝ (∃y. x ↦ y+y)}

[x] := 0;

{x ↦ 0  * l ⇝ (∃y. x ↦ y+y)}

{x ↦ (∃y. x ↦ y+y)  * l ⇝ (∃y. x ↦ y+y)}

unlock l;

{l ⇝ (∃y. x ↦ y+y)}

fork child(l);

{l ⇝ (∃y. x ↦ y+y)}

lock l;

{l ⇝ (∃y. x ↦ y+y) * (∃y. x ↦ y+y)}

[x] := [x] + 1;

{l ⇝ (∃y. x ↦ y+y) * (∃y. x ↦ y+y + 1)}

[x] := [x] + 1;

{l ⇝ (∃y. x ↦ y+y) * (∃y. x ↦ y+y + 2)}

{l ⇝ (∃y. x ↦ y+y) * (∃y. x ↦ y+y)}

unlock l;

{l ⇝ (∃y. x ↦ y+y)}
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Lessons
{x ↦ _ * l ↦ _}

[l] := 0;

{x ↦ _ * l ↦ 0}

makelock l (∃y. x ↦ y+y);

{x ↦ _  * l ⇝ (∃y. x ↦ y+y)}

[x] := 0;

{x ↦ 0  * l ⇝ (∃y. x ↦ y+y)}

{x ↦ (∃y. x ↦ y+y)  * l ⇝ (∃y. x ↦ y+y)}

unlock l;

{l ⇝ (∃y. x ↦ y+y)}

fork child(l);

{l ⇝ (∃y. x ↦ y+y)}

lock l;

{l ⇝ (∃y. x ↦ y+y) * (∃y. x ↦ y+y)}

[x] := [x] + 1;

{l ⇝ (∃y. x ↦ y+y) * (∃y. x ↦ y+y + 1)}

[x] := [x] + 1;

{l ⇝ (∃y. x ↦ y+y) * (∃y. x ↦ y+y + 2)}

{l ⇝ (∃y. x ↦ y+y) * (∃y. x ↦ y+y)}

unlock l;

{l ⇝ (∃y. x ↦ y+y)}
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A) Many details!

(Actually, some omitted!)

B) Machine-checking is key

C) Has been done for larger 

example programs (in Coq)

D) Machine-generation would be 

very helpful



Questions?
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