07—Program Verification

CS 5209: Foundation in Logic and AI

Martin Henz and Aquinas Hobor

March 4, 2010

Generated on Thursday 11th March, 2010, 16:17

CS 5209: Foundation in Logic and AI 07—Program Verification

1 Core Programming Language

- 2 Hoare Triples; Partial and Total Correctness
- 3 Proof Calculus for Partial Correctness

Core Programming Language
Hoare Triples; Partial and Total Correctness
Proof Calculus for Partial Correctness

Motivation

- One way of checking the correctness of programs is to explore the possible states that a computation system can reach during the execution of the program.
- Problems with this model checking approach:
 - Models become infinite.
 - Satisfaction/validity becomes undecidable.
- In this lecture, we cover a proof-based framework for program verification.

Characteristics of the Approach

Proof-based instead of model checking Semi-automatic instead of automatic Property-oriented not using full specification Application domain fixed to sequential programs using integers Interleaved with development rather than a-posteriori verification

Reasons for Program Verification

Documentation. Program properties formulated as theorems can serve as concise documentation

Time-to-market. Verification prevents/catches bugs and can reduce development time

Reuse. Clear specification provides basis for reuse

Certification. Verification is required in safety-critical domains such as nuclear power stations and aircraft cockpits

Framework for Software Verification

Convert informal description *R* of *requirements* for an application domain into formula ϕ_R . Write program *P* that meets ϕ_R . Prove that *P* satisfies ϕ_R .

Each step provides risks and opportunities.

1 Core Programming Language

Hoare Triples; Partial and Total Correctness (2)

Proof Calculus for Partial Correctness

Motivation of Core Language

- Real-world languages are quite large; many features and constructs
- Verification framework would exceed time we have in CS5209
- Theoretical constructions such as Turing machines or lambda calculus are too far from actual applications; too low-level
- Idea: use subset of Pascal/C/C++/Java
- Benefit: we can study useful "realistic" examples

Expressions in Core Language

Expressions come as arithmetic expressions E:

$$E ::= n | x | (-E) | (E + E) | (E - E) | (E * E)$$

and boolean expressions B:

$$B ::= true | false | (!B) | (B\&B) | (B||B) | (E < E)$$

Where are the other comparisons, for example ==?

Commands in Core Language

Commands cover some common programming idioms. Expressions are components of commands.

$$C ::= x = E \mid C; C \mid if B \{C\} else \{C\} \mid while B \{C\}$$

Core Programming Language	
Hoare Triples; Partial and Total Correctness	
Proof Calculus for Partial Correctness	
Example	

Consider the factorial function:

$$\begin{array}{rcl} 0! & \stackrel{\mathrm{def}}{=} & 1\\ (n+1)! & \stackrel{\mathrm{def}}{=} & (n+1) \cdot n! \end{array}$$

We shall show that after the execution of the following Core program, we have y = x!.

y = 1; z = 0;while $(z != x) \{ z = z + 1; y = y * z; \}$

Core Programming Language

Hoare Triples; Partial and Total Correctness 2

Example

Core Programming Language	
Hoare Triples; Partial and Total Correctness	
Proof Calculus for Partial Correctness	
Example	

• We need to be able to say that at the end, y is x!

Core Programming Language	
Hoare Triples; Partial and Total Correctness	
Proof Calculus for Partial Correctness	
Example	

$$y = 1;$$

 $z = 0;$
while $(z != x) \{ z = z + 1; y = y * z; \}$

- We need to be able to say that at the end, y is x!
- That means we require a post-condition y = x!

Core Programming Language	
Hoare Triples; Partial and Total Correctness	
Proof Calculus for Partial Correctness	
Example	

y = 1;
z = 0;
while
$$(z != x) \{ z = z + 1; y = y * z; \}$$

• Do we need pre-conditions, too?

Example

$$y = 1;$$

 $z = 0;$
while $(z != x) \{ z = z + 1; y = y * z; \}$

Do we need pre-conditions, too?
 Yes, they specify what needs to be the case before execution.
 Example: x > 0

Example

$$y = 1;$$

 $z = 0;$
while $(z != x) \{ z = z + 1; y = y * z; \}$

Do we need pre-conditions, too?
 Yes, they specify what needs to be the case before execution.
 Example: x > 0

Do we have to prove the postcondition in one go?

Core Programming Language	
Hoare Triples; Partial and Total Correctness	
Proof Calculus for Partial Correctness	
romolo	

Example

y = 1;
z = 0;
while
$$(z != x) \{ z = z + 1; y = y * z; \}$$

- Do we need pre-conditions, too?
 Yes, they specify what needs to be the case before execution.
 Example: x > 0
- Do we have to prove the postcondition in one go?
 No, the postcondition of one line can be the pre-condition of the next!

Assertions on Programs

Shape of assertions

(ϕ) P (ψ)

Informal meaning

If the program *P* is run in a state that satisfies ϕ , then the state resulting from *P*'s execution will satisfy ψ .

(Slightly Trivial) Example

Informal specification

Given a positive number x, the program P calculates a number y whose square is less than x.

Assertion

$$(x > 0) P (y \cdot y < x)$$

Example for P

y = 0

Our first Hoare triple

$$(x > 0)$$
 y = 0 $(y \cdot y < x)$

(Slightly Less Trivial) Example

Same assertion

$$(x > 0) P (y \cdot y < x)$$

Another example for P

Recall: Models in Predicate Logic

Definition

Let \mathcal{F} contain function symbols and \mathcal{P} contain predicate symbols. A model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ consists of:

- A non-empty set A, the universe;
- for each nullary function symbol f ∈ F a concrete element f^M ∈ A;
- ③ for each f ∈ F with arity n > 0, a concrete function f^M : Aⁿ → A;

④ for each $P \in \mathcal{P}$ with arity n > 0, a set $P^{\mathcal{M}} \subseteq A^n$.

Recall: Satisfaction Relation

The model \mathcal{M} satisfies ϕ with respect to environment *I*, written $\mathcal{M} \models_I \phi$:

- in case φ is of the form P(t₁, t₂,..., t_n), if the result (a₁, a₂,..., a_n) of evaluating t₁, t₂,..., t_n with respect to *I* is in P^M;
- in case φ has the form ∀xψ, if the M ⊨_{I[x→a]} ψ holds for all a ∈ A;
- in case φ has the form ∃xψ, if the M ⊨_{I[x→a]} ψ holds for some a ∈ A;

Recall: Satisfaction Relation (continued)

- in case ϕ has the form $\neg \psi$, if $\mathcal{M} \models_I \psi$ does not hold;
- in case ϕ has the form $\psi_1 \lor \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds or $\mathcal{M} \models_I \psi_2$ holds;
- in case ϕ has the form $\psi_1 \wedge \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds and $\mathcal{M} \models_I \psi_2$ holds; and
- in case φ has the form ψ₁ → ψ₂, if M ⊨_I ψ₁ holds whenever M ⊨_I ψ₂ holds.

Hoare Triples

Definition

An assertion of the form ((ϕ)) *P* ((ψ)) is called a Hoare triple.

- ϕ is called the precondition, ψ is called the postcondition.
- A state of a Core program P is a function I that assigns each variable x in P to an integer I(x).
- A state *I* satisfies φ if M |=₁ φ, where M contains integers and gives the usual meaning to the arithmetic operations.
- Quantifiers in φ and ψ bind only variables that do not occur in the program P.

Example

Let
$$l(x) = -2$$
, $l(y) = 5$ and $l(z) = -1$. We have:
• $l \models \neg(x + y < z)$
• $l \not\models y = x \cdot z < z$
• $l \not\models \forall u(y < u \rightarrow y \cdot z < u \cdot z)$

Partial Correctness

Definition

We say that the triple $(\phi) P (\psi)$ is *satisfied under partial correctness* if, for all states which satisfy ϕ , the state resulting from *P*'s execution satisfies ψ , provided that *P* terminates.

Notation We write $\models_{par} (\phi) P (\psi).$

Extreme Example

(
$$\phi$$
) while true { x = 0; } (ψ)

holds for all ϕ and ψ .

Total Correctness

Definition

We say that the triple $(\phi) P (\psi)$ is satisfied under total correctness if, for all states which satisfy ϕ , *P* is guaranteed to terminate and the resulting state satisfies ψ .

Notation We write $\models_{tot} (\phi) P (\psi).$

Back to Factorial

$$y = 1;$$

 $z = 0;$
while $(z != x) \{ z = z + 1; y = y * z; \}$

Back to Factorial

y = 1;
z = 0;
while
$$(z != x) \{ z = z + 1; y = y * z; \}$$

 $\bigcirc \models_{tot} (x \ge 0) Fac1 (y = x!)$

Back to Factorial

y = 1;
z = 0;
while
$$(z != x) \{ z = z + 1; y = y * z; \}$$

• $\models_{tot} (x \ge 0) \text{ Facl } (y = x!)$
• $\not\models_{tot} (\top) \text{ Facl } (y = x!)$

Back to Factorial

•
$$\models_{tot} (|x \ge 0|)$$
 Facl $(|y = x!|)$
• $\not\models_{tot} (|\top|)$ Facl $(|y = x!|)$
• $\models_{par} (|x \ge 0|)$ Facl $(|y = x!|)$

Back to Factorial

y = 1;
z = 0;
while
$$(z != x) \{ z = z + 1; y = y * z; \}$$

 $\bigcirc \models_{tot} (x \ge 0) \text{ Fac1 } (y = x!)$
 $\bigcirc \nvDash_{tot} (\top) \text{ Fac1 } (y = x!)$

•
$$\not\models_{\text{tot}} (\top) \text{ Facl } (y = x!)$$

• $\models_{\text{par}} (x \ge 0) \text{ Facl } (y = x!)$
• $\models_{\text{par}} (\top) \text{ Facl } (y = x!)$

Core Programming Language

Hoare Triples; Partial and Total Correctness (2)

Strategy

We are looking for a proof calculus that allows us to establish

 $\vdash_{\mathsf{par}} (\!\!(\phi)\!\!) \not \!P (\!\!(\psi)\!\!)$

where

• $\models_{\text{par}} (\phi) P (\psi)$ holds whenever $\vdash_{\text{par}} (\phi) P (\psi)$ (correctness), and

• $\vdash_{\text{par}} (\phi) P (\psi)$ holds whenever $\models_{\text{par}} (\phi) P (\psi)$ (completeness).

Rules for Partial Correctness

$(\phi) C_1 (\eta) (\eta) C_2 (\psi)$ $(\phi) C_1; C_2 (\psi)$ [Composition]

Rules for Partial Correctness (continued)

$$[Assignment]$$

Examples

Let P be the program x = 2. Using

$$([\mathbf{x} \to \mathbf{E}]\psi) \mathbf{x} = \mathbf{E} (\psi)$$

we can prove:

More Examples

Let P be the program x = x + 1. Using

$$([\mathbf{x} \to \mathbf{E}]\psi) \mathbf{x} = \mathbf{E} (\psi)$$

we can prove:

•
$$(x + 1 = 2) P (x = 2)$$

• $(x + 1 = y) P (x = y)$

Rules for Partial Correctness (continued)

$$(\phi \land B) C_1 (\psi) \qquad (\phi \land \neg B) C_2 (\psi)$$

$$(\phi) \text{ if } B \{ C_1 \} \text{ else } \{ C_2 \} (\psi)$$

$$(\psi \land B) C (\psi)$$

$$(\psi \land B) C (\psi)$$

$$(\psi) \text{ while } B \{ C \} (\psi \land \neg B)$$

Rules for Partial Correctness (continued)

$$\vdash_{AR} \phi' \to \phi \qquad (\phi) C (\psi) \qquad \vdash_{AR} \psi \to \psi'$$

$$(\phi') C (\psi')$$
[Implied]

Next Week

 Lecture 8: Total Correctness; Programming by Contract; Semantics of Hoare Logic