CS5126: Logic Programming and Constraints

Joxan Jaffar

March 3 - April 7, 2008
Searching a Derivation Tree

Rule Order

Does not affect the answers, only in the sequence they are discovered. However, it can

- affect how *quickly* an answer is found,
- determine if an answer is *ever* found

Literal Order

A *selection derivation step* \((G_1 \mid C_1) \rightarrow (G_2 \mid C_2)\), is defined as follows. Suppose \(G_1\) is of the form \(L_1, \cdots, L_i, \cdots, L_n\) where \(L_i\) is *selected*.

- \(L_i\) is a constraint:
 \(G_2\) is \(L_2, \cdots, L_n\) and \(C_2\) is \(C_1 \land L_i\).
 If \(solve(C_2) \equiv false\), then \((G_2 \mid C_2)\) is a *false* state.

- \(L_i\) is an atom:
 \(C_2\) is \(C_1\), and \(G_2\) is a rewriting of \(G_1\) at \(L_i\) using some rule \(R\).
 The variables in \(G_2\) are renamed away from \((G_1 \mid C_1)\). If there is no such \(R\), then then \((G_2 \mid C_2)\) is a *false* state.

If the solver were *complete*, then computing answers is is *independent* of literal order. Otherwise, we can get infinite derivations when in fact the constraints are unsatisfiable.

Any answer constraint is *always correct* (it never describes an error state) regardless of the solver.
Modes of Usage

A *mode of usage* for a predicate p is a description of the arguments of p encountered at runtime.

A goal G **satisfies** a mode of usage if for every state in the derivation tree for G of the form:

$$p(s_1, \ldots, s_n), L_1, \ldots, L_m \mid C$$

the effect of the constraint store C on the arguments s_1, \ldots, s_n of p is correctly described by the mode of usage.

Examples of Descriptions

- **boundedness**
 “the second argument is bound”
 - eg. bound to anything: $p(X, Y) \mid Y = [\text{Head}|\text{Tail}]$
 - eg. bound to a fixed length list: $p(X, Y) \mid Y = [Z_1, Z_2, Z_3]$

- **groundness**
 “the second argument is ground”
 - eg. equal to anything: $p(X, Y) \mid Y = 3$
 - eg. equal to some specific value: $p(X, Y) \mid Y = 3$

- **constrained**
 “the second argument satisfies a certain constraint: $p(X, Y) \mid 1 \leq Y \leq 9$. “
Example

sumlist([], 0).
sumlist([N | L], N + S) :- sumlist(L, S).

Mode of Usage: first argument is grounded to a list of numbers

- Goals satisfying the MoU:
 - ?- sumlist([1], S).
 - L = [1, 2], S > Z, sumlist(L, S)

- Goals not satisfying the MoU:
 - ?- sumlist(L, 2).
 - S > 3, sumlist(L, S), L = [1, 2].

Check:

\[
\begin{align*}
\text{sumlist}([1], S) & \mid \text{true} \\
\Downarrow & \\
\text{sumlist}(L_1, S_1) & \mid [1] = [N_1|L_1], S = N_1 + S_1 \\
\Downarrow & \\
\Box & \mid [1] = [N_1|L_1], S = N_1 + S_1, L_1 = [], S_1 = 0
\end{align*}
\]

In this mode of usage, the derivation tree is **linear** in the size of the input list.

Note: When considering tree, an important factor is whether one (or a few) solutions are sought, or if all solutions are sought.
Example

(1) \text{sum}(N, S + N) :- \text{sum}(N - 1, S).
(2) \text{sum}(0, 0).

A classic example of wrong rule order:

\text{sum}(1, S) \mid true

\downarrow

\text{sum}(0, S_1) \mid S = 1 + S_1 \quad \square \mid 1 = 0 (false)

\downarrow

\text{sum}(-1, S_2) \mid S = 1 + S_2 \quad \square \mid S = 1

\downarrow

\text{sum}(-2, S_3) \mid S = 1 + S_3 \quad \square \mid -1 = 1 (false)

\ldots
Example - attempt 2

(3) \(\text{sum}(0, 0) \).
(4) \(\text{sum}(N, S + N) :- \text{sum}(N - 1, S) \).

We have reversed the rule order, but still:

\[
\begin{align*}
\text{sum}(1, 0) & \mid \text{true} \\
\Downarrow & \\
\text{sum}(0, -1) & \mid \text{true} \\
\Downarrow & \\
\text{sum}(-1, -1) & \mid \text{true} \\
\Downarrow & \\
\text{sum}(-2, 0) & \mid \text{true} \\
\Downarrow & \\
\text{sum}(-3, 2) & \mid \text{true} \\
\Downarrow & \\
\ldots
\end{align*}
\]

Clearly the intended mode of usage is that the first argument is non-negative.
Example - attempt 3

(5) \text{sum}(0, 0).
(6) \text{sum}(N, S + N) :- \text{sum}(N - 1, S), N \geq 1.

Note that the (new) constraint $N \geq 1$ is \textit{redundant}.

\[
\begin{align*}
\text{sum}(1,0) & | \text{true} \\
\downarrow & \\
\text{sum}(0,-1), 0 \geq 1 & | \text{true} \\
\downarrow & \\
\text{sum}(-1,-1) - 1 \geq 1, 0 \geq 1 & | \text{true} \\
\downarrow & \\
\text{sum}(-2,0) - 2 \geq 1, -1 \geq 1, 0 \geq 1 & | \text{true} \\
\downarrow & \\
\text{sum}(-3,2) - 3 \geq 1, -2 \geq 1, -1 \geq 1, 0 \geq 1 & | \text{true} \\
\downarrow & \\
\vdots & \\
\end{align*}
\]

The problem is that the new constraint is reachable only after the recursive call because of \text{left-to-right selection}.
Example - final attempt 4

(7) sum(0, 0).
(8) sum(N, S + N) :- N >= 1, sum(N - 1, S).

▶ ?- sum(0, 1) is finitely failed
▶ ?- sum(1, S) returns S = 1
Literal Ordering

A general guideline:
ensure failure occurs as soon as possible,
and delay choices to as late as possible.

We have seen examples of early failure.

Example of Late Choice: run goals with ONE answer first.

A tree is **deterministic** if it is finite and each node has at most one descendant which is not failed. A predicate is deterministic (for a mode of usage) if for any goal \(p(\cdots)\) (satisfying the mode), the tree is deterministic.

For the mode \(\text{sum}(\cdots)\) where the first argument is ground, the predicate \(\text{sum}\) is not deterministic in:

\begin{align*}
(5) & \quad \text{sum}(0, 0).
(6) & \quad \text{sum}(N, S + N) : - \text{sum}(N - 1, S), N \geq 1.
\end{align*}

but is deterministic in:

\begin{align*}
(7) & \quad \text{sum}(0, 0).
(8) & \quad \text{sum}(N, S + N) : - N \geq 1, \text{sum}(N - 1, S).
\end{align*}
father(a, b).
...
mother(b, c).
...
grandfather(Z, X) :- father(Z, Y), father(Y, X).
grandfather(Z, X) :- father(Z, Y), mother(Y, X).

Consider the mode of \texttt{grandfather(Z, X)} where \texttt{X} is ground (who is the grandfather of \texttt{X}?).

Note that the \textit{first literal} in both rules are NOT deterministic.

Now swap literals so that deterministic ones come first:

\begin{verbatim}
gradfather(Z, X) :- father(Y, X), father(Z, Y).
gradfather(Z, X) :- mother(Y, X), father(Z, Y).
\end{verbatim}

This is no more efficient. (Why?)
Deterministic Predicates

As a natural extension to determinism is the guideline: run predicates with fewer answers first.

parent(Y, X) :- father(Y, X).
parent(Y, X) :- mother(Y, X).
grandfather(Z, X) :- father(Z, Y), parent(Y, X).

Consider the mode of grandfather(Z, X) where X is ground (who is the grandfather of X?).

The above is not efficient. Much better is:

grandfather(Z, X) :- parent(Y, X), father(Z, Y).

(Why?)
If-Then-Else and Once

If-Then-Else

\[(G \rightarrow G_t; G_e) \mid C\]

- succeeds with answer \(C_1\), then we derive \((G_t \mid C_1)\)
- finitely fails, then we derive \((G_e \mid C)\)

Example:

\[
\text{abs}(X, Y) :- (X \geq 0 \rightarrow Y = X ; Y = -X).
\]

Once

\[(\text{once}(G), \tilde{L}) \mid C\]

- succeeds with answer \(C_1\), then we derive \((\tilde{L} \mid C_1)\)
- finitely fails, then we obtain finite failure.
Adding Redundant Constraints

Two kinds of redundancy in adding a constraint to a rule/goal:

- **Answer redundancy**
 This is when we add a constraint that is redundant because it does not change the *answers* of the program

- **Solver redundancy**
 This is when we add a constraint that is redundant because it does not change the *answers* of the constraint solver
Answer Redundancy

(1) \(\text{sum}(0, 0) \).

(2) \(\text{sum}(N, S + N) :- N \geq 1, \text{sum}(N - 1, S) \).

\[
\text{sum}(N, 7) \mid \text{true}
\]

\[
\downarrow
\]

\(\text{sum}(N_1, S_1) \mid N = N_1 + 1, S_1 = 6 - N_1, N_1 \geq 0 \)

\[
\downarrow
\]

\(\text{sum}(N_2, S_2) \mid N = N_2 + 2, S_2 = 4 - 2 \times N_2, N_2 \geq 0 \)

\[
\downarrow
\]

\(\text{sum}(N_3, S_3) \mid N = N_3 + 3, S_3 = 1 - 3 \times N_3, N_3 \geq 0 \)

\[
\downarrow
\]

\(\text{sum}(N_4, S_4) \mid N = N_4 + 4, S_4 = -3 - 4 \times N_4, N_4 \geq 0 \)

\[
\downarrow
\]

\[\cdots\]

Problem: none of the constraints above are unsatisfiable.

Solution:

(3) \(\text{sum}(0, 0) \).

(4) \(\text{sum}(N, S + N) :- N \geq 1, S \geq 0, \text{sum}(N - 1, S) \).

Note that this change does not change the *answers*.
Solver Redundancy

A constraint is **solver redundant** if it is entailed by the constraint store.

Adding (solver) redundant constraints can be useful when it makes explicit information which an **incomplete solver** is incapable of determining.

1. \(\text{fact}(0, 1) \).
2. \(\text{fact}(N, N\times F) :- N \geq 1, F \geq 1, \text{fact}(N - 1, F) \).
(Note: \(F \geq 1 \) is answer-redundant)

The goal \(\text{fact}(N, 7) \) runs forever.

\[
\text{fact}(N, 7) \mid \text{true}
\]

\[
\downarrow
\]

\[
\text{fact}(N-1, F_1) \mid F_1 \geq 1, N \geq 1, 7 = N \times F_1
\]

\[
\downarrow
\]

\[
\text{fact}(N-2, F_2) \mid F_2 \geq 1, N \geq 2, 7 = N \times (N-1) \times F_2
\]

\[
\downarrow
\]

\[
\text{fact}(N-3, F_3) \mid F_3 \geq 1, N \geq 3, 7 = N \times (N-1) \times (N-2) \times F_3
\]

\[
\downarrow
\]

\[
\text{fact}(N-4, F_4) \mid F_4 \geq 1, N \geq 4, 7 = N \times (N-1) \times (N-2) \times (N-3) \times F_4
\]

\[
\downarrow
\]

\[
\ldots
\]
Solver Redundancy

In the previous state:

\[\text{fact}(N - 4, F_4) \mid F_4 \geq 1, N \geq 4, 7 = N \times (N - 1) \times (N - 2) \times (N - 3) \times F_4 \]

in fact, the expression \(N \times (N - 1) \times (N - 2) \times (N - 3) \times F_4 \) must be greater than 24. However, many constraint solvers may not be be able to determine this.

Now add the fact that the factorial of \(N \) is always larger than \(N \):

(3) \quad \text{fact}(0, 1).

(4) \quad \text{fact}(N, FN) :-
FN = F \times N, N \geq 1, F \geq 1, N \leq FN,
\text{fact}(N - 1, F).

The goal \text{fact}(N, 7) now will in fact terminate (finitely fail).
Optimization

Running a goal derives one more answers. Optimization involves deriving the best answer.

Recall the “Options Trading” Example and the butterfly combination bets that a stock price remains in a certain range and bounds the loss.

call_option(B, S, C, E, P) :- 0 ≤ S, S ≤ E/100, P = -C*B.
call_option(B, S, C, E, P) :- S ≥ E/100, P = (100*S - E - C) * B.

put_option(B, S, C, E, P) :- 0 ≤ S, S ≤ E/100, P = (E-100*S-C) * B.
put_option(B, S, C, E, P) :- S ≥ E/100, P = -C * B.

butterfly(S, P1 + 2*P2 + P3) :-
 Buy = 1, Sell = -1,
 call_option(Buy, S, 100, 500, P1),
 call_option(Sell, S, 200, 300, P2),
 call_option(Buy, S, 400, 100, P3).

Optimization would be to discover the maximum P for ?- butterfly(S, P).
(S = 3, P = 100).
Simple Optimization

solve(X, C): find one solution X with cost C
try(soln1, soln2): given soln1, find a better soln2.

try(soln(X0, C0), soln(X, C)) :-
 C1 < C0,
 solve(X1, C1),
 try(soln(X1, C1), soln(X, C)).
try(soln(X, C), soln(X, C)).

- Needs an initial call to solve to obtain a first value of C
- The search process implements a basic branch-and-bound strategy

In what follows, we study more advanced techniques of search, for both feasible solutions as well as optimal solutions.