07—Program Verification

CS 5209: Foundation in Logic and AI

Martin Henz and Aquinas Hobor

March 4, 2010

Generated on Thursday 11th March, 2010, 16:17

- Core Programming Language
- 2 Hoare Triples; Partial and Total Correctness
- 3 Proof Calculus for Partial Correctness

 One way of checking the correctness of programs is to explore the possible states that a computation system can reach during the execution of the program.

- One way of checking the correctness of programs is to explore the possible states that a computation system can reach during the execution of the program.
- Problems with this model checking approach:
 - Models become infinite.

- One way of checking the correctness of programs is to explore the possible states that a computation system can reach during the execution of the program.
- Problems with this model checking approach:
 - Models become infinite.
 - Satisfaction/validity becomes undecidable.

- One way of checking the correctness of programs is to explore the possible states that a computation system can reach during the execution of the program.
- Problems with this model checking approach:
 - Models become infinite.
 - Satisfaction/validity becomes undecidable.
- In this lecture, we cover a proof-based framework for program verification.

Proof-based instead of model checking

Proof-based instead of model checking Semi-automatic instead of automatic

Proof-based instead of model checking
Semi-automatic instead of automatic
Property-oriented not using full specification

Proof-based instead of model checking

Semi-automatic instead of automatic

Property-oriented not using full specification

Application domain fixed to sequential programs using integers

Proof-based instead of model checking

Semi-automatic instead of automatic

Property-oriented not using full specification

Application domain fixed to sequential programs using integers

Interleaved with development rather than a-posteriori

verification

Documentation. Program properties formulated as theorems can serve as concise documentation

Documentation. Program properties formulated as theorems can serve as concise documentation

Time-to-market. Verification prevents/catches bugs and can reduce development time

Documentation. Program properties formulated as theorems can serve as concise documentation

Time-to-market. Verification prevents/catches bugs and can reduce development time

Reuse. Clear specification provides basis for reuse

- Documentation. Program properties formulated as theorems can serve as concise documentation
- Time-to-market. Verification prevents/catches bugs and can reduce development time
 - Reuse. Clear specification provides basis for reuse
- Certification. Verification is required in safety-critical domains such as nuclear power stations and aircraft cockpits

Convert informal description R of requirements for an application domain into formula ϕ_R .

Convert informal description R of requirements for an application domain into formula ϕ_R .

Write program *P* that meets ϕ_R .

Convert informal description R of requirements for an application domain into formula ϕ_R .

Write program *P* that meets ϕ_R .

Prove that *P* satisfies ϕ_R .

Convert informal description R of requirements for an application domain into formula ϕ_R .

Write program P that meets ϕ_R .

Prove that *P* satisfies ϕ_R .

Each step provides risks and opportunities.

- Core Programming Language
- 2 Hoare Triples; Partial and Total Correctness
- Proof Calculus for Partial Correctness

 Real-world languages are quite large; many features and constructs

- Real-world languages are quite large; many features and constructs
- Verification framework would exceed time we have in CS5209

- Real-world languages are quite large; many features and constructs
- Verification framework would exceed time we have in CS5209
- Theoretical constructions such as Turing machines or lambda calculus are too far from actual applications; too low-level

- Real-world languages are quite large; many features and constructs
- Verification framework would exceed time we have in CS5209
- Theoretical constructions such as Turing machines or lambda calculus are too far from actual applications; too low-level
- Idea: use subset of Pascal/C/C++/Java

- Real-world languages are quite large; many features and constructs
- Verification framework would exceed time we have in CS5209
- Theoretical constructions such as Turing machines or lambda calculus are too far from actual applications; too low-level
- Idea: use subset of Pascal/C/C++/Java
- Benefit: we can study useful "realistic" examples

Expressions in Core Language

Expressions come as arithmetic expressions *E*:

$$E ::= n \mid x \mid (-E) \mid (E + E) \mid (E - E) \mid (E * E)$$

Expressions in Core Language

Expressions come as arithmetic expressions *E*:

$$E ::= n \mid x \mid (-E) \mid (E + E) \mid (E - E) \mid (E * E)$$

and boolean expressions B:

$$B ::= true \mid false \mid (!B) \mid (B\&B) \mid (B|B) \mid (E < E)$$

Expressions in Core Language

Expressions come as arithmetic expressions *E*:

$$E ::= n | x | (-E) | (E + E) | (E - E) | (E * E)$$

and boolean expressions B:

$$B ::= true \mid false \mid (!B) \mid (B\&B) \mid (B||B) \mid (E < E)$$

Where are the other comparisons, for example ==?

Commands in Core Language

Commands cover some common programming idioms. Expressions are components of commands.

$$C ::= x = E \mid C; C \mid \text{if } B \{C\} \text{ else } \{C\} \mid \text{while } B \{C\}$$

Consider the factorial function:

$$0! \stackrel{\text{def}}{=} 1$$
$$(n+1)! \stackrel{\text{def}}{=} (n+1) \cdot n!$$

We shall show that after the execution of the following Core program, we have y = x!.

$$y = 1;$$

 $z = 0;$
while $(z != x) \{ z = z + 1; y = y * z; \}$

- Core Programming Language
- 2 Hoare Triples; Partial and Total Correctness
- Proof Calculus for Partial Correctness

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

• We need to be able to say that at the end, y is x!

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

- We need to be able to say that at the end, y is x!
- That means we require a post-condition y = x!

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

Do we need pre-conditions, too?

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

Do we need pre-conditions, too?
 Yes, they specify what needs to be the case before execution.

Example: x > 0

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

Do we need pre-conditions, too?
 Yes, they specify what needs to be the case before execution.

Example: x > 0

Do we have to prove the postcondition in one go?

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

Do we need pre-conditions, too?
 Yes, they specify what needs to be the case before execution.

Example: x > 0

• Do we have to prove the postcondition in one go? No, the postcondition of one line can be the pre-condition of the next!

Assertions on Programs

Shape of assertions

$$(\phi) P (\psi)$$

Assertions on Programs

Shape of assertions

$$(\phi) P (\psi)$$

Informal meaning

If the program P is run in a state that satisfies ϕ , then the state resulting from P's execution will satisfy ψ .

Informal specification

Given a positive number x, the program P calculates a number y whose square is less than x.

Informal specification

Given a positive number x, the program P calculates a number y whose square is less than x.

Assertion

$$(x > 0) P (y \cdot y < x)$$

Informal specification

Given a positive number x, the program P calculates a number y whose square is less than x.

Assertion

$$(x > 0) P (y \cdot y < x)$$

Example for P

$$y = 0$$

Informal specification

Given a positive number x, the program P calculates a number y whose square is less than x.

Assertion

$$(x > 0) P (y \cdot y < x)$$

Example for P

$$y = 0$$

Our first Hoare triple

$$(x > 0)$$
 y = 0 $(y \cdot y < x)$

Same assertion

$$(x > 0) P (y \cdot y < x)$$

Another example for *P*

```
y = 0;
while (y * y < x) {
    y = y + 1;
}
y = y - 1;
```

Recall: Models in Predicate Logic

Definition

Let \mathcal{F} contain function symbols and \mathcal{P} contain predicate symbols. A model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ consists of:

- A non-empty set A, the universe;
- ② for each nullary function symbol $f \in \mathcal{F}$ a concrete element $f^{\mathcal{M}} \in A$;
- of for each $f \in F$ with arity n > 0, a concrete function $f^{\mathcal{M}}: A^n \to A$;
- for each $P \in \mathcal{P}$ with arity n > 0, a set $P^{\mathcal{M}} \subseteq A^n$.

Recall: Satisfaction Relation

The model \mathcal{M} satisfies ϕ with respect to environment I, written $\mathcal{M} \models_I \phi$:

- in case ϕ is of the form $P(t_1, t_2, \dots, t_n)$, if the result (a_1, a_2, \dots, a_n) of evaluating t_1, t_2, \dots, t_n with respect to I is in $P^{\mathcal{M}}$;
- in case φ has the form ∀xψ, if the M |=_{I[x→a]} ψ holds for all a ∈ A;
- in case ϕ has the form $\exists x \psi$, if the $\mathcal{M} \models_{I[x \mapsto a]} \psi$ holds for some $a \in A$;

Recall: Satisfaction Relation (continued)

- in case ϕ has the form $\neg \psi$, if $\mathcal{M} \models_I \psi$ does not hold;
- in case ϕ has the form $\psi_1 \vee \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds or $\mathcal{M} \models_I \psi_2$ holds;
- in case ϕ has the form $\psi_1 \wedge \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds and $\mathcal{M} \models_I \psi_2$ holds; and
- in case ϕ has the form $\psi_1 \to \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds whenever $\mathcal{M} \models_I \psi_2$ holds.

Hoare Triples

Definition

An assertion of the form $(\phi) P (\psi)$ is called a Hoare triple.

- ullet ϕ is called the precondition, ψ is called the postcondition.
- A state of a Core program P is a function I that assigns each variable x in P to an integer I(x).
- A state *I* satisfies ϕ if $\mathcal{M} \models_I \phi$, where \mathcal{M} contains integers and gives the usual meaning to the arithmetic operations.
- Quantifiers in ϕ and ψ bind only variables that do *not* occur in the program P.

Let
$$I(x) = -2$$
, $I(y) = 5$ and $I(z) = -1$. We have:

- $I \models \neg (x + y < z)$
- $I \not\models \forall u (y < u \rightarrow y \cdot z < u \cdot z)$

Partial Correctness

Definition

We say that the triple $(\phi) P (\psi)$ is satisfied under partial correctness if, for all states which satisfy ϕ , the state resulting from P's execution satisfies ψ , provided that P terminates.

Partial Correctness

Definition

We say that the triple $(\phi) P(\psi)$ is satisfied under partial correctness if, for all states which satisfy ϕ , the state resulting from P's execution satisfies ψ , provided that P terminates.

Notation

We write $\models_{par} (\!(\phi)\!) P (\!(\psi)\!)$.

Extreme Example

$$(\phi)$$
 while true $\{ \mathbf{x} = \mathbf{0}; \} (\psi)$

holds for all ϕ and ψ .

Total Correctness

Definition

We say that the triple $(\![\phi]\!]$ $P(\![\psi]\!]$ is satisfied under total correctness if, for all states which satisfy ϕ , P is guaranteed to terminate and the resulting state satisfies ψ .

Notation

We write $\models_{tot} (\![\phi]\!]) P (\![\psi]\!])$.

```
Consider Fac1:

y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

```
Consider Fac1:

y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}

\models_{tot} (x \ge 0) \text{ Fac1 } (y = x!)
```

Consider Fac1:

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

- $\bullet \models_{tot} (x \ge 0) \text{ Facl } (y = x!)$
- $\not\models_{\text{tot}} (\mid \top \mid) \text{ Fac1 } (\mid y = x! \mid)$

Consider Fac1:

```
y = 1;

z = 0;

while (z != x) \{ z = z + 1; y = y * z; \}
```

- $\bullet \models_{tot} (x \ge 0) \text{ Facl } (y = x!)$
- $\not\models_{\text{tot}} (\mid \top \mid) \text{ Fac1 } (\mid y = x! \mid)$
- $\bullet \models_{\text{par}} (x \ge 0) \text{ Fac1 } (y = x!)$

```
Consider Fac1:
y = 1;
z = 0:
while (z != x) \{ z = z + 1; y = y * z; \}
  • \models_{\text{tot}} (|x \ge 0|) \text{ Fac1 } (|y = x!)
   \bullet \not\models_{tot} (|\top|) \text{ Fac1 } (|y = x!|)
  \bullet \models_{\text{par}} (x \ge 0) \text{ Fac1 } (y = x!)
  \bullet \models_{\text{par}} (|\top|) \text{ Fac1 } (|y = x!|)
```

- Core Programming Language
- 2 Hoare Triples; Partial and Total Correctness
- 3 Proof Calculus for Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

$$\vdash_{\mathsf{par}} (\![\phi]\!] P (\![\psi]\!]$$

Strategy

We are looking for a proof calculus that allows us to establish

$$\vdash_{\mathsf{par}} (\![\phi]\!] P (\![\psi]\!]$$

where

• $\models_{par} (\!(\phi)\!) P(\!(\psi)\!)$ holds whenever $\vdash_{par} (\!(\phi)\!) P(\!(\psi)\!)$ (correctness)

Strategy

We are looking for a proof calculus that allows us to establish

$$\vdash_{\mathsf{par}} (\![\phi]\!]) P (\![\psi]\!]$$

where

- $\models_{par} (\!(\phi)\!) P(\!(\psi)\!)$ holds whenever $\vdash_{par} (\!(\phi)\!) P(\!(\psi)\!)$ (correctness), and
- $\vdash_{par} (\![\phi]\!]) P (\![\psi]\!])$ holds whenever $\models_{par} (\![\phi]\!]) P (\![\psi]\!])$ (completeness).

Rules for Partial Correctness

$$(\phi) C_1 (\eta) (\eta) C_2 (\psi)$$

$$(\phi) C_1; C_2 (\psi)$$
[Composition]

[Assignment]
$$([x \to E]\psi) \ x = E \ (\psi)$$

Let P be the program x = 2.

Let P be the program x = 2. Using

$$([x \to E]\psi) x = E (\psi)$$
 (Assignment)

Let P be the program x = 2. Using

[Assignment]
$$([x \to E]\psi) \ x = E \ (\psi)$$

•
$$(2 = 2) P (x = 2)$$

Let P be the program x = 2. Using

[Assignment]
$$([x \to E]\psi) \ x = E \ (\psi)$$

•
$$(2 = 2) P (x = 2)$$

•
$$(2 = 4) P (x = 4)$$

Let P be the program x = 2. Using

$$([x \to E]\psi) \ x = E \ (\psi)$$
 (Assignment)

•
$$(2 = 2) P (x = 2)$$

•
$$(2 = 4) P (x = 4)$$

•
$$(2 = y) P (x = y)$$

Let P be the program x = 2. Using

[Assignment]
$$([\mathbf{x} \to \mathbf{E}]\psi) \mathbf{x} = \mathbf{E} (\psi)$$

•
$$(2 = 2) P (x = 2)$$

•
$$(2 = 4) P (x = 4)$$

•
$$(2 = y) P (x = y)$$

•
$$(2 > 0) P (x > 0)$$

Let P be the program x = x + 1.

Let P be the program x = x + 1. Using

Let P be the program x = x + 1. Using

$$\frac{}{([\mathbf{x} \to \mathbf{E}]\psi) \ \mathbf{x} = \mathbf{E} \ (\psi)}$$
 [Assignment]

•
$$(x + 1 = 2) P (x = 2)$$

Let P be the program x = x + 1. Using

$$\frac{}{([\mathbf{x} \to \mathbf{E}]\psi) \ \mathbf{x} = \mathbf{E} \ (\psi)}$$
 [Assignment]

•
$$(x + 1 = 2) P (x = 2)$$

•
$$(x + 1 = y) P (x = y)$$

Next Week

Lecture 8: Total Correctness; Programming by Contract;
 Semantics of Hoare Logic