Efficient Keyword Search for Smallest LCAs in XML
Databases -

Yu Xu

Yannis Papakonstantinou

Department of Computer Science & Engineering Department of Computer Science & Engineering

University of California, San Diego
yxu@cs.ucsd.edu

ABSTRACT

Keyword search is a proven, user-friendly way to query HTML
documents in the World Wide Web. We propose keyword search
in XML documents, modeled as labeled trees, and descrilve-cor
sponding efficient algorithms. The proposed keyword sesageh
turns the set of smallest trees containing all keywords revhdree

is designated as “smallest” if it contains no tree that alsatains

all keywords. Our core contribution, the Indexed Lookup &faa-
gorithm, exploits key properties of smallest trees in otdeyutper-
form prior algorithms by orders of magnitude when the queny-c
tains keywords with significantly different frequenciesheTScan
Eager variant is tuned for the case where the keywords hanikasi
frequencies. We analytically and experimentally evaltatevari-
ants of the Eager algorithm, along with the Stack algoriti3].[
We also present the XKSearch system, which utilizes thexidle

University of California, San Diego
yannis@cs.ucsd.edu

and “Ben” are participants in a project.

According to theSmallest Lowest Common Ancestor (SLE&)
mantics, the result of a keyword query is the set of nodes(that
contain the keywords either in their labels or in the labéltheir
descendant nodes and (ii) they have no descendant noddgbat a
contains all keywords. The answer to the keyword searchriJoh
Ben” is the node list(.1.1, 0.1.2, 0.2.0.0]. The subtree rooted at
the Class node with i0.1.1 is a better answer than the subtrees
rooted at “Classes” or “School” because it connects “Johmd a
“Ben” more closely than the “Classes” or “School” elements.

We can use an XML query language such as XQuery to search on
“John, Ben” to find the most specific elements. One possikéeyqu
is shown in Figure 2. It is complex and difficult to be executed
efficiently. We could write a query that is schema specific miode
efficient. However it would require existence and knowledfjthe

Lookup Eager, Scan Eager and Stack algorithms and a demo ofschema of School.xml, knowledge of the “roles” John and Bag m

which on DBLP data is available at

http://ww. db. ucsd. edu/ proj ect s/ xksear ch. Finally,
we extend the Indexed Lookup Eager algorithm to answer Lowes
Common Ancestor (LCA) queries.

1. INTRODUCTION

Keyword search is a proven user-friendly way of querying HTM
documents in the World Wide Web. Keyword search is welleslit
to XML trees as well. It allows users to find the informatiomyh
are interested in without having to learn a complex querglage
or needing prior knowledge of the structure of the undegydata
[1, 5, 12, 15, 16, 18]. For example, assume an XML document
named “School.xml”, modeled using the conventional latheétee
model in Figure 1, that contains information including skes, projects,
etc. A user interested in finding the relationships betwekat”
and “Ben” issues a keyword search “John, Ben” and the segs:h s
tem returns the most specific relevant answers - the subtrets
at noded).1.1, 0.1.2 and0.2.0.0. The meaning of the answers is
obvious to the user: “Ben” is a TA for “John” for the CS2A class
“Ben” is a student in the CS3A class taught by “John”, bothitdo

* Work supported by NSF ITR 313384

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMODJune 14-16, 2005, Baltimore, Maryland, USA

Copyright 2005 ACM 1-59593-060-4/05/06%5.00.

527

play in the document and knowledge of the relationships thay
have.
We make the following technical contributions in the paper:

e We propose two efficient algorithms, Indexed Lookup Eager
and Scan Eager, for keyword search in XML documents ac-
cording to the SLCA semantics. Both algorithms produce
part of the answers quickly so that users do not have to wait
long to see the first few answers.

e The Indexed Lookup Eager algorithm outperforms known al-
gorithms and Scan Eager by orders of magnitude when the
keyword search includes at least one low frequency keyword
along with high frequency keywords. In particular, the per-
formance of the algorithm primarily depends on the number
of occurrences of the least frequent keyword and the number
of keywords in the query; it does not depend significantly on
the frequencies of the more frequent keywords of the query
(the precise worst-case complexity for a main memory ver-
sion and a disk-based version is provided). The Indexed
Lookup Eager algorithm is important in practice since the
frequencies of keywords typically vary significantly. Innco
trast Scan Eager is tuned for the case where the occurrences
of the query’s keywords do not vary significantly.

e We experimentally evaluate the Indexed Lookup Eager al-
gorithm, the Scan Eager algorithm and the prior work Stack
algorithm [13]. The algorithms are incorporated into the-XK
Search system (XML Keyword Search), which utilizes B-
tree indices provided by BerkeleyDB [4]. A demo of the
XKSearch system, running on DBLP data, is available at
http://ww. db. ucsd. edu/ proj ect s/ xksear ch.

The experiments show that the Indexed Lookup Eager algo-
rithm outperforms the Scan Eager and the Stack algorithms

School

1]
N W
0.0 0.1 Projects SportsClub
0.2 0.3
John Class Class Class Class Class Autonet P2P OoSsP
0.0.0 0.1.0 0.1.1 0.1.2 0.1.3 0.1.4 0.2.0 0.3.0 0.3.1
Instructor Title Instructor TA Instructor Students Title Title Title Participants Participants Participants
0.1‘.0.0 0.1.1.0 0.1.‘1.1 0.1.1.2 0.1.2.0 0121 0122 4130 0.1.4.0 0.2.0.0 0.3.0.0 0.3.1.0
John CS2A John Ben John Ben CS3A CS4A CS5A John Ben Ben Ben
0.1.0.00 0.1.1.00 0.1.1.1.0 0.1.1.20 0.1.20.0 0.1.2.1.0 0.1.2.2.0 0.1.3.0.0 0.1.4.0.0 0.2.0.0.0 0.2.0.0.1 0.3.0.0.0 0.3.1.0.0

Figure 1: School.xml (each node is associated with its Deweayimber)

the sense that if a node precedes a node in the preorder left-

(answer) .{ to-right depth-first traversal of the tree thene(vi) < pre(vs).
for $a in document(**School.xm"")//* The XKSearch implementation uses Dewey numbers as the id’s.
where enpty(for $b in $a/* Prior work has shown that Dewey numbers are a good id choice
where some $c in $b//* [23]. In addition, Dewey numbers provide a straightforwaod
satisfies $c='"John"’ lution to locating the LCA of two nodes. The usual relation-
and some $c in $b//* ship is assumed between any two Dewey numbers. For example,
satisfies $c=""Ben'’ 0.1.0.0.0 < 0.1.1.1. Obviously the< relationship on Dewey num-
return $b) o bers is compatible with the requirement for preorder nuiniger
and sone $d in $a//* satisfies $d=""John" Given a list ofk keywordsws, . . ., wg and an input XML tred’,
and sone $d in $a//* satisfies $d="'Ben'’ ananswer subtreef keywordswy, .. ., wy, is a subtree of’ such
return $a } that it contains at least one instance of each keyword . ., wy.
(I answer) A smallest answer subtresf keywordsws, ..., wy, iS an answer
subtree (of keyworda, . .., wy) such that none of its subtrees is
.) . o y an answer subtree (of keywords, . .., wy). The result
Figure 2: XQuery: find answers for “John, Ben slea(ws, ..., wg, T) of a keyword searchy, . .., wy on an input
XML tree T, is the set of the roots of all smallest answer subtrees
. . of wy, ..., wg. For presentation brevity, we do not explicitly refer
often b_y orders of magn_ltude when the keywords in the AUeTY 45 the input XML treeT” and simply writeslca(ws, . . . , wx) when
have different frequencies, and loses only by a small margin T is obvious.

when the keywords have similar frequencies. Indeed in the
DBLP demo, only the Indexed Lookup Eager algorithm is
used.

Given a list ofk keywordsw; , . . ., w and an input XML tred’,
we assume; denotes the keyword list ab;, i.e., the list of nodes
whose label directly contains; sorted by id.v < v’ denotes that

H . 7 !
In Section 2 we introduce the notation and definitions useden ~ Nodew is an ancestor of node’; v < v’ denotes thav < v' or

paper. Section 3 presents the SLCA problem and its soluthMas v =1v'. Givena nod,e_) € S, vis called an ancestor node f
discuss the Indexed Lookup Eager and the Scan Eager algsyith If there exists a node’ in S such thaw < v". When the sef'is

and the sort-merge based Stack algorithm [13]. SectioncBpats implied by the context, we simply sayis an ancestor node. Notice
vides the complexity of the main memory implementationshef t ~ thatifv <o thenpre(v) < pre(v’), and the other direction is not
algorithms. In Section 4, we discuss the XKSearch impleateort always true.

of the Indexed Lookup Eager, Scan Eager and Stack algorithms The functionlca(vs, . .., vx) computes thdowest common an-
and provide their complexity in terms of number of disk asess cestoror LCA of nodesvs, ..., v, and returns null if any of the

In Section 5, we discuss thall Lowest Common Ancestor (LCA) ~ &rguments is null. Given two nodes, v» and their Dewey num-
problemand extend the SLCA's Indexed Lookup algorithm to effi- De€rspi, pz, lca(vi, v2) is the node with the Dewey number that is
ciently find LCAs in “shallow” trees. Our experimental reisuare the longest common prefix gfi andp, and the cost of comput-

discussed in Section 6. We discuss related work in Sectiand7 a iNg lca(vi,v2) is O(d) whered is the maximum depth of the tree.
conclude in Section 8. For example, the LCA of noddk1.1.1.0 and0.1.1.2.0 is the node

0.1.1in Figure 1. Given sets of nodés, . .., S,,, a nodev belongs
tolca(Sh,...,Sk) if there existvy € Si,...,vr € Sk such that
2. NOTATION v = lca(v1,...,vt). Thenvis called an LCA of set$, ..., S,.

We use the conventional labeled ordered tree model to repre- A nodewv belongs to thesmallest lowest common ancestor (SLCA)
sent XML trees. Each node of the tree corresponds to an XML slca(S1, ..., Sk) of S1,...,Sk if v € lca(Sh,. .., Sk) andVu €
element and is labeled with a tagv). We assign to each node a lca(Si,...,S») v 4 u. vis called a SLCA of set$\, ..., S, if
numerical idpre(v) that is compatible with preorder numbering, in

528

v € slca(Sh, ..., Sk).

Notice that the query resultca(ws, . . . ,wy) i slca(S1,. .., Sk)
and thatslca(S1, ..., Sk)= removeAncestor(lca(S1, ..., Sk))
whereremove Ancestor removes ancestor nodes from its input.

The functionrm(v, S) computes theight matchof v in a setS,
that is the node of that has the smallest id that is greater than or
equal topre(v); Im(v, S) computes théeft matchof v in a setS,
that is the node of that has the biggest id that is less than or equal
topre(v)t. rm(v, S) (Im(v, S)) returns null when there is no right
(left) match node. The cost éifn(v, S) (rm(v, S)) isO(dlog |S|)
since it take®)(log | S|) steps (Dewey number comparisons) to find
the right (left) match node and the cost of comparing two Dewe
numbers isO(d). The functiondescendant(v1,v2) returns the
other argument when one argument is null and returns theedesc
dant node whemw; andwvs have ancestor-descendant relationship.
The cost of the functiodescendant is O(d).

3. ALGORITHMS FORFINDING THE SLCA
OF KEYWORD LISTS

This section presents the core Indexed Lookup Eager ahgorit
its Scan Eager variation and the prior work Stack algorith8].[

A brute-force solution to the SLCA problem computes the LCAs
of all node combinations and then removes ancestor nodas. It
complexity isO(kd|S1]...|Sk|). Besides being inefficient the
brute-force approach islocking After it computes an LCA =

lea(vy,...,vx) for somev; € Si, ..., v € Sk, it cannot reporv
as an answer since there might be another senofdesu, . . . , ug
such thaw < lea(ui, ..., ux).

The complexity analysis given in this section is for main nogyn
cases. We will give disk access complexity in Section 4 after
discuss the implementation details of how we compress amd st
keyword lists on disk. In the sequel we chogieto be the smallest
keyword list sinceslca(S1, . . ., Sk) = slca(Si,,- .., Ss,), where
i1, .., 1% IS any permutation of, 2, ..., k, and there is a benefit
in using the smallest list aS: as we will see in the complexity
analysis of the algorithms.

3.1 Thelndexed Lookup Eager Algorithm (IL)

The Indexed Lookup Eager algorithm is based on four progerti
of SLCASs, which we explain starting from the simplest casergh
k =2 andS; is a singleton{v}.

Property (1)

slea({v}, S) =
{descendant(lca(v,Ilm(v, S)), lca(v,rm(v,S)))}

According to the above Property (1), we compute the LCAvof
and its left match irS, the LCA ofwv and its right match ir§, and
the singleton formed from the deeper node from the two LCAs is
slea({v}, S) . Property (1) is based on the following two observa-
tions. For any two nodes , v, to the right (according to preorder)
of a nodew, if pre(v) < pre(vi) < pre(vz), thenlca(v,vs) <
lca(v,v1); similarly, for any two nodes:, v to the left of a node
v, if pre(vs) < pre(vi) < pre(v), thenlca(v, v2) < lea(v, v1)>.

We generalize to arbitrarg when the first set is a singleton.
Notice the recursiveness in Property (2).

slea({v}, S2,...,Sk) =
slea(slca({v}, Sa,...,Sk-1),Sx) for k>2

1The right or left match of a node in S is itself if v € S. This
may happen when a node’s label contains multiple keywords.

2The two observations apply to inorder and postorder as well.

Property (2)

529

Next we generalize to arbitrary; .

Property (3)
slea(Sh, ..., Sk) =
remove Ancestor(U slea({v1}, S2, .., Sk))

v1E€S]

Property (3) straightforwardly leads to an algorithm to pone
slca(S1, Se, . .., Sk): firstcomputedz; } = slca({v:i}, Sa, .., Sk)
for eachw; € S1 (1 < i < n), removeAncestor({z1,...,zn})
is the answer. Each; is computed by using Properties (2) and (1).

The benefit of the above algorithm over the brute force amtroa
is that for each node in S., the algorithm does not compute
leca(x1,v2,...,v;) forallva € Sa, ..., v, € Sk, but computes a
singlelca(z1,ve, . . ., vi) Where eachy; (2 < 7 < k) is computed
by the match functionslf: andrm). The complexity of the al-
gorithm isO(|81| 3K, dlog |S;| + |S1]?) or O(|St|kdlog|S| +
|S1|%) where|S:| (|S]) is the minimum (maximum) size of key-
word lists Sy throughSj, because for each nodg in S; the algo-
rithm needs to find a left and a right match in each one of theroth
k — 1 keyword lists. Finding a match in li; costsO(d log | S;|).
Hence the total cost of match operation®igS: |d 3"F_, log |Si|).
The total cost of théca anddescendant operations i€ (|S1|kd)
and hence is dominated by the cost of the match operations. Th
|S1|? factor is attributed to the cost of removing ancestors epera
tion.

The subroutingget_slca, based on the following two lemmas,
computessica(S1, S2) efficiently by removing ancestor nodes on
the fly.

LEMMA 1. Given any two nodes, v; and a sefS, if pre(v;) <
pre(v;) andpre(slca({v:}, S)) > pre(slca({v;}, S)),
thenslca({v;}, S) < slca({vi}, S).

LEMMA 2. For any two nodess;,v; and a setS such that
pre(v;) < pre(v;) andpre(slca({vi}, S)) < pre(slca({v;}, S)),
if slca({v;}, S) is not an ancestor oflica({v; }, S), then for anyv
such thatpre(v) > pre(v;), slca({vi}, S) #£ sleca({v}, S).

ConsiderSs, S2 sorted by id, whereS; = [v1,...,v]. LetL =
[1,...,zq] Wherezy = slca({v1}, S2).....xq = slca({vq}, S2).
According to Lemma 1, ipre(z;) > pre(z;) where nodec; ap-
pears afte; in L (thatis,j >), thenz; is an ancestor node. Thus
when computing the list, we can discard the out-of-order nodes
such ase;. The resulting listZ’ is in order and contains the nodes
of slca(S1, S2). HoweverL' is not necessarily ancestor node free.

Consider any two adjacent nodesz’ in L' wherez' is after
z. If z is not an ancestor af’, thenz cannot be an ancestor of
any nodez” that is afterz’ in L’ (according to Lemma 2), which
meanst is aSLC A of S1, S»2. Lemma 1 and 2 together lead to the
subroutineget_sica that computesica(S1, S2) efficiently. Line
#5 inget_slca applies Lemma 1 to remove out-of-order nodes, and
lines #6-8 apply Lemma 2 to identify a SLCA as early as possibl
As can be seen fromjet_slca, at any time only three nodes, (v,

x) are needed in memory.

ConsiderS:=[0.0.0, 0.1.0.0.0, 0.1.1.1.0, 0.1.2.0.0, 0.2.0.0.0],
S>=[0.1.1.2.0, 0.1.2.1.0, 0.2.0.0.1, 0.3.0.0.0, 0.3.1.0.0] (the key-
word lists for “John” and “Ben” respectively). In the firsera-
tion of the loop at line #3u = 0, v = 0.0.0, z=0 (line #4). At
the end of the first iteratiom = 0 (line #8). In the second iter-
ation,» = 0.1.0.0.0, z = 0.1, w = 0.1. In the third iteration,

v = 0.1.1.1.0, x = 0.1.1, v = 0.1.1. In the fourth iteration,
v = 0.1.2.0.0, z = 0.1.2 (line #4). Notice that the condition at

line #6 is true in the fourth iteration, and (node0.1.1) is deter-
mined to be a SLCA (line #7). Them = 0.1.2 (line #8). In the
last iterationpy = 0.2.0.0.0, z = 0.2.0.0, and node).1.2 is deter-
mined to be a SLCA (line #7). Finally node2.0.0 is returned as a
SLCA (line #10). Thus the answer to “John Ben” 51.1, 0.1.2,
0.2.0.0].
subroutineget_slca(S1, S2)
1 Result ={}

2 u=0 lluw = root initially

3 foreachnode € S; {

4 z = descendant(lca(v,Im(v, S2),lca(v, rm(v, S2)))
5 if (pre(u) < pre(z))

6 if (u A z)
7

8

9

1

Result = Result U{u};
U=z

0 returnResult U {u}

We can derive an algorithm froget_slca to compute
slca(Sh, ..., Sk) efficiently:

slea(Si,...,Sk) =

get_slca(get_slca(S1,...,Sk-1),Sk) for k>2

based on the following Property (4),

sleca(S1,...,Sk) =
.,Sk_l),Sk) for k>2

An algorithm based opet_slca accesse$: andS; first, thenSs,
S4,..., Sk in order. It accesses thie keyword lists in just one
round. It is a blocking algorithm since it only processes |t
keyword list after it completely processes the fitst 1 keyword
lists and then starts to produce answers. Obviously theitigo
based on Property (3) is also a blocking algorithm.

The Indexed Lookup Eager Algorithm improves the algorithm
based omyet_slca by adding “eagerness”- it returns the first part
of the answers without having to completely go through anthef
keyword lists and it pipelines the delivery of SLCAs. Assuiinere
is a memory buffer size aP nodes. The Indexed Lookup Eager al-
gorithm first computesX, = slca(X1, S2) whereX; is the first
P nodes 0ofS;. Then it computes\s = scla(X2, Ss3) and so on,
until it computesXj, = slca(... slca(X1,S1)...Sk). All nodes

Property (4)

slea(slea(St, . -

in X, except the last node are guaranteed to be SLCAs because o

Lemma 1 and 2 and are returned. The last nod& pf(v in line
#10) is carried on to the next operation (lines #6-9) to bermeined
whether it is aSLC A or not. The above operation is repeated for
the nextP nodes ofS; until all nodes inS; have been processed.
The smallerP is, the faster the algorithm produces the first SLCA.

If P =1, again only three nodes are needed to be kept in memory

in the whole process. However, a smallemay delay the compu-
tation of all SLCAs when considering disk accesses? B |S1],
the Indexed Lookup Eager algorithm is exactly the same aalthe
gorithm based opget _slca. The complexity analysis of the Indexed
Lookup Eager algorithm is the same as that of the algorithseda
on Property (3) except that there is no operation to remozesn
tor nodes from a set. Thus the complexity of the Indexed Lpoku
Eager algorithm i€)(|S1|kdlog|S|) where|S1]| (|S]) is the mini-
mum (maximum) size of keyword listS; throughSx. Consider

atline #4-5,B=get _slca(get_slca([0.0.0,0.1.0.0.0, 0.1.1.1.0],.52)
,S3), which isB=get_slca([0.1.1],53)=[0.1.1]. Initially v = null.
Line #6-9 has no effect. As mentioned before, every nod@ ex-
cept the last one is a SLCA and returned (line #10, #11). In the
first iteration, line #11 outputs nothing amd(node0.1.1) is car-
ried to the next iteration to be determined whether it is a 8l0€
not. In the second iteration of loop at line #2, the rest naafes
S is read,B=[0.1.2.0.0, 0.2.0.0.0] (line #3). After executing line
#4 and #5,B = get_slca(get_slca([0.1.2.0.00.2.0.0.0, S2), Ss3),
which isB = get_slca([0.1.2,0.2.0.0], S3) = [0.1.2]. The con-
dition at line #8 is true, thus (node0.1.1) carried from the first
iteration is determined to be a SLCA and returned (line #%erm
v = 0.1.2 at line #10. Line #11 outputs nothing in this itera-
tion again. Since there are no more nodesSin line #13 is ex-
ecuted. Thus the Indexed Lookup Algorithm retuffid.1, 0.1.2]
for “John Ben Class”.

ALGORITHM 1 (INDEXED LOOKUPEAGERALGORITHM).
Assume we have a memory buffepf sizeP nodes
1 v=null
2 while(there are more nodes) {
Read P nodes d; into bufferB.
fori=2—>k

B = get_slca(B, S;)
if (v # null && getFirst Node(B) < v)

removeFirstNode(B)

if (v # null && v £ getFirstNode(B))

outputv
v = removeLastNode(B)
outputB; B={}

©oo~NOO UL~ W

10
11
12}
13 outputy

3.2 Scan Eager Algorithm

When the occurrences of keywords do not differ significaritly
total cost of finding matches by lookups may exceed the taist ¢
of finding matches by scanning the keyword lists. We implenaen
variant of the Indexed Lookup Eager Algorithm, named Scan Ea
ger Algorithm, to take advantage of the fact that the accetssany
keyword list are strictly in increasing order in the Indexesbkup
Eager algorithm. The Scan Eager algorithm is exactly theesasn
Fhe Indexed Lookup Eager algorithm except thatitsandrm im-
plementations scan keyword lists to find matches by maiimigin
a cursor for each keyword list. In order to find the left anchtig
match of a given node with igl in a list S;, the Scan Eager algo-
rithm advances the cursor §f until it finds the node that is closest
to p from the left or the right side. Notice that nodes from diéfer
lists may not be accessed in order, though nodes from the lsstme
are accessed in order.

The complexity of the Scan Eager algorithmOk|S1 |+
d 3" %1Si), orO(kd|S|) because there a@(3"% |S;|) Dewey num-
ber comparisong)(k|S1|) lca anddescendant operations.

3.3 The Stack Algorithm

The stack based sort-merge algorithm (DIL) in XRANK [13],
which also uses Dewey numbers, is modified to find SLCAs and
is called the Stack Algorithm here. Each stack entry has ragbai

the query “John Ben Class” applied on the data of Figure 1. The componentyid, Keywords). Assume theid components from

keyword lists for “John”, “Ben”, “Class” ar&;=[0.0.0, 0.1.0.0.0,
0.1.1.1.0,0.1.2.0.0, 0.2.0.0.0], S»=[0.1.1.2.0, 0.1.2.1.0, 0.2.0.0.1,
0.3.0.0.0, 0.3.1.0.0] and S3=[0.1.0, 0.1.1, 0.1.2, 0.1.3, 0.1.4] re-
spectively. Assumé = 3. In the first iteration of the loop at line
#2,B=[0.0.0, 0.1.0.0.0,0.1.1.1.0] (line #3). After the computation

530

the bottom entry to a stack entey: areids, ids, ..., id, respec-
tively. Then the stack entrgn denotes the node with the Dewey
numberid; .ids.idn,. Keywords is an array of lengttk of
boolean values wher&eywords[i] = T means that the subtree
rooted at the node denoted by the stack entry directly oréotly

J B C J B C L
O[T[FJ[F O[F[F]T T EE T
O[F|F|F 1[F|F|F T EE
O[F|F[F O T|[F[F e
(a) node0.0.0 (b) node0.1.0 (€) N0den.1.0.0.0

O[T[FJ[F O[F[T][F
I[F[F[T 1[F|F|F 2| F[F[F
1[T|F[T 1[F|F|T 1[T|F|T
O[T |F|T 1[T|F[T 1[F|F|F
(d) node0.1.1 OJTJF]T OfTIF]T

(e) noden.1.1.1.0 (f) node0.1.1.2.0

2[F[F][T

I|[F|[F][F

O F[F[F

(9) node0.1.2, report0.1.1 as a SLCA

Figure 3: States of stack, where J stands for “John”, B stands
for “Ben” and C stands for “Class”

contains the keywordv;. For example, the top entry of the stack
in Figure 3(b) denotes the nodel.0, and the middle entry denotes
the node0.1. The Stack algorithm merges all keyword lists and
computes the longest common prefix of the node with the sstalle
Dewey number from the input lists and the node denoted by the
top entry of the stack. Then it pops out all top entries caonngi
Dewey components that are not part of the common prefix. If a
popped entryen contains all keywords, then the node denoted by
enis a SLCA. Otherwise the information about which keywords
contains is used to update its parent entiysywords array. Also

a stack entry is created for each Dewey component of the sstall
node which is not part of the common prefix, effectively paghi
the smallest node onto the stack. The above action is rapéate
every node from the sort merged input lists.

Consider again the query “John, Ben, Class” applied on ttee da
of Figure 1. The keyword lists for “John, Ben, Class” are [0,0
0.1.0.0.0,0.1.1.1.0, 0.1.2.0.0, 0.2.0.0.0], [0.1.1.2.0.2.1.0,
0.2.0.0.1, 0.3.0.0.0, 0.3.1.0.0] and [0.1.0, 0.1.1, Q@.23., 0.1.4]
respectively. Initially, the smallest node (0.0 and Figure 3(a)
shows the initial state of the stack whel&eywords[l] = T in
the top entry denotes that the node0(0) represented by the top
entry contains the first keyword “John”. The next smallesieno
is the “Class” nod€).1.0 . Since the longest common prefix of
0.0.0 and0.1.0 is 0 (line #4), the top two entries are popped out
(line #6). 0.0.0 contains “John” and this information is passed to
the current top entry (lines #12-13). Then two new entriesnfr
the two components of node1.0 that are not among the longest
common prefix are pushed into the stack (line #16). Noticeitha
Figure 3(b)Keywords[1] = T in the bottom entry denotes that the
node0 (School) contains the keyword “John”. Each figure in Fig-
ure 3 shows the state of the stack after processing the nagensh
in the caption. For example, when the algorithm processes no
0.1.2, the initial stack is shown in Figure 3(f) and the stack after
processing.1.2 is shown in Figure 3(g). The longest common pre-
fix of 0.1.2 and the stack((1.1.2.0) is 0.1 (line #4). Thus the top
three entries are popped out (line #6). When popping outhing t
entry, the algorithm report®.1.1 as a SLCA since it&eywords
array contains all’ (line #7). Notice that thd for “Ben” from the
top entry in Figure 3(f) is used in the decision that the tleintry is
aSLCA.

The complexity of Stack i©(d Y% _, |S;]) since both the num-

ber oflca operations and the number of Dewey number compar-
isons arezfz1 |Si|- The Scan Eager algorithm has several ad-

531

vantages over the Stack algorithm. First, the Scan Eager alg
rithm starts from the smallest keyword list, does not havecan

to the end of every keyword list and may terminate much earlie
than the Stack algorithm as we will see in an example soon: Sec
ond, the number ofca operations of the Scan Eager algorithm
(O(K|S1])) is usually much less than that of the Stack algorithm
(O(Zf=1 |S:])). Third, the Stack algorithm operates on a stack
whose depth is bounded by the depth of the input tree while the
Scan Eager algorithm witl? = 1 only needs to keep three nodes
in the whole process and no push/pop operations are involved

ALGORITHM 2 (STACK ALGORITHM). {

1 stack=empty
2 while (has not reached the end of all keyword ligts)

3 v = getSmallestNode()

/ffind the largest p such thatack[i] = v[i],1 <i<p
4 p=lca(stack,v)
5 while (stack.size > p) {
6 stackEntry=stack.pop()
7 if (isSLCA(stackEntry)})

//Any other stack entry cannot represent a SLCA
8 output stackEntry as a SLCA
9 set all entries of the Keywords array of
any stack entry all falses
10
11 else{ //pass keyword witness information to the top enfry
12 for(j=1—k)
13 if (stackEntry.Keywords[j]=true)
stack.top.Keywords[j]=true

14 }
15

/ladd non-matching componentswofo stack
16 for (p < j < w.length) stack.push(V[j],[)

stack.top.Keywords][i]=true 17
18}

19 check entries of the stack and return any SLCA if exists

}

iSSLCA(stackEntryj
if (stackEntry.Keywords[i]=true
return true
else return falsg

fol <i<k)

getSmallestNodé
[* returns the nodey with the smallest Dewey number from
all keyword lists and advances the cursor of the list where
is from. Assumev is an array consisting of its Dewey num
ber components. For exampieis| 0 [1 | 3 |if its Dewey
number is 0.1.3 *}

We consider again the query “John, Ben, Class” applied on the
data of Figure 1 and assume the tree does not have the “Ber” nod
with id 0.2.0.0.1 to show the first advantage of the Scan Eager
algorithm over the Stack algorithm. Hen&g=[0.0.0,0.1.0.0.0,
0.1.1.1.0,0.1.2.0.0, 0.2.0.0.0], S»=[0.1.1.2.0, 0.1.2.1.0, 0.3.0.0.0,
0.3.1.0.0]3 ,andSs;=[0.1.0, 0.1.1, 0.1.2, 0.1.3, 0.1.4].

Fornode).1.2.0.0 in S; the Scan Eager algorithm finds its match
0.1.2.1.0 in S2, and computes their LCA.1.2; then it finds the
match0.1.2.1.0 for 0.2.0.0.0 in S, and computes their LCA.
Since nodd is an ancestor of node1.2, node0 is discarded and
no further access t83 is needed. The last node 3 accessed by
the Scan Eager algorithm is nofle.2. The Stack algorithm has
to visit all Ss nodes because it cannot tell whether the last node

3For the sake of this example, we neglect tifa{ < |S1|.

| CS2A | Dean | Participants | SportsClub |
|

VI\

—
Tnstruc Partici pop Proje | Scho Sports | Stud | T Title

[Autonet [Ben [Class | Classes | [cs2A | csa | csan | cssA | Dean | | John | ospP pants cts ol Club |ents [A

I I 7T | I‘ L T =, 1 L T T — 171 I l I

‘-0.2.0 / ‘Z o 1.1.0.0 0.0.0

~ 01300 [0.1.4.00 | 01000 |[031 - 0.1.1.0
0112001210 |[010 011 | o LIEELE 01110 — : 0.1.2.2
0.2.0.0.1 0.3.0.0.0 0.1.2 0.13 0.1.0.0 0.1.1.1 0.1.2.0.0 0.2.0.0 0.3.0.0 11 0.1.3.0
0.3.1.0.0 0.1.4 0.1.2.0 02000 0310 1.2 0.1.4.0

Figure 4: B+ tree from the data of Figure 1 for Scan Eager and Sack algorithms

0.2.0.0.0 may lead to a SLCA or not until it comes to process node each block can store up to four entries). No data values a® as

0.2.0.0.0 and it has to repeatedly compute the longest common an- ciated with keys since the keys contain both keywords anddyew

cestor of eactfs node with the node represented by the top entry numbers. Given a keyword and a Dewey numbey, it takes a

of the stack. Notice that the “Class” list may have arbityamany single range scan operation [11] to find the right and leftaimaif

nodes after node.1.2 and before nod8.2.0.0.0* that Stack hasto p in the keyword list ofw. Since B+ tree implementations usually

access but Scan Eager does not need to. buffer top level nodes of the B+ tree in memory, we assume the
number of disk accesses for finding a match in a keyword lissdo

4. XKSEARCHSYSTEM IMPLEMENTATION not include the accesses to the non-leaf nodes in the B+ ik a

0(1).
In this section we present the architecture of the XKSearch i)

: - X The number of disk accesses of the Indexed Lookup Eager is
plementation, then discuss how the keyword lists are cosspae O(k|S1]) because for each node in S; the IL algorithm needs to
and stored on disk-based B tree index structures, and fipedly

X . : ;) k find a left and a right match in each one of the other 1 keyword
vide disk access complexity analysis summarized in Tabte the

; X ; ; lists. Notice that the number of disk accesses of IL cannohbee
three algorithms discussed in Section 3 - Indexed LookupeEag than Zle B; whereB; is the number of blocks of the keyword
Scan Eager and Stack.

- list S;. This is because the IL algorithm accesses all keyword lists
We implemented the Indexed Lookup Eager, Scan Eager and

. ;) strictly in order.
Stack algorithms in Java using the Apache Xerces XML pansér a In the implementation of the Scan Eager algorithm ancte:k
Berkeley DB [4]. The architecture of the implementation (XK

. o) ' algorithm, the keys in the B+ tree are simply keywords. Theada
Search) is shown in Figure 6. The LevelTableBuilder readman

X associated with each kay is the list of Dewey numbers of the
put XML documentT’ and outputs a level tableT'. The inverted qeg directly containing the keyword (See Figure 4). All key-
index builder reads in the level tablél” and outputs a keyword list

- - ' word lists are clustered. The number of disk accesses of Sager
kl for each keywordw in T'. Those keyword lists are stored in a

— IS | -
B-tree structure that allows efficient implementation of thatch or Stack 'SO(Z 1 Bi) whereB; = - Vi Is the average num
operations. ber of nodes in a dISk block d&; and|S | is the number of nodes

The index builder also generates a frequency table, whizdrds in the keyword listS;. N; depends on the page sii€, the depth

the frequencies of keywords i, is read into memory by the ini- of the XML treed, and the maximum out-degrees of nodes at each

w
tializer, and is stored as a hash table. The query engingtcae level. N; is at leaStr(z;a Tlogo 0:1)/8] whereo; is the maximum

keyword search, uses the frequency hash table to locateril s out-degree of nodes at levielln our experiments, using the DBLP

est keyword list, executes the Indexed Lookup Eager, ScagerEa dataset)V; on average is arour0.

and the Stack algorithms and returns all SLCAs. The full size keyword lists are not needed to compute SLCAs
For performance reasons, Dewey numbers are compressed. Weccording to the following property

introduce devel table LT with d entries wherel is the depth of slca(Sh, ..., Sk) = slca(core(St), ..., core(Sk))

the input tree. The entrfT'(i) denotes the maximum number of ~wherecore(S) = removeAncestor(S). core(S;) is called the

bits needed to store theth component in a Dewey number, i.e., core-keyword list of the keyword;. To turn a keyword listS' into

LT (i) = [log(c)], wherec is the number of children of the node & core-keyword list, the brute-force algorithm compareshewde

atthe level of—1 that has the maximum number of children among to every other node.

all nodes at the same level. The root is at leveL.T(1) = 1°. In Given any two nodes:, v2 such thatpre(vi) < pre(vs), if

s not an ancestor of,, then for anyv such thatpre(v) >

e(v2), v1 cannot be an ancestor of IndexBuilder (Figure 6)

uses an algorithm that produces all core-keyword lists i pass

of parsing an input XML document based on the above fact. The

description of the algorithm is omitted to save space.

general[21];T(”1 bytes are needed to store the Dewey number of '
a node at level. The level tablel. T for Figure 1 is pre
i 112(3|4]|5
LT [1]2]3|2]1
There are two types of B tree structures implemented in XK-
Search; the first is for the Indexed Lookup Eager algorithme, t
second is for the Scan Eager and the Stack algorithms. Imthe i 5. THE ALL LOWEST COMMON ANCES-
plementation of the Indexed Lookup Eager algorithm, we fiut a TOR PROBLEM (ALCA)
keyword lists in a single B+ tree where keywords are _the pryma We can use the Indexed Lookup Eager algorithm to derive an
key and Dewey numbers are the secondary key (See Figure BWher gejen algorithm to find all LCAs, that is, LCAs for each com

*0Of course the Dewey number of the no@e.0.0.0 would be bination of nodes irf; throughSy. Because an LCA is either an
changed accordingly. ancestor of a SLCA or is a SLCA itself, we can find all LCAs by
SWe could haveLT'(1) = 0. However, the root is conveniently ~ walking up in the tree beginning from SLCAs. We solve the ALCA
represented bg. problem by first finding the list. of all SLCAs and then for each

532

o, Particip

0.2.0.0.0

Title,

Sports
Club, 0.1.2.2

ants
0310 |03

Ben, Ben
011 0.2.0.
2.0

Ben Ben,
0.1.2, 0.3.0
10 Jo1 0.0

n, | or, tor,

CS2A, [CS3A, [CS4A, [CS5A,
. | [0.110|01.22.|01.30] 0.1.40
0 0 0

Autonet|
0.2.0

Clasq Class
Ben,
0.3.1.0.
T

0.1.0[0.1.1

00 |0.1.00|0.1.1.1] 0.1.2.0

ET T
— X%
Particip| P2P, [Sch

pants, | | ans, |03
0300|]0310[0

Stude]
nts,

Spor
1sCl

John, | John, | John, TA,
0.1.0.| 0.1.1.| 0.1.2.

00 |10 |00

il
Partici e,

Particip

ants,

0.2.00
i

Proje

ais,

02
T

John,

Title,
0.0.0 o

Title, | Title,
lool, 9 12f 0%

o 0|0.140

02004 0.3.1

John, 4 osP,

0
T —pC 1 I T T =p T T T

1T I S s B I e — = T T T T-=pC T T T T

[I I T T —PT

Figure 5: B+ tree from the data of Figure 1 for Indexed Lookup Eager Algorithm

Keyword Search| Answer &

Input XML
document T

LevelTableBuilder
level table LT

IndexBuilder

Frequency

hash table Y
N =
Query Engine

Frequency table
[

4>8

Biree
(Keyword lists stored in Btree)

Figure 6: XKSearch Architecture

Figure 7: Finding all LCAs

ancestorv of each noden in L check whethew is an LCA, as
explained next.

Letwv; be a SLCA. Consider any nodethat is an ancestor af;
(See Figure 7). If the subtree rootedvatontains a node’ with a
keyword, sayw;, that is not under node, and is not an ancestor of
v1, thenv is an LCA. To determine whethercontains such a node
v’ we use at most two lookups. The nodes unddut not under
v1 are divided into two parts by the pathfrom v to v1. Let node
¢ be the right match node af in S; (the keyword list ofw,). If
nodec is not undew; andv; is not undek, thenc is in the left part
of P (otherwisec would be undewp; because; is a SLCA) which
meansv is an LCA. Next, leta be the child ofv on the path from
v to 1. If the Dewey id ofv is ¢q then the Dewey id ok is q.t,
wheret is the ordinal number of among its siblings. The node
b, which is the immediate right sibling af, has Dewey number
q-(t + 1) and is called the uncle node of underv. Letd be the
right match node 0 in S;. If v < d, thend is in the right side of
P, which makes an LCA. The existence of any node containing a
keyword fromws, . . . , wx underv but not undew; can be checked
similarly. The subroutineheckLC A in Algorithm 3 is based on
the above observations.

Since a node might be an ancestor node of multiple SLCAs,
we want to avoid repeatedly checking whethés an LCA. Instead
of maintaining some data structures to record whether a hade

we check each node in the path framto s = lca(v2,v3) 6 and

so on. Algorithm 3 is based on this approach and guarantegs th
each of the ancestor nodes of all SLCAs is checked exactlg.onc
Notice that in Algorithm 3 we do not need to produce all SLCAs
first. Algorithm 3 pipelines the delivery of LCAs since Algihm

IL pipelines the delivery of SLCAs.

The number of disk accesses of Algorithm 3J¢kd|S:1]). The
main memory complexity of Algorithm 3 i©(|S1|kd? log |S|).
Finding all SLCAs cost®(|S1|kd log |S|). Checking whether the
ancestors of th§ LC As are LCAs or not cost®(|S1 |kd” log | S])
since we need to cheak(]S:|d) nodes and checking each node
costsO(dklog |S]).

ALGORITHM 3 (COMPUTING ALL LCAS).
findLCA(List L){ /IL is the list of SLCAs
vy = v1 = removeHead(L);
while L has more node§
V1 = V2,
v = removeHeadl);
current-lca=lca: ,v2);
for each ancestor node of v, until current-Ica
/Inot including current-lca
if (checkLCA¢,v1)==true) outputv.

boolean checkLCAf, v1) {
fori =1tok {
z=rm(v, S;)
if (z A v1 && v1 £ z) return true; }
fori =1t0k{
u=the uncle node of; underw;
y =rm(u, Si);
if (v < y) return true; }
return false;

}

6. EXPERIMENTS

We have run XKSearch on the DBLP dat&Ve filter out citation
and other information only related to the DBLP website araligr
first by journal/conference names, then by years. The axjeets
have been done on a 1.2GHz laptop with 512MB of RAM. An
online demo, which enables keyword search in the same gdoupe
83MB DBLP data used in the experiments is provided at
http://ww. db. ucsd. edu/ proj ect s/ xksear ch.

The demo runs as a Java Servlet using Apache Jakarta Tom-
cat server. The Xalan engine is used to translate XML resalts
HTML.

We evaluate the Scan Eager, Indexed Lookup Eager and Stack al
gorithms discussed in Section 4 for the SLCA semantics byingr
the number and frequencies of keywords both on hot cache (Fig
ures 8, 9 and 10) and on cold cache (Figures 11, 12 and 13).

been identified as an LCA or not, we use an approach that only A program randomly chose forty queries for each experiment.

needs to keep three nodes in memory. bLgtvs, v3 be the first
three nodes (see Figure 7) in the Ilsbf SLCAs produced by the
Eager algorithm, and let = Ilca(v1, v2). For each node in the

path fromwv; to r, we check whethep is an LCA or not. Then

533

The response time of each experiment on hot cache in Figuges 8

55 could be a descendent of
"http://ww. informatik.uni-trier.de/~ley/db

of disk main memory operations main memory
accesses| #lca operations| #descendant # Dewey number compair complexity
operations isons
IL O(k|S1]) | O(k|S1]) O(k|S1]) O(k|S1]log|S]) O(kd|S1|log|S])
Scan | O(T) O(k|S1]) O(k|S:1]) O(k|S]) O(kd|S])
Stack| O(T) O(k|S|) - O(k|S)) O(kd|S])

Table 1: Complexity Analysis for Indexed Lookup Eager, ScarEager and Stack where|S1| (|S]) is the minimum (maximum) size of
keyword lists S; through Sy, T is the total number of blocks of all keyword lists on disk andd is the maximum depth of the tree.

and 10 is the average of the corresponding forty queries fafte LCA computation and proximity search are the two areas most
executions. The response time of each experiment on coltecac related to this work. Computing the LCA of two nodes has been e
in Figures 11, 12 and 13 is the average of the corresponditg fo tensively studied and constant time algorithms are knowmfain
queries each of which was run just once after a machine reboot memory data structures [20, 26]. These algorithms wereydesi

In Figure 8 each querycontains two keywords. The smaller fre- without the concern of minimizing disk accesses. For exantpl
guency is shown in the caption while the bigger frequencyaisv compute the LCA of two nodes in [20], two lookups may be needed
able. For example, each query of Figure 8(c) in the “Frequehc even after we adapt data structures for disk access mirtimiza
the large list=1000" category contains two keywords where of Computing the LCA of nodes using the Dewey numbers does not
them has frequency df00 while the other keyword has frequency need any disk access, which is the reason we use Dewey numbers
of 1000. As can be seen from Figure 8, the performance of the Scan Works on integrating keyword search into XML query langusage
Eager and Stack algorithms degrades linearly when the $itheo [9, 10, 21, 24, 25] augment a structured query language veigh k

large keyword list increases, while the run time for IL aigfan word search primitive operators. [21] proposemeetoperator,
is essentially constant and its performance is often skeedars which operates on multiple sets where all nodes in the sategee
of magnitude better than Scan Eager and Stack. In all expatén required to have the same schema, which is a special case of th
Scan Eager performs a little better than Stack for the resasgn all LCAs problem. The meet operator of two nodgsandwvs is
plained in Section 3.3. implemented efficiently using joins on relations, where tien-

In Figure 9, each query contains a keyword of “small” fre- ber of joins is the number of edges on the path fremo their

quency {0 in Figure 9(a),100 in Figure 9(b),1000 in Figure 9(c), LCA. This technique is good for relational database impletae
10000 in Figure 9(d)) and all other keywords gfhave frequency tions. The XXL search engine [25] extends an SQL-like syntax
of 100000. For example, each query of Figure 9(b) in the with ranking and ontological knowledge for similarity miesg.
#Keywords = 5 category contains five keywords where one of In BANKS [5] and Proximity Search [12], a database is viewed
them has frequency df00 and the other four have frequency of as a graph of objects with edges representing relationbkippgeen
100000. The performance of the Scan Eager and the Stack algo- the objects. Proximity Search [12] enables proximity seascby
rithms is essentially independent |¢f; |. a pair of queries. One example i§'{nd Movie Near Travolta
Keywords in Figure 10 have the frequencies shown in the cap- Cage”. BANKS uses heuristics to approximate the Steiner tre
tion. The Scan Eager and the Stack algorithms perform a bt- problem. Discover [15], DBXplorer [1] and XKeyword [16] per
ter than the Indexed Lookup Eager algorithm in most expertme form keyword search on relational databases, modeled atgra
since the Indexed Lookup Eager performs best when the freque XKSearch delivers much higher efficiency than the aboveesyst

cies of keyword lists vary greatly, while all keyword lists Fig- which perform keyword search on arbitrary graphs, by beimgd
ure 10 have the same size and the cost of index lookups is morefor SLCA keyword search on trees.
likely greater than the cost of a single scan. XRANK]13] extends Web-like keyword search to XML. Results

We repeated the experiments in Figures 8, 9 and 10 with cold are ranked by a Page-Rank [6] hyperlink metric extended td&.XM
cache and the results are reported in Figures 11, 12 andd&cres The ranking techniques are orthogonal to the retrieval @t

tively. We see similar relationships among the Scan Eagdexed can easily be incorporated in our work. The keyword seareh al
Lookup Eager and Stack algorithms. However the differehees gorithm in XRANK that is relevant to our problem is adapted as
tween the performance of algorithms is not as significanhase the Stack algorithm in the paper, which we have described and
in the hot cache experiments. The reason is that most keyvstsd compared with the Indexed Lookup Eager and Scan Eager algo-
do not take many pages. Hence making a random access ortthe lisrithms. Notice that XRANK’s query resultrank(Si, ..., Sk)

is effectively equivalent to fetching the complete list. tide that has the following relationship to the semantics used in tygep

disk access time dominates any main memory cost as can be seeslca(Sh,...,Sx) C zrank(Si,...,Sk) C lca(S1,...,Sk). A

from the significant response time increases from the hdtecaxz- recent work XSEarch [8] supports extended keyword seargivin
periments to the cold cache experiments. documents and focuses on the semantics and the ranking @&-the

We implemented XKSearchB that stores Dewey numbers with- sults. It extends information-retrieval technique$ i(df) to rank
out using a level table as discussed in Section 4. Expersnent the results.
show that the size of the keyword lists and the time to constru [14] provides an optimized version of the LCA-finding statk a

them are proportional to the size of the input XML documefis. gorithm. Most important, the algorithm of [14] returns thet sf

average, the size of indexes constructed by XKSear@% of LCAs along with efficiently (for performance and presemmatpur-

XKSearchB; the construction time of XKSearchis% of XK- poses) summarized explanations on why each node is an LCA.

SearchB; the query response time of XKSearch for hot cache is [18] proposes a simple, novel search technique called Sezhem

70% of XKSearchB for the queries in Figures 8, 9 and 10. Free XQuery to enable users to query an XML document using
XQuery without requiring full knowledge of the document enta.

7. RELATED WORK In particular, [18] introduces a function namedcasto XQuery

534

1000

100

ms

10

Ri7=ll

Scan 10 100 1000 10000
BIL Frequency
m Stack
(a) Legend (b) small frequency=10
10000 10000
1000 1000 A %
g 100 2 100 +] / %E
0] /iw % i %;
LAl | | 174l =
100 1000 10000 100000 1000 10000 100000
Frequency Frequency
(c) small frequency=100 (d) small frequency=1000

Figure 8: #Keywords=2, keeping the small frequency constdnvarying the frequency of the large keyword list (hot cachg

100000 100000
10000 10000
,, oo Z 1000 Z é
e 7 | 2 7
100 % 100 / /=
0] g g; -
. | 8% . | Al 2=
2 3 4 5 2 3 4 5
#Keywords #Keywords
(a) frequency(10,100000) (b) frequency(100,100000)
100000 100000
10000 / 10000 7
. 1000 é% 1000 é%
100 - %g 100 A %g
0] = =
= /E
. | V= , | =
2 3 4 5 2 3 4
#Keywords #Keywords
(c) frequency(1000,100000) (d) frequency(10000,100000)

Figure 9: Varying the number of keywords, keeping frequences constant (hot cache)

535

e L2 g all 7|
W24l Al Vel 7= A A A -

(a) small frequency(10) (b) medium frequency(100)
= % = 1000 { 7 = 7%
= =l = 2 = =
g Z% % Z% 2 100 Z Z% é%
o - T
Al ZEll e Ry Al Y=

(c) high frequency(1000) (d) large frequency(10000)

Figure 10: Varying the number of keywords, all keyword lists having the same size (hot cache)
1000 - 1000 | = /é E
= Z= = /é =
2 100 e 7; —%E 2 100 = 7¢§ B
1l - = =l Al =
o=l 2l E 10 =l = B
1//5 ‘ég ‘%E 1 NZ= ‘éé 7=
(a) small frequency=10 (b) small frequency=100
Freauibsto
1000 ?E /Z %g L
nm m i
Frequency

(c) small frequency=1000

Figure 11: #Keywords=2, keeping the small frequency constd, varying the frequency of the large keyword list (cold cate)

536

100000

10000

100000

10000

z -l =
g 1000 A é é’ 1000 + Z% é;
100 - —%é 100 - —%g —%E
10 A /g 10 A / — %g
) | D=) | O =
(a) frequency(10,100000) (b) frequency(100,100000)
10000 | 10000] V
1000 /% 1000 7 % /E %
: 100 éé — £ 100 Z; Z; é
= N - =
1 | = = el 7
(c) frequency(1000,100000) (d) frequency(10000,100000)
Figure 12: Varying the number of keywords, keeping frequenées constant (cold cache)
: A A
SO Al 7All 78 WA VAl 7All 7
(a) small frequency(10) (b) medium frequency(100)
10000 10000 = — 7
1000 { = — 1000 | = G= %E %
2 100 %; % % g 100 Zé Zé %; Z
o = s =
= Al D= ML 7ZEllNZ= | MZE11

(c) high frequency(1000)

(d) large frequency(10000)

Figure 13: Varying the number of keywords, all keyword listshaving the same size (cold cache)

537

based on the concept BLCA (Meaningful Lowest Common An- [3] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern

cestor) where the set of MLCAs &fsetsSi, ..., Sk is the same as relaxation. INEDBT, 2002.
slca(S1,...,Sk). The complexity of the stack based algorithm [4] BerkeleyDB. http://www.sleepycat.com/.
proposed in [18] to compute the set of MLCAs §f, ..., Sx, [5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
which is similar to the sort merge stack algorithm in XRANK, i S. Sudarshan. Keyword searching and browsing in databases
O(kd|S|), the same as that of the Scan and Stack algorithms. Sim- using BANKS. InICDE, 2002.
ilar to [14], [18] returns the set of MLCAs with explanationgs [6] S.Brinand L. Page. The anatomy of a large-scale
why each node is an MLCA. . . hypertextual Web search engir@omputer Networks and
A popular numbering scheme is to use a pair of numbers censist ISDN Systems0(1-7):107—117, 1998.
ing of preorder and postorder numbers [2, 17]. Given two sode [7] Z. Chen, H. Jagadish, F. Korn, and N. Koudas. Counting twi
and their pairs of numbers, it can be determined whether éne o matches in a tree. IKCDE. 2001.

them is an ancestor of the other in constant time. Howeves, th

type of scheme is inefficient in finding the LCA of two nodes.
Tree query patterns for querying XML trees have receivedtgre [9]

attention and efficient approaches are known [3, 7, 22]. &lags . -

proaches are not applicable for the keyword searching enolble- keyword search into XML query processing.WiWw9

cause given a list of keywords, the number of tree patterms fr 2000.)

the keywords is exponential in the size of the schema of thetin ~ [10] N- Fuhrand K. Grojohann. XIRQL: A Query Language for

[8] S. Cohen, J. Namou, Y. Kanza, and Y. Sagiv. XSEarch: A
semantic search engine for XML. WiLDB, 2003.
D. Florescu, D. Kossmann, and I. Manolescu. Integrating

document and the number of keywords. Information Retrieval in XML documents. I8IGIR 2001.
Finally there are research prototypes and commercial ptedu [11] H. Garcia-Molina, J. Ullman, and J. Widom. Database
that allow keyword searches on a collection of XML documents System Implementation. Prentice-Hall, 2000. _
and return a list of (ranked) XML documents that contain teg-k [12] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
words [19, 27]. H. Garcia-Molina. Proximity Search in DatabasesVIrDB,
1998.
8 CONCLUSIONS [13] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.

) . XRANK: Ranked keyword search over XML documents. In
The XKSearch system inputs a list of keywords and returns the SIGMOD, 2003.

set of Smallest Lowest Common Ancestor nodes, i.e., theofist [14] V. Hristidis, N. Koudas, Y. Papakonstantinou, and
nodes that are roots of trees that contain the keywords amtdioo D. Srivastalva. Keyworél Proximity Search in S(ML Trees.
no node that is also the root of a tree that contains the kejsvor Available at

For each keyword the system maintains a list of nodes that con http://www.db.ucsd.edu/publications/treeproximitif.p
tain the keyword, in the form of a tree sorted by the id’s of the [15] V. Hristidis and Y. Papakonstantinou. Discover: Keydio
nodes. The key property of SLCA search is that, given two key- séarch in relation.al databases\/IbDB. 2002)
wordsk; andk» and a node that contains keyword, one need o o ! A
not inspect the whole node list of keywok in order to discover ~ |16] V. Hristidis, Y. Papakonstantinou, and A. Baimin. Keyu
potential solutions. Instead, one only needs to find theaatft proximity search on XML graphs. ICDE, 2003.
right match ofw in the list of k2, where the left (right) match is ~ [17] Q- Liand B. Moon. Indexing and Querying XML data for

the node with the greatest (least) id that is smaller (grestan regular path expressions. ¥LDB, 2001.

or equal to the id ob. The property generalizes to more than two [18] Y. Li, C. Yu, and H. V. Jagadish. Schema-free xquery. In

keywords and leads to the Indexed Lookup Eager algorithroseh VLDB, 2004.

main memory complexity i€)(|S1|kd log |S|) whered is the max- [19] J. Naughton et al. The Niagara Internet Query Syst&iRE

imum depth of the trees is the number of keywords in the query, Data Engineering Bulletin24(2):27-33, 2001.

and|S1| (|S]) is the minimum (maximum) size of keyword lists [20] B. Schieber and U. Vishkin. On finding lowest common

S1 throughSj. Assuming a B-tree disk-based structure, where the ancestors: Simplification and parallelizati®AM J.

non-leaf nodes of the B-tree are cached in main memory the num Computing 17(6):1253-1262, 1988.

ber of disk accesses neededigk|S:|). [21] A. Schmidt, M. L. Kersten, and M. Windhouwer. Querying
The analytical results, as well as the experimental evialnat XML documents made easy: Nearest concept queries. In

show that the Indexed Lookup Eager algorithm outperforrftsno ICDE, 2001.

by orders of magnitude, other algorithms when the keywoed®h [22] D. Srivastava et al. Structural joins: A primitive fdifieient

different frequencies. We provide the Scan Eager algorikrthe XML query pattern matching. IfCDE, 2002.

best variant for the case where the keywords have similguée- [23] 1. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram

cies. The experimental evaluation compares the Indexedumo E. Shekita, and C. Zhang. Storing and querying ordered

Eager, Scan Eager and Stack (described in [13]) algorithms. XML using a relational database systemSIGMOD, 2002.
The XKSearch system is implemented, using the BerkeleyDB 541 A Theobald and G. Weikum. Adding relevance to XML. In

[4] B-tree indices and a demo of it on DBLP data is available at WebDB 2000.

http://wm db. ucsd. edu/ proj ect s/ xksear ch. [25] A. Theobald and G. Weikum. The index-based XXL search

engine for querying XML data with relevance ranking. In

9. REFERENCES EDBT, 2002.
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system [26] Z. Wen. New algorithms for the LCA problem and the binary
for keyword-based search over relational database&.DiE, tree reconstruction problerimformation Processing.
2002. Lett,51(1): 11-161994.

[2] V. Agu”era et al. Querying XML documents in XYleme. In [27] XYZFind. http://WWW.Searchtools.Com/toolslxyzflmﬂinl.
SIGIR Workshop on XML and Information Retriex2000.

538

