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Conjunctive Normal Form

Definition

A literal L is either an atom p or the negation of an atom ¬p. A
formula C is in conjunctive normal form (CNF) if it is a
conjunction of clauses, where each clause is a disjunction of
literals:

L ::= p|¬p

D ::= L|L ∨ D

C ::= D|D ∧ C
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Examples

(¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬r) is in CNF.
(¬p ∨ q ∨ r) ∧ ((p ∧ ¬q) ∨ r) ∧ (¬r) is not in CNF.
(¬p ∨ q ∨ r) ∧ ¬(¬q ∨ r) ∧ (¬r) is not in CNF.
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Usefulness of CNF

Lemma

A disjunction of literals L1 ∨ L2 ∨ · · · ∨ Lm is valid iff there are
1 ≤ i , j ≤ m such that Li is ¬Lj .

How to disprove

|= (¬q ∨ p ∨ r) ∧ (¬p ∨ r) ∧ q

Disprove any of:

|= (¬q ∨ p ∨ r) |= (¬p ∨ r) |= q

CS 5209: Foundation in Logic and AI 03—Propositional Logic III 6



Soundness and Completeness
Conjunctive Normal Form

SAT Solvers

Usefulness of CNF

Lemma

A disjunction of literals L1 ∨ L2 ∨ · · · ∨ Lm is valid iff there are
1 ≤ i , j ≤ m such that Li is ¬Lj .

How to prove

|= (¬q ∨ p ∨ q) ∧ (p ∨ r¬p) ∧ (r ∨ ¬r)

Prove all of:

|= (¬q ∨ p ∨ q) |= (p ∨ r¬p) |= (r ∨ ¬r)

CS 5209: Foundation in Logic and AI 03—Propositional Logic III 7



Soundness and Completeness
Conjunctive Normal Form

SAT Solvers

Usefulness of CNF

Proposition

Let φ be a formula of propositional logic. Then φ is satisfiable iff
¬φ is not valid.

Satisfiability test

We can test satisfiability of φ by transforming ¬φ into CNF, and
show that some clause is not valid.
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Transformation to CNF

Theorem

Every formula in the propositional calculus can be transformed
into an equivalent formula in CNF.
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Algorithm for CNF Transformation

1 Eliminate implication using:
A → B ≡ ¬A ∨ B

2 Push all negations inward using De Morgan’s laws:
¬(A ∧ B) ≡ (¬A ∨ ¬B)
¬(A ∨ B) ≡ (¬A ∧ ¬B)

3 Eliminate double negations using the equivalence ¬¬A ≡ A
4 The formula now consists of disjunctions and conjunctions

of literals. Use the distributive laws
A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)
(A ∧ B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C)
to eliminate conjunctions within disjunctions.
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Example

(¬p → ¬q) → (p → q) ≡ ¬(¬¬p ∨ ¬q) ∨ (¬p ∨ q)

≡ (¬¬¬p ∧ q) ∨ (¬p ∨ q)

≡ (¬p ∧ q) ∨ (¬p ∨ q)

≡ (¬p ∨ ¬p ∨ q) ∧ (q ∨ ¬p ∨ q)
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WalkSAT: An Incomplete Solver

Idea: Start with a random truth assignment, and then
iteratively improve the assignment until model is
found

Details: In each step, choose an unsatisfied clause (clause
selection), and “flip” one of its variables (variable
selection).
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WalkSAT: Details

Termination criterion: No unsatisfied clauses are left.

Clause selection: Choose a random unsatisfied clause.

Variable selection:

If there are variables that when flipped make
no currently satisfied clause unsatisfied, flip
one which makes the most unsatisfied
clauses satisfied.
Otherwise, make a choice with a certain
probability between:

picking a random variable, and
picking a variable that when flipped
minimizes the number of unsatisfied clauses.
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DPLL: Idea

Simplify formula based on
pure literal elimination and
unit propagation

If not done, pick an atom p and split: φ ∧ p or φ ∧ ¬p
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A Linear Solver: Idea

Transform formula to tree of conjunctions and negations.

Transform tree into graph.

Mark the top of the tree as T.

Propagate constraints using obvious rules.

If all leaves are marked, check that corresponding
assignment makes the formula true.

CS 5209: Foundation in Logic and AI 03—Propositional Logic III 16



Soundness and Completeness
Conjunctive Normal Form

SAT Solvers

Transformation

T (p) = p

T (φ1 ∧ φ2) = T (φ1) ∧ T (φ2)

T (¬φ) = ¬φ(T )

T (φ1 → φ2) = ¬(T (φ1) ∧ ¬T (φ2))

T (φ1 ∨ φ2) = ¬(¬T (φ1) ∧ ¬T (φ2))
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Example

φ = p ∧ ¬(q ∨ ¬p)

T (φ) = p ∧ ¬¬(¬q ∧ ¬¬p)

CS 5209: Foundation in Logic and AI 03—Propositional Logic III 18



Soundness and Completeness
Conjunctive Normal Form

SAT Solvers

Binary Decision Tree: Example
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Problem

What happens to formulas of the kind ¬(φ1 ∧ φ2)?
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A Cubic Solver: Idea

Improve the linear solver as follows:

Run linear solver
For every node n that is still unmarked:

Mark n with T and run linear solver, possibly resulting in
temporary marks.
Mark n with F and run linear solver, possibly resulting in
temporary marks.
Combine temporary marks, resulting in possibly new
permanent marks
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WalkSAT: Idea
DPLL: Idea
A Linear Solver
A Cubic Solver

The ACC 1997/98 Problem

“ACC” stands for “Atlantic Coast Conference”, an American
college basketball organization
9 teams participate in tournament
dense double round robin: there are 2 ∗ 9 dates
at each date, each team plays either home, away or has a
“bye”
Each team must play each other team once at home and
once away.
there should be at least 7 dates distance between first leg
and return match.
To achieve this, we assume a fixed mirroring between
dates: (1,8), (2,9), (3,12), (4,13), (5,14), (6,15) (7,16),
(10,17), (11,18)
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The ACC 1997/98 Problem (contd)

No team can play away on both last dates

No team may have more than two away matches in a row.

No team may have more than two home matches in a row.

No team may have more than three away matches or byes
in a row.

No team may have more than four home matches or byes
in a row.
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The ACC 1997/98 Problem (contd)

Of the weekends, each team plays four at home, four away,
and one bye.

Each team must have home matches or byes at least on
two of the first five weekends.

Every team except FSU has a traditional rival. The rival
pairs are Clem-GT, Duke-UNC, UMD-UVA and
NCSt-Wake. In the last date, every team except FSU plays
against its rival, unless it plays against FSU or has a bye.
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The ACC 1997/98 Problem (contd)

The following pairings must occur at least once in dates 11
to 18: Duke-GT, Duke-Wake, GT-UNC, UNC-Wake.

No team plays in two consecutive dates away against Duke
and UNC. No team plays in three consecutive dates
against Duke UNC and Wake.

UNC plays Duke in last date and date 11.

UNC plays Clem in the second date.

Duke has bye in the first date 16.
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The ACC 1997/98 Problem (contd)

Wake does not play home in date 17.

Wake has a bye in the first date.

Clem, Duke, UMD and Wake do not play away in the last
date.

Clem, FSU, GT and Wake do not play away in the fist date.

Neither FSU nor NCSt have a bye in the last date.

UNC does not have a bye in the first date.
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Background

Trick and Nemhauser work on the problem from 1995
onwards

Trick and Nemhauser publish the problem and their
approach in “Scheduling a Major Basketball Conference”,
Operations Research, 46(1), 1998

From then onwards, Henz, Walser and Zhang use different
techniques to solve the problem
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General Approach

Three phases:
1 Generate all possible patterns such as

“A H B A H H A H A A H B H A A H H A”
2 Generate all feasible 9-element pattern sets that can be

used to construct a schedule
3 Generate schedules from pattern sets

Output: all feasible solutions, from which the organizers
can choose the most suitable one
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Solution Techniques

Nemhauser and Trick use integer programming for all three
steps, leading to a “turn-around time” of 24 hours

Henz uses constraint programming, turn-around time of
less than 1 minute, publishes his approach in “Scheduling
a Major Basketball Conference—Revisited”, Operations
Research, 49(1), 2001

Zhang Hantao uses SAT solving, turn-around time of 2
seconds, see “Generating College Conference Basketball
Schedules using a SAT Solver”

Different approach: In 1998, J.P. Walser described a
local-search based method for finding some (not all)
solutions, without using 3 phases
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How to Encode ACC as a SAT Formula

Consider Phase 3: Generation of schedule, assigning
teams to opponents at every day of the tournament
For teams x , y , day z, introduce atom px ,y ,z = T iff team x
plays a home game against team y in day z.
Example of encoding constraints: “Each team must play
each other team once at home and once away.”
For every pair of distinct teams s and t , we have:

(ps,t ,1 ∧ ¬ps,t ,2 ∧ · · · ∧ ¬ps,t ,18) ∨

(¬ps,t ,1 ∧ ps,t ,2 ∧ ¬ps,t ,3 ∧ · · · ∧ ¬ps,t ,18) ∨

...

(¬ps,t ,1 · · · ∧ ¬ps,t ,17 ∧ ps,t ,18)

Convert formula into CNF, and use a complete SAT solver
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Some Statistics

Zhang Hantao used the DPLL-based SAT solver SATO

Phase 1: 18 · 3 = 54 propositional atoms, 1499 clauses,
taking 0.01 seconds, resulting in 38 patterns

Phase 2: 38 · 9 · 3 = 1026 propositional atoms, 569300
clauses, taking 0.60 seconds, resulting in 17 pattern sets

Phase 3: 9 · 9 + 9 · 8 · 18 = 1377 propositional atoms,
hundreds of thousands of clauses, taking less than 2
seconds, resulting in 179 solutions
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Conclusion

For many discrete constraint satisfaction problems such as
the ACC 1997/98 problem, an encoding in SAT and use of
a state-of-the-art SAT solver provides an attractive solving
technique.

The approach takes advantage of the effort that the
designers of SAT solvers such as SATO spent in order to
optimize the solver.

This works well, because the solver is independent of the
application domain; it can be used without modification
across application domains.
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