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What is logic?

1 the branch of philosophy dealing with forms and processes
of thinking, especially those of inference and scientific
method,

2 a particular system or theory of logic [according to 1].

(from “The World Book Dictionary”)
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Origins of Mathematical Logic

Greek origins

The ancient Greek formulated rules of logic as syllogisms,
which can be seen as precursors of formal logic frameworks.
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Example of Syllogism

Premise

All men are mortal.

Premise

Socrates is a man.

Conclusion

Therefore, Socrates is mortal.
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Historical Notes

Logic traditions in Ancient Greece

Stoic logic: Centers on propositional logic; can be traced back
to Euclid of Megara (400 BCE)

Peripatetic logic: Precursor of predicate logic; founded by
Artistotle (384–322 BCE), focus on syllogisms
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Logic Throughout the World

Indian logic: Nyaya school of Hindu philosophy, culminating
with Dharmakirti (7th century CE), and Gangea
Updhyya of Mithila (13th century CE), formalized
inference

Chinese logic: Gongsun Long (325–250 BCE) wrote on logical
arguments and concepts; most famous is the
“White Horse Dialogue”; logic typically rejected as
trivial by later Chinese philosophers

Islamic logic: Further development of Aristotelian logic,
culminating with Algazel (1058–1111 CE)

Medieval logic: Aristotelian; culminating with William of
Ockham (1288–1348 CE)

Traditional logic: Port-Royal Logic, influential logic textbook first
published in 1665
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Remarks on Ockham

Ockham’s razor (in his own words)

For nothing ought to be posited without a reason given, unless
it is self-evident or known by experience or proved by the
authority of Sacred Scripture.

Ockham’s razor (popular version, not found in his writings)

Entia non sunt multiplicanda sine necessitate.
English: Entities should not be multiplied without necessity.

Built-in Skepticism

As a result of this ontological parsimony, Ockham states that
human reason cannot prove the immortality of the soul nor the
existence, unity, and infinity of God.
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Propositional Calculus

Study of atomic propositions

Propositions are built from sentences whose internal structure
is not of concern.

Building propositions

Boolean operators are used to construct propositions out of
simpler propositions.
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Example for Propositional Calculus

Atomic proposition

One plus one equals two.

Atomic proposition

The earth revolves around the sun.

Combined proposition

One plus one equals two and the earth revolves around the
sun.
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Goals and Main Result

Meaning of formula

Associate meaning to a set of formulas by assigning a value
true or false to every formula in the set.

Proofs

Symbol sequence that formally establishes whether a formula
is always true.

Soundness and completeness

The set of provable formulas is the same as the set of formulas
which are always true.
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Uses of Propositional Calculus

Hardware design

The production of logic circuits uses propositional calculus at all
phases; specification, design, testing.

Verification

Verification of hardware and software makes extensive use of
propositional calculus.

Problem solving

Decision problems (scheduling, timetabling, etc) can be
expressed as satisfiability problems in propositional calculus.
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Predicate Calculus: Central ideas

Richer language

Instead of dealing with atomic propositions, predicate calculus
provides the formulation of statements involving sets, functions
and relations on these sets.

Quantifiers

Predicate calculus provides statements that all or some
elements of a set have specified properties.

Compositionality

Similar to propositional calculus, formulas can be built from
composites using logical connectives.
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Progamming Language Semantics

The meaning of programs such as

if x >= 0 then y := sqrt(x) else y := abs(x)

can be captured with formulas of predicate calculus:

∀x∀y(x ′ = x ∧ (x ≥ 0 → y ′ =
√

x) ∧ (¬(x ≥ 0) → y ′ = |x |))
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Other Uses of Predicate Calculus

Specification: Formally specify the purpose of a program in
order to serve as input for software design,

Verification: Prove the correctness of a program with respect to
its specification.
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Example for Specification

Let P be a program of the form

while a <> b do
if a > b then a := a - b else a:= b - a;

The specification of the program is given by the formula

{a ≥ 0 ∧ b ≥ 0} P {a = gcd(a,b)}
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Theorem Proving and Logic Programming

Theorem proving

Formal logic has been used to design programs that can
automatically prove mathematical theorems.

Logic programming

Research in theorem proving has led to an efficient way of
proving formulas in predicate calculus, called resolution, which
forms the basis for logic programming.
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Other Systems of Logic

Three-valued logic

A third truth value (denoting “don’t know” or “undetermined”) is
often useful.

Intuitionistic logic

A mathematical object is accepted only if a finite construction
can be given for it.

Temporal logic

Integrates time-dependent constructs such as (“always” and
“eventually”) explicitly into a logic framework; useful for
reasoning about real-time systems.
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Style: Broad, elementary, rigorous

Broad: Cover a good number of logical frameworks

Elementary: Focus on a minimal subset of each framework

Rigorous: Cover topics formally, preparing students for
advanced studies in logic in computer science
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Method: From Theory to Practice

Cover theory and back it up with practical excercises that apply
the theory and give new insights.
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Overview of Module Content

1 Propositional calculus (3 lectures, including today)
2 Predicate calculus (3 lectures)
3 Verification by Model Checking (1 lectures)
4 Program Verification (2 lectures)
5 Modal Logics (2 lectures; to be confirmed)
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Administrative Matters

Use www.comp.nus.edu.sg/∼cs5209 and IVLE

Textbook

Assignments (one per week, starting next week; marked)

Self-assessments (occasional; not marked)

Discussion forums (IVLE)

Announcements (IVLE)

Webcast (IVLE)

Blog (IVLE, just for fun)

Tutorials (one per week); register!
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Declarative Sentences

The language of propositional logic is based on propositions or
declarative sentences.

Declarative Sentences

Sentences which one can—in principle—argue as being true or
false.
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Examples

1 The sum of the numbers 3 and 5 equals 8.
2 Jane reacted violently to Jack’s accusations.
3 Every natural number > 2 is the sum of two prime

numbers.
4 All Martians like pepperoni on their pizza.
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Not Examples

Could you please pass me the salt?

Ready, steady, go!

May fortune come your way.
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Putting Propositions Together

Example 1.1

If the train arrives late and
there are no taxis at the station then
John is late for his meeting.

John is not late for his meeting.

The train did arrive late.

Therefore, there were taxis at the station.
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Putting Propositions Together

Example 1.2

If it is raining and
Jane does not have her umbrella with her then
she will get wet.

Jane is not wet.

It is raining.

Therefore, Jane has her umbrella with her.
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Focus on Structure

We are primarily concerned about the structure of arguments in
this class, not the validity of statements in a particular domain.

We therefore simply abbreviate sentences by letters such as p,
q, r , p1, p2 etc.
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From Concrete Propositions to Letters

Example 1.1

If the train arrives late and
there are no taxis at the station then
John is late for his meeting.

John is not late for his meeting.

The train did arrive late.

Therefore, there were taxis at the station.

becomes

Letter version

If p and not q, then r . Not r . p. Therefore, q.
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From Concrete Propositions to Letters

Example 1.2

If it is raining and
Jane does not have her umbrella with her then
she will get wet.

Jane is not wet.

It is raining.

Therefore, Jane has her umbrella with her.

has

the same letter version

If p and not q, then r . Not r . p. Therefore, q.
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Putting Propositions Together

Sentences like “If p and not q, then r .” occur frequently. Instead
of English words such as “if...then”, “and”, “not”, it is more
convenient to use symbols such as →, ∧, ¬.
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Logical Connectives

¬: negation of p is denoted by ¬p

∨: disjunction of p and r is denoted by p ∨ r , meaning
at least one of the two statements is true.

∧: conjunction of p and r is denoted by p ∧ r ,
meaning both are true.

→: implication between p and r is denoted by p → r ,
meaning that r is a logical consequence of p. p is
called the antecedent, and r the consequent.
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Example 1.1 Revisited

From Example 1.1

If the train arrives late and
there are no taxis at the station then
John is late for his meeting.

Symbolic Propositions

We replaced “the train arrives late” by p etc

The statement becomes: If p and not q, then r .

Symbolic Connectives

With symbolic connectives, the statement becomes:

p ∧ ¬q → r
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Introduction

Objective

We would like to develop a calculus for reasoning about
propositions, so that we can establish the validity of statements
such as Example 1.1.

Idea

We introduce proof rules that allow us to derive a formula ψ
from a number of other formulas φ1, φ2, . . . φn.

Notation

We write a sequent φ1, φ2, . . . , φn ⊢ ψ
to denote that we can derive ψ from φ1, φ2, . . . , φn.
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Example 1.1 Revisited

English

If the train arrives late and
there are no taxis at the station then
John is late for his meeting.

John is not late for his meeting.

The train did arrive late.

Therefore, there were taxis at the station.

Sequent

p ∧ ¬q → r ,¬r ,p ⊢ q

Remaining task
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What Next?

Sequent

p ∧ ¬q → r ,¬r ,p ⊢ q

Remaining task

Develop a set of proof rules that allows us to establish such
sequents.
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Rules for Conjunction

Introduction of Conjunction

φ ψ

φ ∧ ψ
[∧i]

Elimination of Conjunction

φ ∧ ψ

φ

[∧e1]

φ ∧ ψ

ψ

[∧e2]
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Sequents
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Example of Proof

To show

p ∧ q, r ⊢ q ∧ r

How to start?

p ∧ q r

q ∧ r
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Sequents
Rules for Conjunction
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Proof Step-by-Step

1 p ∧ q (premise)
2 r (premise)
3 q (by using Rule ∧e2 and Item 1)
4 q ∧ r (by using Rule ∧i and Items 3 and 2)
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Graphical Representation of Proof

p ∧ q

q
[∧e2] r

q ∧ r
[∧i]

Find the parts of the corresponding sequent:

p ∧ q, r ⊢ q ∧ r
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Graphical Representation of Proof

p ∧ q

q
[∧e2] r

q ∧ r
[∧i]

Find the parts of the corresponding proof:
1 p ∧ q (premise)
2 r (premise)
3 q (by using Rule ∧e2 and Item 1)
4 q ∧ r (by using Rule ∧i and Items 3 and 2)
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Sequents
Rules for Conjunction
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Where are we heading with this?

We would like to prove sequents of the form
φ1, φ2, . . . , φn ⊢ ψ
We introduce rules that allow us to form “legal” proofs

Then any proof of any formula ψ using the premises
φ1, φ2, . . . , φn is considered “correct”.

Can we say that sequents with a correct proof are
somehow “valid”, or “meaningful”?

What does it mean to be meaningful?

Can we say that any meaningful sequent has a valid proof?

...but first back to the proof rules...
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Sequents
Rules for Conjunction
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Rules of Double Negation

¬¬φ

φ

[¬¬e]

φ

¬¬φ
[¬¬i]
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Rule for Eliminating Implication

φ φ→ ψ

ψ

[→ e]

Example

p: It rained.

p → q: If it rained, then the street is wet.

We can conclude from these two that the street is indeed wet.
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Another Rule for Eliminating Implication

The rule

φ φ→ ψ

ψ

[→ e]

is often called “Modus Ponens” (or MP)

Origin of term

“Modus ponens” is an abbreviation of the Latin “modus
ponendo ponens” which means in English “mode that affirms
by affirming”. More precisely, we could say “mode that affirms
the antecedent of an implication”.
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The Twin Sister of Modus Ponens

The rule

φ φ→ ψ

ψ

[→ e]

is called “Modus Ponens” (or MP)
A similar rule

φ→ ψ ¬ψ

¬φ
[MT ]

is called “Modus Tollens” (or MT).
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The Twin Sister of Modus Ponens

The rule

φ→ ψ ¬ψ

¬φ
[MT ]

is called “Modus Tollens” (or MT).

Origin of term

“Modus tollens” is an abbreviation of the Latin “modus tollendo
tollens” which means in English “mode that denies by denying”.
More precisely, we could say “mode that denies the consequent
of an implication”.
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Example

p → (q → r),p,¬r ⊢ ¬q

1 p → (q → r) premise
2 p premise
3 ¬r premise
4 q → r →e 1,2
5 ¬q MT 4,3
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How to introduce implication?

Compare the sequent (MT)

p → q,¬q ⊢ ¬p

with the sequent
p → q ⊢ ¬q → ¬p

The second sequent should be provable, but we don’t have a
rule to introduce implication yet!
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A Proof We Would Like To Have

p → q ⊢ ¬q → ¬p

1 p → q premise

2 ¬q assumption
3 ¬p MT 1,2

4 ¬q → ¬p →i 2–3

We can start a box with an assumption, and use previously
proven propositions (including premises) from the outside in the
box.
We cannot use assumptions from inside the box in rules
outside the box.
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Rule for Introduction of Implication

�

�

�

�

φ
...
ψ

φ→ ψ

[→ i]
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Rules for Introduction of Disjunction

φ

φ ∨ ψ
[∨ii ]

ψ

φ ∨ ψ
[∨i2]
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Rule for Elimination of Disjunction

φ ∨ ψ

�

�

�

�

φ
...
χ

�

�

�

�

ψ
...
χ

χ

[∨e]

CS 5209: Foundation in Logic and AI 01—Introduction to CS5209; Propositional Calculus I 57



Introduction to Foundation in Logic and AI
Brief Introduction to CS5209

Administrative Matters
Propositional Calculus: Declarative Sentences

Propositional Calculus: Natural Deduction

Sequents
Rules for Conjunction
Rules for Double Negation and Implication
Rules for Disjunction

Example

1 p ∧ (q ∨ r) premise
2 p ∧e1 1
3 q ∨ r ∧e2 1

4 q assumption
5 p ∧ q ∧i 2,4
6 (p ∧ q) ∨ (p ∧ r) ∨i1 5

7 r assumption
8 p ∧ r ∧i 2,7
9 (p ∧ q) ∨ (p ∧ r) ∨i2 8

10 (p ∧ q) ∨ (p ∧ r) ∨e 3, 4–6, 7–9
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Summary

Interested in relationships between propositions, not the
content of individual propositions

Build propositions (p ∧ q) out of primitive ones p and q

Introduce rules that allow us construct proofs

Remaining tasks:

What are formulas? (syntax)

What is the meaning of formulas? (validity; semantics)

What is the relationship between provable formulas and
valid formulas?
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Next Week

More rules for negation

Excursion: Intuitionistic logic

Propositional logic as a formal language

Semantics of propositional logic
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