
03b—Inductive Definitions

CS 5209: Foundation in Logic and AI

Martin Henz and Aqinas Hobor

January 28, 2010

Generated on Monday 1st February, 2010, 16:38

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 1

Inductive definitions

Often one wishes to define a set with a collection of rules
that determine the elements of that set. Simple examples:

Binary trees
Natural numbers

What does it mean to define a set by a collection of rules?

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 2

Example 1: Binary trees (w/o data at nodes)

• is a binary tree;

if l and r are binary trees, then so is l r

Examples of binary trees:

•

• •

• • •

•
• • •

• •

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 3

Example 2: Natural numbers in unary (base-1)
notation

Z is a natural;

if n is a natural, then so is S(n).

We pronouce Z as “zed” and “S” as successor. We can now
define the natural numbers as follows:

zero ≡ Z
one ≡ S(Z)
two ≡ S(S(Z))
. . .

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 4

It’s possible to view naturals as trees, too:

zero ≡ Z Z

one ≡ S(Z) S

Z

two ≡ S(S(Z)) S

S

Z

. . .

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 5

Examples (more formally)

Binary trees: The set Tree is defined by the rules

•

tl tr

tl tr

Naturals: The set Nat is defined by the rules

Z

n

S(n)

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 6

Given a collection of rules, what set does it define?

What is the set of trees?

What is the set of naturals?

Do the rules pick out a unique set?

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 7

There can be many sets that satisfy a given collection
of rules

MyNum = {Z , S(Z), . . .}

YourNum = MyNum ∪ {∞, S(∞), . . .}, where ∞ is an
arbitrary symbol.

Both MyNum and YourNum satisfy the rules defining numerals
(i.e., the rules are true for these sets).

Really?

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 8

MyNum Satisfies the Rules

Z

n

S(n)

MyNum = {Z , Succ(Z), S(S(Z)), . . .}

Does MyNum satisfy the rules?

Z ∈ MyNum.
√

If n ∈ MyNum, then S(n) ∈ MyNum.
√

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 9

YourNum Satisfies the Rules

Z

n

S(n)

YourNum = {Z , S(Z), S(S(Z)), . . .} ∪ {∞, S(∞), . . .}

Does YourNum satisfy the rules?

Z ∈ YourNum.
√

If n ∈ YourNum, then S(n) ∈ YourNum.
√

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 10

... “And That’s All!”

Both MyNum and YourNum satisfy all rules.

It is not enough that a set satisfies all rules.

Something more is needed: an extremal clause.

“and nothing else”
“the least set that satisfies these rules”

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 11

An inductively defined set is the least set for the given
rules.

Example: MyNum = {Z , S(Z), S(S(Z)), . . .} is the least set that
satisfies these rules:

Z ∈ Num

if n ∈ Num, then S(n) ∈ Num.

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 12

What do we mean by “least”?

Answer: The smallest with respect to the subset ordering on
sets.

Contains no “junk”, only what is required by the rules.

Since YourNum) MyNum, YourNum is ruled out by the
extremal clause.

MyNum is “ruled in” because it has no “junk”. That is, for
any set S satisfying the rules, S ⊃ MyNum

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 13

We almost always want to define sets with inductive
definitions, and so have some simple notation to do so
quickly:

S = Constructor1(. . .) | Constructor2(. . .) | . . .

where S can appear in the . . . on the right hand side (along with
other things). The Constructori are the names of the different
rules (sometimes text, sometimes symbols). This is called a
recursive definition.

Examples:

Binary trees: τ = • |
τ τ

Naturals: N = Z | S(N)

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 14

There is a close connection between a recursive
definition and a definition by rules:

Binary trees: τ = • |
τ τ

•

tl tr

tl tr

Naturals: N = Z | S(N)

Z

n

S(n)

“recursive definition style” means that the extremal clause
holds.

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 15

What’s the Big Deal?

Inductively defined sets “come with” an induction principle.
Suppose I is inductively defined by rules R.

To show that every x ∈ I has property P, it is enough to
show that regardless of which rule is used to “build” x, P
holds; this is called taking cases or inversion.

Sometimes, taking cases is not enough; in that case we
can attempt a more complicated proof where we show that
P is preserved by each of the rules of R; this is called
structural induction or rule induction.

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 16

Example: Sign of a Natural

Consider the following definition:

The natural Z has sign 0.

For any natural n, the natural S(n) has sign 1.

Let P be the following property: Every natural has sign 0 or 1.

Does P satisfy the rules
Z

n

S(n)

?

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 17

How to take cases

To show that every n ∈ Nat has property P, it is enough to
show:

Z has property P.

For any n, S(n) has property P.

Recall:

The natural Z has sign 0.

For any natural n, the natural S(n) has sign 1.

Let P = “Every natural has sign 0 or 1.”. Does P hold for all N?

Proof. We take cases on the structure of n as follows:

Z has sign 0, so P holds for Z .
√

For any n, S(n) has sign 1, so P holds for any S(n).
√

Thus, P holds for all naturals.

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 18

Example: Even and Odd Naturals

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.

Let P be: Every natural has parity 0 or parity 1.

Can we prove this by taking cases?

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 19

Taking cases

We need to show P = “Every natural has parity 0 or parity 1.”,

Z has property P.

For any n, S(n) has property P.

Where parity is defined by

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

For any n, S(n) has parity well. . . hmmm. . . it is unclear; it
depends on the parity of n. X

We are stuck! We need an extra fact about n’s parity. . .

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 20

Induction hypothesis

This fact is called an induction hypothesis. To get such an
induction hypothesis we do induction, which is a more powerful
way to take cases. To show that every n ∈ Num has property P,
we must show that every rule preserves P; that is:

Z has property P.

if n has property P, then S(n) has property P.

The new part is “if n has property P, then . . . ”; this is the
induction hypothesis.

Note that for the naturals, structural induction is just ordinary
mathematical induction!

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 21

Using induction to fix our proof

Every natural has parity 0 or parity 1.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

For any n, we can’t determine the parity of S(n) until we
know something about the parity of n. X

Proof. We do induction on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

Given an n such that P holds on n, show that P holds on
S(n). Since P holds on n, the parity of n is 0 or 1. If the
parity of n is 0, then the parity of S(n) is 1. If the parity of n
is 1, then the parity of S(n) is 0. In either case, the parity of
S(n) is 0 or 1, so if P holds on n then P holds on S(n).

√

Thus, P holds for an natural n.

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 22

Extending case analysis and structural induction to
trees

Case analysis: to show that every tree has property P, prove
that

• has property P.

for all τ1 and τ2,
τ1 τ2

has property P.

Structural induction: to show that every tree has property P,
prove

• has property P.

if τ1 and τ2 have property P, then
τ1 τ2

has property P.

Note that we do not require that τ1 and τ2 be the same height!

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 23

How can we justify case analysis and induction?

Let I be a set inductively defined by rules R.

Case analysis is really a lightweight “special case” of
structural induction where we do not use the induction
hypothesis. If structural induction is sound, then case
analysis will be as well.

One way to think of a property P is that it is exactly the set
of items that have property P. We would like to show that if
you are in the set I then you have property P, that is, P ⊇ I.

Remember that I is (by definition) the smallest set
satisfying the rules in R.

Hence if P satisfies (is preserved by) the rules of R, then
P ⊇ I.

This is why the extremal clause matters so much!

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 24

Example: Height of a Tree

To show: Every tree has a height, defined as follows:

The height of • is 0.
If the tree l has height hl and the tree r has height hr , then
the tree l r has height 1 + max(hl , hr).

Clearly, every tree has at most one height, but does it have
any height at all?

It may seem obvious that every tree has a height, but
notice that the justification relies on structural induction!

An “infinite tree” does not have a height!
But the extremal clause rules out the infinite tree!

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 25

Example: height

Formally, we prove that for every tree t , there exists a
number h satisfying the specification of height.

Proceed by induction on the structure of trees , showing
that the property “there exists a height h for t” satisfies (is
preserved by) these rules.

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 26

Example: height

Rule 1: • is a tree.
Does there exist h such that h is the height of Empty?
Yes! Take h=0.

Rule 2: l r is a tree if l and r are trees.

Suppose that there exists hl and hr , the heights of l and r ,
respectively (the induction hypothesis).
Does there exist h such that h is the height of Node(l , r)?
Yes! Take h = 1 + max(hl , hr).

Thus, we have proved that all trees have a height.

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 27

