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Necessity

You are crime investigator and consider different suspects.
Maybe the cook did it with a knife?
Maybe the maid did it with a pistol?

But: “The victim Ms Smith made the call before she was
killed.” is necessarily true.

“Necessarily” means in all possible scenarios (worlds)
under consideration.
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Notions of Truth

Often, it is not enough to distinguish between “true” and
“false”.
We need to consider modalities if truth, such as:

necessity (“in all possible scenarios”)
morality/law (“in acceptable/legal scenarios”)
time (“forever in the future”)

Modal logic constructs a framework using which modalities
can be formalized and reasoning methods can be
established.
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Syntax of Basic Modal Logic

φ ::= ⊤ | ⊥ | p | (¬φ) | (φ ∧ φ)

| (φ ∨ φ) | (φ→ φ)

| (φ↔ φ)

| (�φ) | (♦φ)
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Pronunciation and Examples

Pronunciation

If we want to keep the meaning open, we simply say “box” and
“diamond”.
If we want to appeal to our intuition, we may say “necessarily”
and “possibly” (or “forever in the future” and “sometime in the
future”)

Examples

(p ∧ ♦(p → �¬r))

�((♦q ∧ ¬r) → �p)
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Kripke Models

Definition

A model M of basic modal logic is specified by three things:
1 A set W , whose elements are called worlds;
2 A relation R on W , meaning R ⊆ W × W , called the

accessibility relation;
3 A function L : W → P(Atoms), called the labeling function.
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Who is Kripke?

How do I know I am not dreaming? Kripke asked himself this
question in 1952, at the age of 12. His father told
him about the philosopher Descartes.

Modal logic at 17 Kripke’s self-studies in philosophy and logic
led him to prove a fundamental completeness
theorem on modal logic at the age of 17.

Bachelor in Mathematics from Harvard is his only
non-honorary degree

At Princeton Kripke taught philosophy from 1977 onwards.

Contributions include modal logic, naming, belief, truth, the
meaning of “I”
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Example

W = {x1, x2, x3, x4, x5, x6}
R = {(x1, x2), (x1, x3), (x2, x2), (x2, x3), (x3, x2), (x4, x5), (x5, x4), (x5, x6)}
L = {(x1, {q}), (x2, {p,q}), (x3, {p}), (x4, {q}), (x5, {}), (x6, {p})}

p
q

p

q

p, q

x1

x2

x3

x4

x5

x6
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When is a formula true in a possible world?

Definition

Let M = (W ,R,L), x ∈ W , and φ a formula in basic modal
logic. We define x 
 φ via structural induction:

x 
 ⊤
x 6
 ⊥
x 
 p iff p ∈ L(x)

x 
 ¬φ iff x 6
 φ

x 
 φ ∧ ψ iff x 
 φ and x 
 ψ

x 
 φ ∨ ψ iff x 
 φ or x 
 ψ

...
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When is a formula true in a possible world?

Definition (continued)

Let M = (W ,R,L), x ∈ W , and φ a formula in basic modal
logic. We define x 
 φ via structural induction:

...

x 
 φ→ ψ iff x 
 ψ, whenever x 
 φ

x 
 φ↔ ψ iff (x 
 φ iff x 
 ψ)

x 
 �φ iff for each y ∈ W with R(x , y), we have y 
 φ

x 
 ♦φ iff there is a y ∈ W such that R(x , y) and y 
 φ.
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Example

p
q

p

q

p, q

x1

x2

x3

x4

x5

x6

x1 
 q

x1 
 ♦q, x1 6
 �q

x5 6
 �p, x5 6
 �q, x5 6
 �p ∨ �q, x5 
 �(p ∨ q)

x6 
 �φ holds for all φ, but x6 6
 ♦φ
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Formula Schemes

Example

We said x6 
 �φ holds for all φ, but x6 6
 ♦φ

Notation

Greek letters denote formulas, and are not propositional atoms.

Formula schemes

Terms where Greek letters appear instead of propositional
atoms are called formula schemes.
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Entailment and Equivalence

Definition

A set of formulas Γ entails a formula ψ of basic modal logic if, in
any world x of any model M = (W ,R,L), whe have x 
 ψ

whenever x 
 φ for all φ ∈ Γ. We say Γ entails ψ and write
Γ |= ψ.

Equivalence

We write φ ≡ ψ if φ |= ψ and ψ |= φ.
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Some Equivalences

De Morgan rules: ¬�φ ≡ ♦¬φ, ¬♦φ ≡ �¬φ.

Distributivity of � over ∧:

�(φ ∧ ψ) ≡ �φ ∧ �ψ

Distributivity of ♦ over ∨:

♦(φ ∨ ψ) ≡ ♦φ ∨ ♦ψ

�⊤ ≡ ⊤, ♦⊥ ≡ ⊥
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Validity

Definition

A formula φ is valid if it is true in every world of every model, i.e.
iff |= φ holds.
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Examples of Valid Formulas

All valid formulas of propositional logic

¬�φ↔ ♦¬φ
�(φ ∧ ψ) ↔ �φ ∧ �ψ

♦(φ ∨ ψ) ↔ ♦φ ∨ ♦ψ

Formula K : �(φ→ ψ) ∧ �φ→ �ψ.
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A Range of Modalities

In a particular context �φ could mean:

It is necessarily true that φ

It will always be true that φ

It ought to be that φ

Agent Q believes that φ

Agent Q knows that φ

After any execution of program P, φ holds.

Since ♦φ ≡ ¬�¬φ, we can infer the meaning of ♦ in each
context.
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A Range of Modalities

From the meaning of �φ, we can conclude the meaning of ♦φ,
since ♦φ ≡ ¬�¬φ:
�φ ♦φ

It is necessarily true that φ It is possibly true that φ
It will always be true that φ Sometime in the future φ
It ought to be that φ It is permitted to be that φ
Agent Q believes that φ φ is consistent with Q’s beliefs
Agent Q knows that φ For all Q knows, φ
After any run of P, φ holds. After some run of P, φ holds
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Formula Schemes that hold wrt some Modalities

�φ �
φ
→
φ

�
φ
→

�
�
φ

♦φ
→

�
♦φ

♦⊤ �
φ
→

♦φ

�
φ
∨�

¬φ

�
(φ
→
ψ)

∧�
φ
→

�
ψ

♦φ
∧ ♦ψ

→
♦(φ

∧ ψ
)

It is necessary that φ
√ √ √ √ √ × √ ×

It will always be that φ × √ × × × × √ ×
It ought to be that φ × × × √ √ × √ ×
Agent Q believes that φ × √ √ √ √ × √ ×
Agent Q knows that φ

√ √ √ √ √ × √ ×
After running P, φ × × × × × × √ ×
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Modalities lead to Interpretations of R
�φ R(x , y)

It is necessarily true that φ y is possible world according to info at x

It will always be true that φ y is a future world of x

It ought to be that φ y is an acceptable world according to the
information at x

Agent Q believes that φ y could be the actual world according to
Q’s beliefs at x

Agent Q knows that φ y could be the actual world according to
Q’s knowledge at x

After any execution of P, φ
holds

y is a possible resulting state after execu-
tion of P at x
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Possible Properties of R

reflexive: for every w ∈ W , we have R(x , x).
symmetric: for every x , y ∈ W , we have R(x , y) implies
R(y , x).
serial: for every x there is a y such that R(x , y).
transitive: for every x , y , z ∈ W , we have R(x , y) and
R(y , z) imply R(x , z).
Euclidean: for every x , y , z ∈ W with R(x , y) and R(x , z),
we have R(y , z).
functional: for each x there is a unique y such that R(x , y).
linear: for every x , y , z ∈ W with R(x , y) and R(x , z), we
have R(y , z) or y = z or R(z, y).
total: for every x , y ∈ W , we have R(x , y) and R(y , x).
equivalence: reflexive, symmetric and transitive.
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Example

Consider the modality in which �φ means
“it ought to be that φ”.

Should R be reflexive?

Should R be serial?
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Necessarily true and Reflexivity

Guess

R is reflexive if and only if �φ→ φ is valid.

CS 5209: Foundation in Logic and AI 10—Modal Logic I 27



Motivation
Basic Modal Logic
Logic Engineering

Valid Formulas wrt Modalities
Properties of R
Correspondence Theory
Preview: Some Modal Logics

Motivation

We would like to establish that some formulas hold
whenever R has a particular property.

Ignore L, and only consider the (W ,R) part of a model,
called frame.

Establish formula schemes based on properties of frames.
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Reflexivity and Transitivity

Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

R is reflexive;

F satisfies �φ→ φ;

F satisfies �p → p for any atom p

Theorem 2

The following statements are equivalent:

R is transitive;

F satisfies �φ→ ��φ;

F satisfies �p → ��p for any atom p
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

1 ⇒ 2: Let R be reflexive. Let L be any labeling function;
M = (W ,R,L). Need to show for any x :
x 
 �φ→ φ Suppose x 
 �φ.
Since R is reflexive, we have x 
 φ.
Using the semantics of →: x 
 �φ→ φ
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

2 ⇒ 3: Just set φ to be p
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

3 ⇒ 1: Suppose the frame satisfies �p → p.
Take any world x from W .
Choose a labeling function L such that p 6∈ L(x),
but p ∈ L(y) for all y with y 6= x
Proof by contradiction: Assume (x , x) 6∈ R. Then
we would have x 
 �p, but not x 
 p.
Contradiction!
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Formula Schemes and Properties of R

name formula scheme property of R
T �φ→ φ reflexive
B φ→ �♦φ symmetric
D �φ→ ♦φ serial
4 �φ→ ��φ transitive
5 ♦φ→ �♦φ Euclidean

�φ↔ ♦φ functional
�(φ ∧ �φ→ ψ) ∨ �(ψ ∧ �ψ → φ) linear
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Which Formula Schemes to Choose?

Definition

Let L be a set of formula schemes and Γ ∪ {ψ} a set of
formulas of basic modal logic.

A set of formula schemes is said to be closed iff it contains
all substitution instances of its elements.

Let Lc be the smallest closed superset of L.

Γ entails ψ in L iff Γ ∪ Lc semantically entails ψ. We say
Γ |=L ψ.
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Examples of Modal Logics: K

K is the weakest modal logic, L = ∅.
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Examples of Modal Logics: KT45

L = {T ,4,5}

Used for reasoning about knowledge.

T: Truth: agent Q only knows true things.

4: Positive introspection: If Q knows something, he knows
that he knows it.

5: Negative introspection: If Q doesn’t know something, he
knows that he doesn’t know it.
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Next Week

Examples of Modal Logic

Natural deduction in modal logic
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