03b—Inductive Definitions

CS 5209: Foundation in Logic and AI

Martin Henz and Aqinas Hobor

January 28, 2010

Generated on Monday 1st February, 2010, 16:38

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions

- Often one wishes to define a set with a collection of rules that determine the elements of that set. Simple examples:
 - Binary trees
 - Natural numbers
- What does it mean to define a set by a collection of rules?

Example 1: Binary trees (w/o data at nodes)

- is a binary tree;
- if I and r are binary trees, then so is

Examples of binary trees:

Example 2: Natural numbers in unary (base-1) notation

- Z is a natural;
- if *n* is a natural, then so is S(n).

. . .

We pronouce Z as "zed" and "S" as successor. We can now define the natural numbers as follows:

zero	\equiv	Ζ
one	\equiv	S(Z)
two	≡	S(S(Z))

It's possible to view naturals as trees, too:

zero	\equiv	Ζ	Z
one	≡	<i>S</i> (<i>Z</i>)	S Z
two	≡	S(S(Z))	S — S — Z

. . .

Examples (more formally)

• Binary trees: The set Tree is defined by the rules

$$\frac{t_l \quad t_r}{t_l \quad t_r}$$

• Naturals: The set Nat is defined by the rules

п

Z S(*n*)

Given a collection of rules, what set does it define?

- What is the set of trees?
- What is the set of naturals?

Do the rules pick out a unique set?

There can be many sets that satisfy a given collection of rules

- $MyNum = \{Z, S(Z), \ldots\}$
- YourNum = MyNum $\cup \{\infty, S(\infty), ...\}$, where ∞ is an arbitrary symbol.

Both *MyNum* and *YourNum* satisfy the rules defining numerals (i.e., the rules are true for these sets).

Really?

MyNum Satisfies the Rules

 $\frac{n}{Z}$ S(n)

$$MyNum = \{Z, Succ(Z), S(S(Z)), \ldots\}$$

Does MyNum satisfy the rules?

- $Z \in MyNum$. \checkmark
- If $n \in MyNum$, then $S(n) \in MyNum$. $\sqrt{}$

YourNum Satisfies the Rules

 $\frac{n}{Z}$ S(n)

$$YourNum = \{Z, S(Z), S(S(Z)), \ldots\} \cup \{\infty, S(\infty), \ldots\}$$

Does YourNum satisfy the rules?

- $Z \in YourNum$. \checkmark
- If $n \in$ YourNum, then $S(n) \in$ YourNum. \checkmark

... "And That's All!"

- Both *MyNum* and *YourNum* satisfy all rules.
- It is not enough that a set satisfies all rules.
- Something more is needed: an *extremal* clause.
 - and nothing else
 - "the least set that satisfies these rules"

An inductively defined set is the **least set** for the given rules.

Example: $MyNum = \{Z, S(Z), S(S(Z)), ...\}$ is the least set that satisfies these rules:

- if $n \in Num$, then $S(n) \in Num$.

Answer: The smallest with respect to the subset ordering on sets.

- Contains no "junk", only what is required by the rules.
- Since YourNum ⊋ MyNum, YourNum is ruled out by the extremal clause.
- MyNum is "ruled in" because it has no "junk". That is, for any set S satisfying the rules, S ⊃ MyNum

We almost always want to define sets with inductive definitions, and so have some simple notation to do so quickly:

 $S = Constructor_1(\ldots) \ | \ Constructor_2(\ldots) \ | \ \ldots$

where *S* can appear in the ... on the right hand side (along with other things). The Constructor_{*i*} are the names of the different rules (sometimes text, sometimes symbols). This is called a *recursive definition*.

Examples:

• Binary trees: $\tau = \bullet \mid \mathcal{T}_{\tau}$

• Naturals:
$$\mathbb{N} = Z | S(\mathbb{N})$$

There is a close connection between a recursive definition and a definition by rules:

"recursive definition style" means that the extremal clause holds.

Inductively defined sets "come with" an *induction principle*. Suppose I is inductively defined by rules R.

- To show that every x ∈ I has property P, it is enough to show that regardless of which rule is used to "build" x, P holds; this is called *taking cases* or *inversion*.
- Sometimes, taking cases is not enough; in that case we can attempt a more complicated proof where we show that *P* is preserved by each of the rules of *R*; this is called structural induction or rule induction.

Consider the following definition:

- The natural Z has sign **0**.
- For any natural n, the natural S(n) has sign **1**.

Let *P* be the following property: Every natural has sign **0** or **1**.

Does *P* satisfy the rules
$$\frac{h}{Z}$$
?

To show that every $n \in Nat$ has property P, it is enough to show:

- Z has property P.
- For any n, S(n) has property P.

Recall:

- The natural Z has sign **0**.
- For any natural n, the natural S(n) has sign **1**.

Let P = "Every natural has sign **0** or **1**.". Does P hold for all \mathbb{N} ?

Proof. We take cases on the structure of n as follows:

- Z has sign **0**, so P holds for Z. $\sqrt{}$
- For any *n*, S(n) has sign **1**, so *P* holds for any S(n). $\sqrt{}$

Thus, P holds for all naturals.

- The natural *Z* has parity **0**.
- If *n* is a natural with parity **0**, then S(n) has parity **1**.
- If *n* is a natural with parity **1**, then S(n) has parity **0**.

Let P be: Every natural has parity **0** or parity **1**.

Can we prove this by taking cases?

Taking cases

We need to show P = "Every natural has parity **0** or parity **1**.",

- Z has property P.
- For any n, S(n) has property P.
- Where parity is defined by
 - The natural Z has parity **0**.
 - If *n* is a natural with parity **0**, then S(n) has parity **1**.
 - If *n* is a natural with parity **1**, then S(n) has parity **0**.

Proof. We take cases on the structure of n as follows:

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- For any n, S(n) has parity well... hmmm... it is unclear; it depends on the parity of n. X

We are stuck! We need an extra fact about n's parity...

This fact is called an *induction hypothesis*. To get such an induction hypothesis we do *induction*, which is a more powerful way to take cases. To show that every $n \in Num$ has property P, we must show that every rule preserves P; that is:

- Z has property P.
- if *n* has property *P*, then S(n) has property *P*.

The new part is "if n has property P, then ..."; this is the induction hypothesis.

Note that for the naturals, structural induction is just ordinary mathematical induction!

Every natural has parity **0** or parity **1**.

Proof. We take cases on the structure of n as follows:

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- For any *n*, we can't determine the parity of *S*(*n*) until we know something about the parity of *n*. *X*

Proof. We do induction on the structure of n as follows:

- Z has parity **0**, so P holds for Z. $\sqrt{}$
- Given an *n* such that *P* holds on *n*, show that *P* holds on S(n). Since *P* holds on *n*, the parity of *n* is **0** or **1**. If the parity of *n* is **0**, then the parity of S(n) is **1**. If the parity of *n* is **1**, then the parity of S(n) is **0**. In either case, the parity of S(n) is **0** or **1**, so if *P* holds on *n* then *P* holds on S(n). $\sqrt{$

Thus, *P* holds for an natural *n*.

Extending case analysis and structural induction to trees

Case analysis: to show that every tree has property *P*, prove that

• has property *P*. • for all τ_1 and τ_2 , $\tau_1 = \tau_2$ has property *P*.

Structural induction: to show that every tree has property *P*, prove

- has property P.
- if τ_1 and τ_2 have property *P*, then $\tau_1 = \tau_2$ has property *P*.

Note that we do not require that τ_1 and τ_2 be the same height!

Let *I* be a set inductively defined by rules *R*.

- Case analysis is really a lightweight "special case" of structural induction where we do not use the induction hypothesis. If structural induction is sound, then case analysis will be as well.
- One way to think of a property *P* is that it is exactly the set of items that have property *P*. We would like to show that if you are in the set *I* then you have property *P*, that is, *P* ⊇ *I*.
- Remember that *I* is (by definition) the smallest set satisfying the rules in *R*.
- Hence if *P* satisfies (is preserved by) the rules of *R*, then $P \supseteq I$.
- This is why the extremal clause matters so much!

Example: Height of a Tree

- To show: Every tree has a height, defined as follows:
 - The height of is 0.
 - If the tree *I* has height h_l and the tree *r* has height h_r , then the tree $\int_{l}^{\infty} r$ has height $1 + max(h_l, h_r)$.
- Clearly, every tree has at most one height, but does it have any height at all?
- It may seem obvious that every tree has a height, but notice that the justification relies on structural induction!
 - An "infinite tree" does not have a height!
 - But the extremal clause rules out the infinite tree!

- Formally, we prove that for every tree t, there exists a number h satisfying the specification of height.
- Proceed by induction on the structure of trees, showing that the property "there exists a height *h* for *t*" satisfies (is preserved by) these rules.

Rule 1: • is a tree.

Does there exist *h* such that *h* is the height of *Empty*? Yes! Take h=0.

• Rule 2: $\int_{r} r$ is a tree if *I* and *r* are trees.

Suppose that there exists h_l and h_r , the heights of *l* and *r*, respectively (*the induction hypothesis*). Does there exist *h* such that *h* is the height of Node(l, r)?

Yes! Take $h = 1 + max(h_l, h_r)$.

Thus, we have proved that all trees have a height.