Prolog Terms

Prolog terms are formed of variables and functors (function symbols).

\[f(g(X, Y), h(a)) \]

- \(f \) is a functor of arity 2 (notated \(f/2 \))
- \(h \) is a functor of arity 1 (notated \(h/1 \))
- \(a \) is a functor of arity 0 or atom (notated \(a/0 \))
- \(X \) is a variable

Terms and Unification

Presented by Stéphane Bressan

Prolog Terms

For convenience of the programmer and efficiency of programming there are other types of atomic terms than atom such as numbers and strings.

Type Testing

Several built-in type testing procedures are available in ECLiPSe.

- \(\text{atom}(?\text{Atom}) \)
 - Succeeds if \(\text{Atom} \) is a Prolog atom.
- \(\text{string}(?\text{String}) \)
 - Succeeds if \(\text{String} \) is a string.
- \(\text{number}(?\text{Number}) \)
 - Succeeds if \(\text{Number} \) is a number.
- \(\text{atomic}(?\text{Atomicterm}) \)
 - Succeeds if \(\text{Atomicterm} \) is an atom, a number, or a string.
- \(\text{compound}(?\text{Term}) \)
 - Succeeds if \(\text{Term} \) is of type compound, i.e. a structure or a list.

Type Testing

- \(\text{var}(?\text{Var}) \)
 - Succeeds if \(\text{Var} \) is a variable or an attributed variable.
- \(\text{ground}(?\text{Term}) \)
 - Succeeds if \(\text{Term} \) is ground, i.e. it does not contain variables.

Type Testing

- \(\text{integer}(?\text{Integer}) \)
 - Succeeds if \(\text{Integer} \) is an integer number.
- \(\text{rational}(?\text{Rational}) \)
 - Succeeds if \(\text{Rational} \) is a rational number.
- \(\text{real}(?\text{Real}) \)
 - Succeeds if \(\text{Real} \) is a real (float or breal) number.
- \(\text{float}(?\text{Real}) \)
 - Succeeds if \(\text{Real} \) is a floating point number.
- \(\text{breal}(?\text{Breal}) \)
 - Succeeds if \(\text{Breal} \) is a bounded real number.
Integers

The magnitude of integers is only limited by the available memory. However, integers that fit into the word size of your computer are represented more efficiently (this distinction is invisible to the user). Integers are written in decimal notation or in base notation.

0 3 -5 1024 16f3ae 0'a 1551121004330985984000000

Rational Numbers

Rational numbers are ratios of two integers (numerator and denominator). ECLiPSe represents rational numbers in a canonical form where the greatest common divisor of numerator and denominator is 1 and the denominator is positive. Rational constants are written as numerator and denominator separated by an underscore

1_3 -30517578125_32768 0_1

Real or Floating Point Numbers

Floating point numbers conceptually correspond to the mathematical domain of real numbers, but are not precisely represented. Floats are written with decimal point and/or an exponent. ECLiPSe uses double precision floats

0.0 3.141592653589793 6.02e23 -35e-12 -1.0Inf

Bounded Real Numbers

A bounded real consists of a pair of floating point numbers which constitute a safe lower and upper bound for the real number that is being represented.

Bounded real numbers are written as two floating point numbers separated by two underscores.

-0.001__0.001 3.141592653__3.141592654 1e308__1.0Inf

Bounded real numbers are usually not typed in by the user, they are the result of a computation or type coercion. All computations with bounded real numbers give safe results, taking rounding errors into account. This is achieved by doing interval arithmetic on the bounds and rounding the results outwards. The resulting bounded real is then guaranteed to enclose the true real result.

A Note on the String Data Type

• The space consumption of a string is always less than that of the corresponding list of characters.
 • “abcd” versus [“a”, “b”, “c”, “d”]
 • For long strings, it is asymptotically 16 times more compact. Items of both types are allocated on the global stack, which means that the space is reclaimed on failure and on garbage collection.
 • For the complexity of operations it must be kept in mind that the string type is essentially an array representation, i.e. every character in the string can be immediately accessed via its index. The list representation allows only sequential access. The time complexity for extracting a substring when the position is given is therefore only dependent on the size of the substring for strings, while for lists it is also dependent on the position of the substring.
 • Comparing two strings is of the same order as comparing two lists, but faster by a constant factor. If a string is to be processed character by character, this is easier to do using the list representation.
 • The higher memory consumption of lists is sometimes compensated by the property that when two lists are concatenated, only the first one needs to be copied, while the list that makes up the tail of the concatenated list can be shared. When two string are concatenated, both strings must be copied to form the new one.

A Note on the String Data Type

• What is the difference between a string and an atom?
 abcd (or ‘abcd’) versus “abcd”
 • a string is simply stored as a character sequence
 • an atom is mapped into an internal constant (This mapping is done via a table called the dictionary.)
A Note on the String Data Type

• copying and comparing atoms is a unit time operation, while for strings both is proportional to the string length.
• each time an atom is read into the system, it has to be looked up and possibly entered into the dictionary
• The dictionary is a much less dynamic memory area than the global stack. That means that once an atom has been entered there, this space will only be reclaimed by a relatively expensive dictionary garbage collection. It is therefore in general not a good idea to have a program creating new atoms dynamically at runtime.

Strings vs. Atoms

/* father_SvA.pl
afather(mary, george).
afather(john, george).
afather(sue, harry).
afather(george, edward).
sfather("mary", "george").
sfather("john", "george").
sfather("sue", "harry").
sfather("george", "edward").

How to Know the Details

Examples of the types lexical and value spaces the documentation of the type testing procedures from ECLiPSe Reference Manual

• Success
 • atom(atom).
 • atom("Anything").
 • atom([]). % notice the empty list is an atom
 • atom(0).
 • atom($).
 • atom(\).

• Fail:
 • atom(1).
 • atom(this(is,a,structure)).
 • atom(X).

How to Know the Details

Definitions of the type lexical space are from the syntax section of the User Manual

Discussions on the value space are in the User Manual

Type Conversion

Several built-in type conversion procedures are available in ECLiPSe.

• fix(+Number, ?Result)
• rational(+Number, ?Result)
• float(+Number, ?Result)

Notice that they can be used with is/2:

:- X is rational(25 – 22).
Type Conversion

Several built-in type conversion procedures are available in ECLiPSe.

- `term_string(?Term, ?String)`
- `number_string(?Number, ?String)`
- `atom_string(?Atom, ?String)`
- Etc.

Documentation

- ECLiPSe User Manual
- ECLiPSe Reference Manual

Unification

/* uni.pl */
*Unification Example
p(f(g(Y), a, Z)).
:- p(f(X, Y, g(T)))).

Unifies \(f(X, Y, g(T)) \) and \(f(g(Y), a, Z) \)

Variables are local to a goal, a rule or a fact

Unification

\(:\neg f(X, Y, g(T)) = f(g(Y), a, Z) \)

- How to make the two terms identical?
 - \(X \) and \(Y \)
 - \(X \rightarrow a, Y \rightarrow a \), or
 - \(X \rightarrow b, Y = b \), or
 - \(X \rightarrow f(Z, b), Y \rightarrow f(Z, b) \), or
 - \(X \rightarrow Y \)
 - \(f(X, Y, g(T)) \) and \(f(g(Y), a, Z) \)
 - \(X \rightarrow g(Y), Y \rightarrow a, Z \rightarrow g(a) \), or
 - \(X \rightarrow g(Y), Y \rightarrow a, Z \rightarrow g(b) \), or
 - \(X \rightarrow g(Y), Y \rightarrow a, Z \rightarrow g(T) \)
 - \(f(X, Y, g(b)) \) and \(f(g(Y), a, X) \)
 - impossible
Substitution and Unifier

- A **substitution** is an object of the form \(X \rightarrow t\) where \(X\) is a variable and \(t\) a term.
- Applied to a term, a substitution rewrites the occurrences of the variable \(X\) into the term \(t\).
- A **unifier** of two terms is a set of substitutions that makes the two terms identical (only variables of the two terms appear in a substitution and a variable appears at most once on the left hand side of a substitution).
- Two terms are **unifiable** if there exists a unifier.
- The term resulting from the application of the substitutions in the unifier is the **unified term**.

Most General Unifier (mgu)

- A **most general unifier** \(mgu\) of two terms \(t_1\) and \(t_2\) is the unifier such that the unified term \(t'\) it defines is unifiable with any unified term \(t''\) obtained with a unifier of \(t_1\) and \(t_2\).
- If two terms are unifiable there exists a \(mgu\).
- There can be several \(mgu\), but they are syntactic variants (the unified term is the same, except possibly for the name of variables).

Examples

\[f(X) = f(Y)\]

- \(mgu_1: \{X \rightarrow Y\}\)
- \(mgu_2: \{Y \rightarrow X\}\)

Unification Algorithm

Input \(t_1, t_2\)

Output \(\theta\) or Fail

Algorithm:

1. \(\theta := \emptyset\); % \(\theta\) a list of substitutions
2. \(\sigma := \emptyset\); % \(\sigma\) is a stack
3. push \(t_1 = t_2\) on \(\sigma\);
4. while \(\sigma \neq \emptyset\) do
 1. pop 's1 = s2' from \(\sigma\);
 2. switch case s1 is a variable do
 1. substitute s2 for s1 in \(\sigma\) and \(\theta\)
 2. \(\theta := \theta \cup \{s1 \rightarrow s2\}\);
 3. case s2 is a variable do
 1. substitute \(s_1\) for \(s_2\) in \(\sigma\) and \(\theta\)
 2. \(\theta := \theta \cup \{s_2 \rightarrow s_1\}\);
 4. case \(s_1 = f(u_1, \ldots, u_n)\) and \(s_2 = f(v_1, \ldots, v_n)\) % same functor and arity n do
 1. for \(i = n\) to 1 push \(u_i = v_i\) on \(\sigma\);
 5. otherwise goto Fail;
5. enddo;
6. enddo;
7. output \(\theta\); exit;
8. FAIL: output "Fail"; exit;

Examples

\[f(X, g(a, Z)) = f(Z, g(Z, Y))\]

1. \(\theta := \emptyset\); \(\sigma := \emptyset\);
2. \(\theta := \emptyset\); \(\sigma := \{f(X, g(a, Z)) = f(Z, g(Z, Y))\}\);
3. \(\theta := \emptyset\); \(\sigma := \{X = Z, g(a, Z) = g(Z, Y)\}\);
4. \(\theta := \{X \rightarrow Z\}; \sigma = \{g(a, Z) = g(Z, Y)\}\);
5. \(\theta := \{X \rightarrow Z\}; \sigma = \{a = Z, Z = Y\}\);
6. \(\theta := \{X \rightarrow a, Z \rightarrow a\}; \sigma = \{a = Y\}\);
7. \(\theta := \{X \rightarrow a, Z \rightarrow a, Y \rightarrow a\}; \sigma = \emptyset\);
8. Solution: \(\theta = \{X \rightarrow a, Z \rightarrow a, Y \rightarrow a\}\) is the most general unifier

Examples

\[f(X, g(a, Z)) = f(Z, g(X, X))\]

1. \(\theta := \emptyset\); \(\sigma := \emptyset\);
2. \(\theta := \emptyset\); \(\sigma := \{f(X, g(a, Z)) = f(Z, g(X, X))\}\);
3. \(\theta := \emptyset\); \(\sigma := \{X = Z, g(a, Z) = g(X, X)\}\);
4. \(\theta := \{X \rightarrow Z\}; \sigma = \{g(a, Z) = g(Z, Z)\}\);
5. \(\theta := \{X \rightarrow Z\}; \sigma = \{a = Z, Z = Z\}\);
6. \(\theta := \{X \rightarrow a, Z \rightarrow a\}; \sigma = \{a = a\}\);
7. \(\theta := \{X \rightarrow a, Z \rightarrow a\}; \sigma = \emptyset\);
8. Solution: \(\theta = \{X \rightarrow a, Z \rightarrow a\}\) is the most general unifier
Most General Unifier

\[f(X, g(a, Z)) = f(Z, g(X, X)) \]
with \(\theta = \{X \rightarrow a, Z \rightarrow a\} \)

- \(f(X, g(a, Z)) \)
 - \(X \rightarrow Z: f(a, g(a, Z)) \)
 - \(Z \rightarrow a: f(a, g(a, a)) \)

- \(f(Z, g(X, X)) \)
 - \(X \rightarrow a: f(Z, g(a, a)) \)
 - \(Z \rightarrow a: f(a, g(a, a)) \)

Unification Algorithm

\[f(X, g(a, Z)) = f(Z, g(X, b)) \]

1. \(\theta = \emptyset; \sigma = \emptyset; \)
2. \(\theta = \emptyset; \sigma = \{f(X, g(a, Z)) = f(Z, g(X, b))\}; \)
3. \(\theta = \emptyset; \sigma = \{Z = g(a, Z), X = g(X, b)\}; \)
4. \(\theta = \{X \rightarrow a\}; \sigma = \{g(a, Z) = g(Z, b)\}; \)
5. \(\theta = \{X \rightarrow a\}; \sigma = \{a = Z, Z = b\}; \)
6. \(\theta = \{X \rightarrow a, Z \rightarrow a\}; \sigma = \{a = b\}; \)
7. Fail

Solution: Fail

Unification Algorithm

\[f(Z, X) = f(g(a, X), X) \]

1. \(\theta = \emptyset; \sigma = \emptyset; \)
2. \(\theta = \emptyset; \sigma = \{f(Z, X) = f(g(a, X), X)\}; \)
3. \(\theta = \emptyset; \sigma = \{Z = a, X = g(X), Y = X\}; \)
4. \(\theta = \emptyset; \sigma = \{Z \rightarrow a, X \rightarrow g(g(g(\ldots g(\ldots)))\ldots)), Y = g(g(g(\ldots g(\ldots)))\ldots)))\}; \)
5. \(\theta = \emptyset; \sigma = \{Z \rightarrow a, X \rightarrow g(g(g(\ldots g(\ldots)))\ldots)), Y = g(g(g(\ldots g(\ldots)))\ldots)))\}; \)
6. \(\theta = \emptyset; \sigma = \emptyset; \)

Solution: \(\theta = \{Z \rightarrow a, X \rightarrow g(g(g(\ldots g(\ldots)))\ldots)), Y = g(g(g(\ldots g(\ldots)))\ldots)))\}; \)

Unification Algorithm with Occur Check

\[f(Z, Y) = f(a, g(X), X) \]

1. \(\theta = \emptyset; \sigma = \emptyset; \)
2. \(\theta = \emptyset; \sigma = \{f(Z, X) = f(a, g(X), X)\}; \)
3. \(\theta = \emptyset; \sigma = \{Z = a, X = g(X), Y = X\}; \)
4. \(\theta = \emptyset; \sigma = \{Z \rightarrow a, X \rightarrow g(g(g(\ldots g(\ldots)))\ldots)), Y = g(g(g(\ldots g(\ldots)))\ldots)))\}; \)
5. \(\theta = \emptyset; \sigma = \emptyset; \)

Solution: \(\theta = \{Z \rightarrow a, X \rightarrow g(g(g(\ldots g(\ldots)))\ldots)), Y = g(g(g(\ldots g(\ldots)))\ldots)))\}; \)

Unification as Rewriting

\(t_1 = t_2 \)

create the set \(\{t_1 \rightarrow t_2\} \)

1. \(f(s_1, \ldots, s_n) \rightarrow f(t_1, \ldots, t_n) \); delete the equation and replace with equations \(s_1 \rightarrow t_1, \ldots, s_n \rightarrow t_n \)
2. \(f(s_1, \ldots, s_n) \rightarrow g(t_1, \ldots, t_n); \) fail
3. \(X \rightarrow X; \) delete the equation
4. \(t \rightarrow X \) where \(t \) is not a variable:
 delete the equation and replace with \(X \rightarrow t \)
5. \(X \rightarrow t \) and \(X \) does not occur in \(t \):
 substitute \(t \) for \(X \) in all other equations.
6. \(X \rightarrow t \) and \(X \) occurs in \(t \):
 fail
Unification as Rewriting

\[f(Z, X) = f(g(a, X), X) \]

- \(\varepsilon = \{ f(Z, X) \rightarrow f(g(a, X), X) \} \)
- \(\varepsilon = \{ Z \rightarrow g(a, X), X \rightarrow X \} \) by 1
- \(\varepsilon = \{ Z \rightarrow g(a, X) \} \) by 3

\[f(g(a, X), X) \]

Unification in Prolog

- Write a procedure \texttt{unify/3} that succeeds if the first and second arguments are unifiable and the third argument is the unified term and fails otherwise

\[\text{unify}(X, X, X). \]
- But how about \((X, X, a) \)?

Unification in Prolog

- Write a procedure \texttt{unify/2} that unifies the first and second argument

\[\text{unify}(X, X). \]
- This procedure is \(=/2 \)

Occur Check in ECLiPSe

- Try

\[:-X = f(X). \]
- ECLiPSe can handle infinite terms
- But the occur check can be set

\[:- \text{get_flag(occur_check, X)}. \]
\[:- \text{set_flag(occur_check, on)}. \]

Term Manipulation

- \?Term \leftarrow \?List
 - \texttt{Unify} --- Succeeds if \texttt{List} is the list which has \texttt{Term}'s functor as its first element and \texttt{Term}'s arguments, if any, as its successive elements.
 - \texttt{functor(?Term, ?Functor, ?Arity)}
 - Succeeds if the compound term \texttt{Term} has functor \texttt{Functor} and arity \texttt{Arity} or if \texttt{Term} and \texttt{Functor} are atomic and equal, and \texttt{Arity} is 0.
 - \texttt{arg(+N, +Term, ?Arg)}
 - Succeeds if \texttt{Arg} is the \texttt{Nth} argument of the compound term \texttt{Term}.
 - \texttt{term_variables(?Term, ?VarList)}
 - \texttt{A copy of OldTerm with new variables is created and unified with NewTerm.}
 - \texttt{?Term1 = ?Term2}
 - Succeeds if \texttt{Term1} and \texttt{Term2} are identical terms.

Syntax Settings

- \texttt{current_op(?Precedence, ?Associativity, ?Name)}
 - Succeeds if \texttt{Name} is a visible operator with precedence \texttt{Precedence} and associativity \texttt{Associativity}.
 - \texttt{current_op(P, A, '+')}.
 \(P = 500 \)
 \(A = xfy \)
 - \texttt{Infix:}
 - \texttt{xf non-associative}
 - \texttt{xf right to left}
 - \texttt{y/f left to right}
 - \texttt{Prefix:}
 - \texttt{fx non-associative}
 - \texttt{fy left to right}
 - \texttt{Postfix:}
 - \texttt{xf non-associative}
 - \texttt{yf right to left}
Syntax Settings

• op(+Precedence, +Associativity, +Name)
 • Declare operator syntax.

:- op(500, xfy, father).

:- X = "Dauphin Louis" father "Louis XV" father "Louis, Duke of Burgundy".

:- X = "Dauphin Louis" father "Louis XV" father "Louis, Duke of Burgundy", display(X).

Lists

We can represent lists as binary trees where list elements are left children

\[\cdot (1, \cdot (2, \cdot (L))) \]

Is the list \([1,2]\)

Lists

We can represent lists as binary trees where sub-lists are right children

\[\cdot (1, \cdot (2, L)) \]

Is the list \([1,2, L]\)

Lists

The empty list is the atom \([]\)

\[\cdot (1, \cdot (2, [])) \]

Is the list \([1,2, []]\) which is the list \([1,2]\)

\[L = [1,2][[], \cdot (1, \cdot (2, []))] \]

Write the following procedures

• car(?List, ?Head)
 • Succeeds if Head is the first element of List (the head)

• cdr(?List, ?Tail)
 • Succeeds if Tail is the sub-list of List without its first element (the tail)

• cons(?List, ?Head, ?Tail)
 • Succeeds if Head is the first element of List (the head) and Tail is the sub-list of List without its first element (the tail)

Implement a Stack

• push(?Element, +OldStack, -NewStack)

• pop(+OldStack, -NewStack, -Element)

• top(+Stack, -Element)

• empty(+Stack)