07—Program Verification

CS 5209: Foundation in Logic and Al

Martin Henz and Aquinas Hobor

March 4, 2010

Generated on Thursday 11" March, 2010, 16:17

CS 5209: Foundation in Logic and Al 07—Program Verification

Q Core Programming Language
e Hoare Triples; Partial and Total Correctness

e Proof Calculus for Partial Correctness

CS 5209: Foundation in Logic and Al 07—Program Verification

Motivation

@ One way of checking the correctness of programs is to
explore the possible states that a computation system can
reach during the execution of the program.

CS 5209: Foundation in Logic and Al 07—Program Verification

Motivation

@ One way of checking the correctness of programs is to
explore the possible states that a computation system can
reach during the execution of the program.

@ Problems with this model checking approach:

@ Models become infinite.

CS 5209: Foundation in Logic and Al 07—Program Verification

Motivation

@ One way of checking the correctness of programs is to
explore the possible states that a computation system can
reach during the execution of the program.

@ Problems with this model checking approach:

@ Models become infinite.
@ Satisfaction/validity becomes undecidable.

CS 5209: Foundation in Logic and Al 07—Program Verification

Motivation

@ One way of checking the correctness of programs is to
explore the possible states that a computation system can
reach during the execution of the program.

@ Problems with this model checking approach:

@ Models become infinite.
@ Satisfaction/validity becomes undecidable.

@ In this lecture, we cover a proof-based framework for
program verification.

CS 5209: Foundation in Logic and Al 07—Program Verification

Characteristics of the Approach

Proof-based instead of model checking

CS 5209: Foundation in Logic and Al 07—Program Verification

Characteristics of the Approach

Proof-based instead of model checking
Semi-automatic instead of automatic

CS 5209: Foundation in Logic and Al 07—Program Verification

Characteristics of the Approach

Proof-based instead of model checking
Semi-automatic instead of automatic
Property-oriented not using full specification

CS 5209: Foundation in Logic and Al 07—Program Verification

Characteristics of the Approach

Proof-based instead of model checking

Semi-automatic instead of automatic

Property-oriented not using full specification

Application domain fixed to sequential programs using integers

CS 5209: Foundation in Logic and Al 07—Program Verification

Characteristics of the Approach

Proof-based instead of model checking

Semi-automatic instead of automatic

Property-oriented not using full specification

Application domain fixed to sequential programs using integers

Interleaved with development rather than a-posteriori
verification

CS 5209: Foundation in Logic and Al 07—Program Verification

Reasons for Program Verification

Documentation. Program properties formulated as theorems
can serve as concise documentation

CS 5209: Foundation in Logic and Al 07—Program Verification

Reasons for Program Verification

Documentation. Program properties formulated as theorems
can serve as concise documentation

Time-to-market. Verification prevents/catches bugs and can
reduce development time

CS 5209: Foundation in Logic and Al 07—Program Verification

Reasons for Program Verification

Documentation. Program properties formulated as theorems
can serve as concise documentation

Time-to-market. Verification prevents/catches bugs and can
reduce development time

Reuse. Clear specification provides basis for reuse

CS 5209: Foundation in Logic and Al 07—Program Verification

Reasons for Program Verification

Documentation. Program properties formulated as theorems
can serve as concise documentation

Time-to-market. Verification prevents/catches bugs and can
reduce development time

Reuse. Clear specification provides basis for reuse

Certification. Verification is required in safety-critical domains
such as nuclear power stations and aircraft
cockpits

CS 5209: Foundation in Logic and Al 07—Program Verification

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula ¢g.

CS 5209: Foundation in Logic and Al 07—Program Verification

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula ¢g.

Write program P that meets ¢g.

CS 5209: Foundation in Logic and Al 07—Program Verification

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula ¢g.

Write program P that meets ¢g.
Prove that P satisfies ¢g.

CS 5209: Foundation in Logic and Al 07—Program Verification

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula ¢g.

Write program P that meets ¢g.
Prove that P satisfies ¢g.

Each step provides risks and opportunities.

CS 5209: Foundation in Logic and Al 07—Program Verification

Core Programming Language

Q Core Programming Language

CS 5209: Foundation in Logic and Al rogram Verification

Core Programming Language

Motivation of Core Language

@ Real-world languages are quite large; many features and
constructs

CS 5209: Foundation in Logic and Al 07—Program Verification

Core Programming Language

Motivation of Core Language

@ Real-world languages are quite large; many features and
constructs

@ Verification framework would exceed time we have in
CS5209

CS 5209: Foundation in Logic and Al 07—Program Verification

Core Programming Language

Motivation of Core Language

@ Real-world languages are quite large; many features and
constructs

@ Verification framework would exceed time we have in
CS5209

@ Theoretical constructions such as Turing machines or
lambda calculus are too far from actual applications; too
low-level

CS 5209: Foundation in Logic and Al 07—Program Verification

Core Programming Language

Motivation of Core Language

@ Real-world languages are quite large; many features and
constructs

@ Verification framework would exceed time we have in
CS5209

@ Theoretical constructions such as Turing machines or
lambda calculus are too far from actual applications; too
low-level

@ ldea: use subset of Pascal/C/C++/Java

CS 5209: Foundation in Logic and Al 07—Program Verification

Core Programming Language

Motivation of Core Language

@ Real-world languages are quite large; many features and
constructs

@ Verification framework would exceed time we have in
CS5209

@ Theoretical constructions such as Turing machines or
lambda calculus are too far from actual applications; too
low-level

@ |dea: use subset of Pascal/C/C++/Java
@ Benefit: we can study useful “realistic” examples

CS 5209: Foundation in Logic and Al 07—Program Verification

Core Programming Language

Expressions in Core Language

Expressions come as arithmetic expressions E:

E:x=n|x|(-E)|(E+E)|(E—E)|(E«E)

CS 5209: Foundation in Logic and Al 07—Program Verification

Core Programming Language

Expressions in Core Language

Expressions come as arithmetic expressions E:
E:=n|x|(-E)|(E+E)|(E—-E)|(E=*E)
and boolean expressions B:

B:=true|false|(!B)|(B&B)|(B|B)|(E <E)

CS 5209: Foundation in Logic and Al 07—Program Verification

Core Programming Language

Expressions in Core Language

Expressions come as arithmetic expressions E:
E:=n|x|(-E)|(E+E)|(E—-E)|(E=*E)
and boolean expressions B:
B:=true|false|(!B)|(B&B)|(B|B)|(E <E)

Where are the other comparisons, for example ==7?

CS 5209: Foundation in Logic and Al 07—Program Verification

Core Programming Language

Commands in Core Language

Commands cover some common programming idioms.
Expressions are components of commands.

Cu=x=E|C;C|if B{C}else{C}|whileB {C}

CS 5209: Foundation in Logic and Al 07—Program Verification

Core Programming Language

Example

Consider the factorial function:

o =1
(n+1) = (n+1)-n!
We shall show that after the execution of the following Core
program, we have y = x!.
y = 1,
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

e Hoare Triples; Partial and Total Correctness

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Example

while (z !'= x) { z =

z+ 1, y=y=x*2z;}

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Example

y = 1,
z = 0;
while (z '= x) {z=2z+ 1, y=y x z; }

@ We need to be able to say that at the end, y is x!

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Example

y = 1;
z = 0;
while (z '= x) {z=2z+ 1,y =y x z; }

@ We need to be able to say that at the end, y is x!
@ That means we require a post-condition y = x!

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Example

y = 1,
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

@ Do we need pre-conditions, too?

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Example

y = 1
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

@ Do we need pre-conditions, too?
Yes, they specify what needs to be the case before
execution.
Example: x > 0

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Example

y = 1;
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

@ Do we need pre-conditions, too?
Yes, they specify what needs to be the case before
execution.
Example: x > 0

@ Do we have to prove the postcondition in one go?

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Example

y = 1;
z = 0;
while (z '=x) {z=2z+ 1,y =y x z; }

@ Do we need pre-conditions, too?
Yes, they specify what needs to be the case before
execution.
Example: x > 0

@ Do we have to prove the postcondition in one go?
No, the postcondition of one line can be the
pre-condition of the next!

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Assertions on Programs

Shape of assertions

(¢) P (4D

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Assertions on Programs

Shape of assertions

(¢) P (4D

Informal meaning

If the program P is run in a state that satisfies ¢, then the state
resulting from P’s execution will satisfy 1.

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

(Slightly Trivial) Example

Informal specification

Given a positive number X, the program P calculates a number
y whose square is less than x.

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

(Slightly Trivial) Example

Informal specification

Given a positive number X, the program P calculates a number
y whose square is less than x.

Assertion

(x >0)P (y -y <Xx)

\

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

(Slightly Trivial) Example

Informal specification

Given a positive number X, the program P calculates a number
y whose square is less than x.

Assertion

(x >0)P (y -y <Xx)

\

Example for P
y =0

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

(Slightly Trivial) Example

Informal specification

Given a positive number X, the program P calculates a number
y whose square is less than x.

Assertion

(x >0)P (y -y <Xx)

Example for P

Our first Hoare triple

(x>0)y = 0(y-y<x)

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

(Slightly Less Trivial) Example

Same assertion

(x >0)P (y -y <x)

Another example for P

y = 0;

while (y x y < x) {
y =y + 1

¥

y =y -1

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Recall: Models in Predicate Logic

Let F contain function symbols and P contain predicate
symbols. A model M for (F,P) consists of:

@ A non-empty set A, the universe;

@ for each nullary function symbol f € F a concrete element
fMeA;

@ for each f € F with arity n > 0, a concrete function
fM. AN A

© for each P € P with arity n > 0, a set PM C A",

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Recall: Satisfaction Relation

The model M satisfies ¢ with respect to environment |, written
M ¢
@ in case ¢ is of the form P(ty, to, . . ., ty), if the result
(az,ap,...,an) of evaluating t;, to, . .., ty with respect to | is
in PM:
@ in case ¢ has the form vx1), if the M |= .5 7 holds for all
achA;
@ in case ¢ has the form 3x1), if the M =[x, % holds for
some a € A;

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Recall: Satisfaction Relation (continued)

@ in case ¢ has the form —), if M = ¢ does not hold,;

@ in case ¢ has the form v V ¢, if M |= 11 holds or
M):| o holds;

@ in case ¢ has the form ¢ A ¢y, if M = 91 holds and
M [9, holds; and

@ in case ¢ has the form ; — v, if M = 11 holds
whenever M =, ¢, holds.

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Hoare Triples

An assertion of the form (¢) P () is called a Hoare triple.
@ ¢ is called the precondition, v is called the postcondition.

@ A state of a Core program P is a function | that assigns
each variable x in P to an integer I(x).

@ A state | satisfies ¢ if M = ¢, where M contains integers
and gives the usual meaning to the arithmetic operations.

@ Quantifiers in ¢ and ¢ bind only variables that do not occur
in the program P.

o

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Example

Letl(x) = -2,I(y) =5and l(z) = —1. We have:
ol E-(x+y<2z)
o lEy=x-z<z2
Ol EVU(ly <u—y-zZ<u-2z)

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Partial Correctness

Definition

We say that the triple (¢|) P (v) is satisfied under partial
correctness if, for all states which satisfy ¢, the state resulting
from P’s execution satisfies v, provided that P terminates.

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Partial Correctness

Definition

We say that the triple (¢|) P (v) is satisfied under partial
correctness if, for all states which satisfy ¢, the state resulting
from P’s execution satisfies v, provided that P terminates.

We write [=par (¢) P (%)

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Extreme Example

(o) while true { x =0; } ()
holds for all ¢ and .

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Total Correctness

Definition

We say that the triple (o)) P () is satisfied under total
correctness if, for all states which satisfy ¢, P is guaranteed to
terminate and the resulting state satisfies 1.

We write =t (6) P (). j

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Back to Factorial

Consider Fac1:

y =1

z = 0;

while (z '= x) {z=z+ 1,y =y x z; }

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Back to Factorial

Consider Fac1;:

y = 1
z = 0;
while (z '= x) {z=2z+ 1,y =y x z; }

9 ot (x > 0) Facl (y = x!)

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Back to Factorial

Consider Fac1:

y = 1;

z = 0;

while (z '=x) {z=2z+ 1,y =y x z; }
@ =t (x > 0) Facl (y = x!)
@ ot (T) Facl (y =x!)

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Back to Factorial

Consider Facl:

w o= 3

z = 0;

while (z '= x) {z=z+ 1,y =y x z; }

9 =t (X > 0) Facl (y = x!)
@ [~ (T) Facl (y =x!)
@ =pa (X >0 Facl (y = x!)

CS 5209: Foundation in Logic and Al 07—Program Verification

Hoare Triples; Partial and Total Correctness

Back to Factorial

Consider Fac1:

yo==1

z = 0;

while (z '= x) {z=2z+ 1,y =y x z; }

® ot (x > 0) Facl (y =x!)
@ £t (T) Facl (y =x!)
@ =pa (X >0 Facl (y = x!)
@ =pa (T) Facl (y =x!)

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

e Proof Calculus for Partial Correctness

CS 5209: Foundation in Logic and Al rogram Verification

Proof Calculus for Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

Fpar (6D P ()

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

Fpar (6D P ()

where

@ =pa (¢) P (¢) holds whenever py (¢) P (2)
(correctness)

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

Fpar (6D P ()

where

@ =pa (¢) P (¢) holds whenever py (¢) P (2)
(correctness), and

@ Fpar (@) P (¥ holds whenever =pa (¢) P ()
(completeness).

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Rules for Partial Correctness

(oD Ca(n) () Cz (%)

[Composition]

(#) C1:Ca (¥)

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Rules for Partial Correctness (continued)

[Assignment]

(x — Elp) x = E (¥)

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Examples

Let P be the program x = 2.

oundation in Logic and Al

Proof Calculus for Partial Correctness

Examples

Let P be the program x = 2.
Using

[Assignment]

(x = Elp) x =E (¥)

we can prove:

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Examples

Let P be the program x = 2.
Using

[Assignment]

(x = Elp) x =E (¥)

we can prove:
0 (2=2)P (x =2)

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Examples

Let P be the program x = 2.
Using

[Assignment]
(x = Elp) x =E (¥)
we can prove:
@ (2=2)P (x=2)
9 (2=4)P (x =4)

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Examples

Let P be the program x = 2.
Using

[Assignment]

(x = Elp) x =E (¥)

we can prove:
0 (2=2)P (x =2)
9 (2=4)P (x =4)
° (2=y)P(x=y)

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Examples

Let P be the program x = 2.
Using

[Assignment]

(x = Elp) x =E (¥)

we can prove:

@ (2=2)P (x=2)
9 (2=4)P (x =4)
° (2=y)P(x=Y)
@ (2>0)P (x >0)

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

More Examples

Let P be the program x = x + 1.

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

More Examples

Let P be the program x = x + 1.
Using

[Assignment]

(x — Elp) x = E (¥)

we can prove:

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

More Examples

Let P be the program x = x + 1.
Using

[Assignment]

(x — Elp) x = E (¥)

we can prove:
o (x+1=2)P (x=2)

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

More Examples

Let P be the program x = x + 1.
Using

[Assignment]

(x = El¥) x =E (¥)
we can prove:
o (x+1=2)P (x=2)
° (x+1=y)P(x=y)

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Rules for Partial Correctness (continued)

(6AB)Ca(v) (¢A—B)Ca(v)

[If-statement]
(p)if B{Cy} else {Co}(¥)

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Rules for Partial Correctness (continued)

(6AB)Ca(v) (¢A—B)Ca(v)

[If-statement]
(p)if B{Cy} else {Co}(¥)

(¥ AB) C (4]

[Partial-whil€]
(¢)while B {C} (¢ A-B)

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Rules for Partial Correctness (continued)

Far @' — ¢ (¢) C (¥) Far ¢ — ¢

[Implied]
(¢') C (¥')

CS 5209: Foundation in Logic and Al 07—Program Verification

Proof Calculus for Partial Correctness

Next Week

@ Lecture 8: Total Correctness; Programming by Contract;
Semantics of Hoare Logic

CS 5209: Foundation in Logic and Al 07—Program Verification

	Core Programming Language
	Hoare Triples; Partial and Total Correctness
	Proof Calculus for Partial Correctness

