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ABSTRACT
Keyword search is a proven, user-friendly way to query HTML
documents in the World Wide Web. We propose keyword search
in XML documents, modeled as labeled trees, and describe corre-
sponding efficient algorithms. The proposed keyword searchre-
turns the set of smallest trees containing all keywords, where a tree
is designated as “smallest” if it contains no tree that also contains
all keywords. Our core contribution, the Indexed Lookup Eager al-
gorithm, exploits key properties of smallest trees in orderto outper-
form prior algorithms by orders of magnitude when the query con-
tains keywords with significantly different frequencies. The Scan
Eager variant is tuned for the case where the keywords have similar
frequencies. We analytically and experimentally evaluatetwo vari-
ants of the Eager algorithm, along with the Stack algorithm [13].
We also present the XKSearch system, which utilizes the Indexed
Lookup Eager, Scan Eager and Stack algorithms and a demo of
which on DBLP data is available at
http://www.db.ucsd.edu/projects/xksearch. Finally,
we extend the Indexed Lookup Eager algorithm to answer Lowest
Common Ancestor (LCA) queries.

1. INTRODUCTION
Keyword search is a proven user-friendly way of querying HTML

documents in the World Wide Web. Keyword search is well-suited
to XML trees as well. It allows users to find the information they
are interested in without having to learn a complex query language
or needing prior knowledge of the structure of the underlying data
[1, 5, 12, 15, 16, 18]. For example, assume an XML document
named “School.xml”, modeled using the conventional labeled tree
model in Figure 1, that contains information including classes, projects,
etc. A user interested in finding the relationships between “John”
and “Ben” issues a keyword search “John, Ben” and the search sys-
tem returns the most specific relevant answers - the subtreesrooted
at nodes

� ����
,
� ����

and
� �� �� ��

. The meaning of the answers is
obvious to the user: “Ben” is a TA for “John” for the CS2A class,
“Ben” is a student in the CS3A class taught by “John”, both “John”
�
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and “Ben” are participants in a project.
According to theSmallest Lowest Common Ancestor (SLCA)se-

mantics, the result of a keyword query is the set of nodes that(i)
contain the keywords either in their labels or in the labels of their
descendant nodes and (ii) they have no descendant node that also
contains all keywords. The answer to the keyword search “John,
Ben” is the node list [

� ����
,
� ����

,
� �� �� ��

]. The subtree rooted at
the Class node with id

� ����
is a better answer than the subtrees

rooted at “Classes” or “School” because it connects “John” and
“Ben” more closely than the “Classes” or “School” elements.

We can use an XML query language such as XQuery to search on
“John, Ben” to find the most specific elements. One possible query
is shown in Figure 2. It is complex and difficult to be executed
efficiently. We could write a query that is schema specific andmore
efficient. However it would require existence and knowledgeof the
schema of School.xml, knowledge of the “roles” John and Ben may
play in the document and knowledge of the relationships theymay
have.

We make the following technical contributions in the paper:
� We propose two efficient algorithms, Indexed Lookup Eager

and Scan Eager, for keyword search in XML documents ac-
cording to the SLCA semantics. Both algorithms produce
part of the answers quickly so that users do not have to wait
long to see the first few answers.

� The Indexed Lookup Eager algorithm outperforms known al-
gorithms and Scan Eager by orders of magnitude when the
keyword search includes at least one low frequency keyword
along with high frequency keywords. In particular, the per-
formance of the algorithm primarily depends on the number
of occurrences of the least frequent keyword and the number
of keywords in the query; it does not depend significantly on
the frequencies of the more frequent keywords of the query
(the precise worst-case complexity for a main memory ver-
sion and a disk-based version is provided). The Indexed
Lookup Eager algorithm is important in practice since the
frequencies of keywords typically vary significantly. In con-
trast Scan Eager is tuned for the case where the occurrences
of the query’s keywords do not vary significantly.

� We experimentally evaluate the Indexed Lookup Eager al-
gorithm, the Scan Eager algorithm and the prior work Stack
algorithm [13]. The algorithms are incorporated into the XK-
Search system (XML Keyword Search), which utilizes B-
tree indices provided by BerkeleyDB [4]. A demo of the
XKSearch system, running on DBLP data, is available at
http://www.db.ucsd.edu/projects/xksearch.
The experiments show that the Indexed Lookup Eager algo-
rithm outperforms the Scan Eager and the Stack algorithms
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Figure 1: School.xml (each node is associated with its Deweynumber)

�
answer� �
for $a in document(‘‘School.xml’’)//*
where empty(for $b in $a/*

where some $c in $b//*
satisfies $c=‘‘John’’

and some $c in $b//*
satisfies $c=‘‘Ben’’

return $b)
and some $d in $a//* satisfies $d=‘‘John’’
and some $d in $a//* satisfies $d=‘‘Ben’’
return $a ��
/answer�

Figure 2: XQuery: find answers for “John, Ben”

often by orders of magnitude when the keywords in the query
have different frequencies, and loses only by a small margin
when the keywords have similar frequencies. Indeed in the
DBLP demo, only the Indexed Lookup Eager algorithm is
used.

In Section 2 we introduce the notation and definitions used inthe
paper. Section 3 presents the SLCA problem and its solutions. We
discuss the Indexed Lookup Eager and the Scan Eager algorithms,
and the sort-merge based Stack algorithm [13]. Section 3 also pro-
vides the complexity of the main memory implementations of the
algorithms. In Section 4, we discuss the XKSearch implementation
of the Indexed Lookup Eager, Scan Eager and Stack algorithms
and provide their complexity in terms of number of disk accesses.
In Section 5, we discuss theAll Lowest Common Ancestor (LCA)
problemand extend the SLCA’s Indexed Lookup algorithm to effi-
ciently find LCAs in “shallow” trees. Our experimental results are
discussed in Section 6. We discuss related work in Section 7 and
conclude in Section 8.

2. NOTATION
We use the conventional labeled ordered tree model to repre-

sent XML trees. Each node� of the tree corresponds to an XML
element and is labeled with a tag� �� �. We assign to each node a
numerical id� 	 
 �� � that is compatible with preorder numbering, in

the sense that if a node� � precedes a node�� in the preorder left-
to-right depth-first traversal of the tree then� 	
 �� �� 
 � 	
 ��� �.
The XKSearch implementation uses Dewey numbers as the id’s.
Prior work has shown that Dewey numbers are a good id choice
[23]. In addition, Dewey numbers provide a straightforwardso-
lution to locating the LCA of two nodes. The usual
 relation-
ship is assumed between any two Dewey numbers. For example,� ���� �� �� 
 � ������

. Obviously the
 relationship on Dewey num-
bers is compatible with the requirement for preorder numbering.

Given a list of� keywords� � � � � � � � � and an input XML tree� ,
ananswer subtreeof keywords� � � � � � � � � is a subtree of� such
that it contains at least one instance of each keyword� � � � � � � � � .
A smallest answer subtreeof keywords� � � � � � � � � is an answer
subtree (of keywords� � � � � � � � � ) such that none of its subtrees is
an answer subtree (of keywords� � � � � � � � � ). The result���� �� � � � � � � � � � � � of a keyword search� � � � � � � � � on an input
XML tree � , is the set of the roots of all smallest answer subtrees
of � � � � � � � � � . For presentation brevity, we do not explicitly refer
to the input XML tree� and simply write���� �� � � � � � � � � � when
� is obvious.

Given a list of� keywords� � � � � � � � � and an input XML tree� ,
we assume�� denotes the keyword list of� �, i.e., the list of nodes
whose label directly contains� � sorted by id.� � � � denotes that
node� is an ancestor of node� �; � � � � denotes that� � � � or
� � � � . Given a node� � � , � is called an ancestor node in�
if there exists a node� � in � such that� � � � . When the set� is
implied by the context, we simply say� is an ancestor node. Notice
that if � � � � then� 	
 �� � 
 � 	
 �� � �, and the other direction is not
always true.

The function��� �� � � � � � � �� � computes thelowest common an-
cestoror LCA of nodes� � � � � � � �� and returns null if any of the
arguments is null. Given two nodes� �, �� and their Dewey num-
bers� �, � � , ��� �� � � � � � is the node with the Dewey number that is
the longest common prefix of� � and� � and the cost of comput-
ing ��� �� � � �� � is � ��� where� is the maximum depth of the tree.
For example, the LCA of nodes

� ��������
and

� ������ ��
is the node� ����

in Figure 1. Given sets of nodes� � � � � � � � , a node� belongs
to ��� �� � � � � � � �� � if there exist� � � � � � � � � � � � � �� such that
� � ��� �� � � � � � � �� �. Then� is called an LCA of sets� � � � � � � � .
A node� belongs to thesmallest lowest common ancestor (SLCA)���� �� � � � � � � �� � of � � � � � � � �� if � � ��� �� � � � � � � �� � and!" ���� �� � � � � � � � � � # ". � is called a SLCA of sets� � � � � � � � if
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� � ���� �� � � � � � � �� �.
Notice that the query result���� �� � � � � � � � � � is ���� �� � � � � � � �� �

and that���� �� � � � � � � �� �= 	
� �� 
� ��
���	 ���� �� �� � � � � �� ��
where	
� �� 
�� �
���	 removes ancestor nodes from its input.

The function	� �� � � � computes theright matchof � in a set� ,
that is the node of� that has the smallest id that is greater than or
equal to� 	
 �� �; �� �� � � � computes theleft matchof � in a set� ,
that is the node of� that has the biggest id that is less than or equal
to� 	 
 �� �1. 	� �� � � � (�� �� � � �) returns null when there is no right
(left) match node. The cost of�� �� � � � (	� �� � � �) is � �� ��� �� ��
since it takes� ���� �� �� steps (Dewey number comparisons) to find
the right (left) match node and the cost of comparing two Dewey
numbers is� ���. The function�
��
����� �� � � �� � returns the
other argument when one argument is null and returns the descen-
dant node when� � and �� have ancestor-descendant relationship.
The cost of the function�
��
����� is � ���.

3. ALGORITHMS FOR FINDING THE SLCA
OF KEYWORD LISTS

This section presents the core Indexed Lookup Eager algorithm,
its Scan Eager variation and the prior work Stack algorithm [13].

A brute-force solution to the SLCA problem computes the LCAs
of all node combinations and then removes ancestor nodes. Its
complexity is � ��� �� � � � � � ��� ��. Besides being inefficient the
brute-force approach isblocking. After it computes an LCA� ���� �� � � � � � � �� � for some� � � � �, � � �

, �� � �� , it cannot report�
as an answer since there might be another set of� nodes" � � � � � � " �
such that� � ��� �" � � � � � � " � �.

The complexity analysis given in this section is for main memory
cases. We will give disk access complexity in Section 4 afterwe
discuss the implementation details of how we compress and store
keyword lists on disk. In the sequel we choose� � to be the smallest
keyword list since���� �� � � � � � � �� � � ���� ���	 � � � � � ��
 �, where� � � ��� �� is any permutation of

� � � � � � � � �, and there is a benefit
in using the smallest list as� � as we will see in the complexity
analysis of the algorithms.

3.1 The Indexed Lookup Eager Algorithm (IL)
The Indexed Lookup Eager algorithm is based on four properties

of SLCAs, which we explain starting from the simplest case where
� � �

and� � is a singleton�� �.
� 	�� 
	 �
 ���

���� ��� � � � � �
��
��
����� ���� �� � �� �� � � �� � ��� �� � 	� �� � � ����

According to the above Property (1), we compute the LCA of�
and its left match in� , the LCA of � and its right match in� , and
the singleton formed from the deeper node from the two LCAs is���� ��� � � � � . Property (1) is based on the following two observa-
tions. For any two nodes� � � � � to the right (according to preorder)
of a node� , if � 	 
 �� � 
 � 	
 �� �� 
 � 	
 ��� �, then ��� �� � �� � ���� �� � � ��; similarly, for any two nodes� � � �� to the left of a node
� , if � 	
 �� � � 
 � 	
 �� �� 
 � 	
 �� �, then��� �� � �� � � ��� �� � � ��2.

We generalize to arbitrary� when the first set is a singleton.
Notice the recursiveness in Property (2).� 	�� 
	 �
 ��� ���� ��� � � �� � � � � � �� � �

���� ����� ��� � � �� � � � � � ����� � �� � � �	 � � �

1The right or left match of a node� in � is itself if � � � . This
may happen when a node’s label contains multiple keywords.
2The two observations apply to inorder and postorder as well.

Next we generalize to arbitrary� �.
� 	�� 
	�
 �� �

���� �� � � � � � � �� � �
	
� �� 
���
���	 � ��	��	

���� ��� �� � �� � ��� �� ��

Property (3) straightforwardly leads to an algorithm to compute���� �� � � �� � � � � � �� �: first computes�� � � � ���� ���� � � �� � ��� �� �
for each� � � � � (

� � � � �
), 	
� �� 
� ��
���	 ��� � � � � � � � ��

is the answer. Each� � is computed by using Properties (2) and (1).
The benefit of the above algorithm over the brute force approach

is that for each node� � in � �, the algorithm does not compute��� �� � � �� � � � � � �� � for all �� � �� � � � � � � � � �� , but computes a
single ��� �� � � �� � � � � � �� � where each� � (

� � � � �) is computed
by the match functions (�� and 	� ). The complexity of the al-
gorithm is� � �� � � � ���� � ��� ��� � � �� � �� � or � � �� � ������ �� � ��� � �� � where �� � � ( �� �) is the minimum (maximum) size of key-
word lists� � through�� because for each node� � in � � the algo-
rithm needs to find a left and a right match in each one of the other
� � �

keyword lists. Finding a match in list�� costs� �� ��� ��� ��.
Hence the total cost of match operations is� � �� � �� � ���� ��� ��� ��.
The total cost of the��� and�
��
����� operations is� � �� � ����
and hence is dominated by the cost of the match operations. The�� � �� factor is attributed to the cost of removing ancestors opera-
tion.

The subroutine� 
� ����, based on the following two lemmas,
computes���� �� � � �� � efficiently by removing ancestor nodes on
the fly.

LEMMA 1. Given any two nodes�� � �� and a set� , if � 	
 ��� � 

� 	
 ��� � and� 	
 ����� ���� � � � �� � � 	 
 ����� ���� � � � ��,
then���� ���� � � � � � ���� ��� � � � � �.

LEMMA 2. For any two nodes�� � �� and a set� such that
� 	
 �� � � 
 � 	
 ��� � and� 	 
 ����� ��� � � � � �� 
 � 	
 ����� ���� � � � ��,
if ���� ��� � � � � � is not an ancestor of���� ���� � � � �, then for any�
such that� 	
 �� � � � 	 
 ��� �, ���� ���� � � � � # ���� ��� � � � �.

Consider� � � �� sorted by id, where� � � �� � � � � � � ��  . Let ! ��� � � � � � � ��  where� � � ���� ��� �� � �� �,� � �,�� � ���� ���� � � �� �.
According to Lemma 1, if� 	
 �� � � � � 	 
 ��� � where node�� ap-
pears after� � in ! (that is," � �

), then�� is an ancestor node. Thus
when computing the list! , we can discard the out-of-order nodes
such as�� . The resulting list! � is in order and contains the nodes
of ���� �� � � �� �. However! � is not necessarily ancestor node free.

Consider any two adjacent nodes�, � � in ! � where� � is after�. If � is not an ancestor of� �, then� cannot be an ancestor of
any node� �� that is after� � in ! � (according to Lemma 2), which
means� is a�! # �

of � �, ��. Lemma 1 and 2 together lead to the
subroutine� 
� ���� that computes���� �� � � �� � efficiently. Line
#5 in� 
� ���� applies Lemma 1 to remove out-of-order nodes, and
lines #6-8 apply Lemma 2 to identify a SLCA as early as possible.
As can be seen from� 
� ����, at any time only three nodes (", � ,�) are needed in memory.

Consider� �=[
� �� ��

,
� ���� �� ��

,
� ��������

,
� ���� �� ��

,
� �� �� �� ��

],
��=[

� ������ ��
,
� ���� ����

,
� �� �� �� ��

,
� �� �� �� ��

,
� �� ���� ��

] (the key-
word lists for “John” and “Ben” respectively). In the first itera-
tion of the loop at line #3," � �

, � � � �� ��
, �=0 (line #4). At

the end of the first iteration" � �
(line #8). In the second iter-

ation, � � � ���� �� ��
, � � � ��

, " � � ��
. In the third iteration,

� � � ��������
, � � � ����

, " � � ����
. In the fourth iteration,

� � � ���� �� ��
, � � � ����

(line #4). Notice that the condition at
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line #6 is true in the fourth iteration, and" (node
� ����

) is deter-
mined to be a SLCA (line #7). Then" � � ����

(line #8). In the
last iteration,� � � �� �� �� ��

, � � � �� �� ��
, and node

� ����
is deter-

mined to be a SLCA (line #7). Finally node
� �� �� ��

is returned as a
SLCA (line #10). Thus the answer to “John Ben” is [

� ����
,
� ����

,� �� �� ��
].

subroutine� 
� ���� �� � � �� �
1 � 
�"�� � ��
2 " � �

//" � 	��� initially
3 for each node� � � � �
4 � � �
��
����� ���� �� � �� �� � �� �,��� �� � 	� �� � �� ���
5 if (� 	
 �"� � � 	 
 �� �)
6 if (" � �)
7 � 
�" �� � � 
�" �� � �" �;
8 " � �;
9 �
10 return� 
�" �� � �" �

We can derive an algorithm from� 
� ���� to compute���� �� � � � � � � �� � efficiently:
���� �� � � � � � � �� � �

� 
� ���� �� 
� ���� �� � � � � � � ����� � �� � � �	 � � �

based on the following Property (4),� 	�� 
	 �
 �� � ���� �� � � � � � � �� � �
���� ����� �� � � � � � � ����� � �� � � �	 � � �

An algorithm based on� 
� ���� accesses� � and�� first, then��,
�� ,� � �, �� in order. It accesses the� keyword lists in just one
round. It is a blocking algorithm since it only processes thelast
keyword list after it completely processes the first� � �

keyword
lists and then starts to produce answers. Obviously the algorithm
based on Property (3) is also a blocking algorithm.

The Indexed Lookup Eager Algorithm improves the algorithm
based on� 
� ���� by adding “eagerness”- it returns the first part
of the answers without having to completely go through any ofthe
keyword lists and it pipelines the delivery of SLCAs. Assumethere
is a memory buffer size of

�
nodes. The Indexed Lookup Eager al-

gorithm first computes� � � ���� �� � � �� � where� � is the first�
nodes of� �. Then it computes�� � ���� �� � � � � � and so on,

until it computes� � � ���� �� � � ���� �� � � � �� � � � �� �. All nodes
in � � except the last node are guaranteed to be SLCAs because of
Lemma 1 and 2 and are returned. The last node of� � (� in line
#10) is carried on to the next operation (lines #6-9) to be determined
whether it is a�! # �

or not. The above operation is repeated for
the next

�
nodes of� � until all nodes in� � have been processed.

The smaller
�

is, the faster the algorithm produces the first SLCA.
If

� � �
, again only three nodes are needed to be kept in memory

in the whole process. However, a smaller
�

may delay the compu-
tation of all SLCAs when considering disk accesses. If

� � �� � �,
the Indexed Lookup Eager algorithm is exactly the same as theal-
gorithm based on� 
� ����. The complexity analysis of the Indexed
Lookup Eager algorithm is the same as that of the algorithm based
on Property (3) except that there is no operation to remove ances-
tor nodes from a set. Thus the complexity of the Indexed Lookup
Eager algorithm is� � �� � ������ �� �� where �� � � ( �� �) is the mini-
mum (maximum) size of keyword lists� � through�� . Consider
the query “John Ben Class” applied on the data of Figure 1. The
keyword lists for “John”, “Ben”, “Class” are� �=[

� �� ��
,
� ���� �� ��

,� ��������
,
� ���� �� ��

,
� �� �� �� ��

], ��=[
� ������ ��

,
� ���� ����

,
� �� �� �� ��

,� �� �� �� ��
,
� �� ���� ��

] and� �=[
� ����

,
� ����

,
� ����

,
� ����,

� ����] re-
spectively. Assume

� � �. In the first iteration of the loop at line
#2,�=[

� �� ��
,
� ���� �� ��

,
� ��������

] (line #3). After the computation

at line #4-5,�=� 
� ����(� 
� ����([
� �� ��

,
� ���� �� ��

,
� ��������

],�� )
,��), which is�=� 
� ����( �� ���� ,�� )= �� ���� . Initially � � �"��.
Line #6-9 has no effect. As mentioned before, every node in� ex-
cept the last one is a SLCA and returned (line #10, #11). In the
first iteration, line #11 outputs nothing and� (node

� ����
) is car-

ried to the next iteration to be determined whether it is a SLCA or
not. In the second iteration of loop at line #2, the rest nodesof
� � is read,�=[

� ���� �� ��
,
� �� �� �� ��

] (line #3). After executing line
#4 and #5,� � � 
� ���� �� 
� ���� ��0.1.2.0.0�0.2.0.0.0 � � � � � �� �,
which is � � � 
� ���� ��� ���� � � �� �� �� � �� � = �� ���� . The con-
dition at line #8 is true, thus� (node

� ����
) carried from the first

iteration is determined to be a SLCA and returned (line #9). Then
� � � ����

at line #10. Line #11 outputs nothing in this itera-
tion again. Since there are no more nodes in� �, line #13 is ex-
ecuted. Thus the Indexed Lookup Algorithm returns�� ���� � � ���� 
for “John Ben Class”.

ALGORITHM 1 (INDEXED LOOKUP EAGER ALGORITHM).
Assume we have a memory buffer� of size

�
nodes

1 � � �"��
2 while( there are more nodes in� �) �
3 Read P nodes of� � into buffer� .
4 for

� � � 	 �
5 � � � 
� ���� �� � � � �
6 if (� 
� �"�� �� � 
�� �	 ��
 ��
 �� � � � )
7 removeFirstNode(B)
8 if ( � 
� �"�� �� � # � 
�� �	 ��
 ��
 �� �)
9 output�
10 � � 	
� �� 
!���
 ��
 �� �
11 output� ; �= ��
12 �
13 output�

3.2 Scan Eager Algorithm
When the occurrences of keywords do not differ significantly, the

total cost of finding matches by lookups may exceed the total cost
of finding matches by scanning the keyword lists. We implement a
variant of the Indexed Lookup Eager Algorithm, named Scan Ea-
ger Algorithm, to take advantage of the fact that the accesses to any
keyword list are strictly in increasing order in the IndexedLookup
Eager algorithm. The Scan Eager algorithm is exactly the same as
the Indexed Lookup Eager algorithm except that its�� and	� im-
plementations scan keyword lists to find matches by maintaining
a cursor for each keyword list. In order to find the left and right
match of a given node with id� in a list �� , the Scan Eager algo-
rithm advances the cursor of�� until it finds the node that is closest
to � from the left or the right side. Notice that nodes from different
lists may not be accessed in order, though nodes from the samelist
are accessed in order.

The complexity of the Scan Eager algorithm is� (� �� � �+
� � �� ��� �), or� ��� �� �� because there are� �� �� ��� �� Dewey num-
ber comparisons,� �� �� � �� ��� and�
��
����� operations.

3.3 The Stack Algorithm
The stack based sort-merge algorithm (DIL) in XRANK [13],

which also uses Dewey numbers, is modified to find SLCAs and
is called the Stack Algorithm here. Each stack entry has a pair of
components��� �� 

� �	���. Assume the

�� components from
the bottom entry to a stack entry
�

are
�� � � ��� � � � � � ��� respec-

tively. Then the stack entry
�
denotes the node with the Dewey

number
�� � ���� � � � � ���� . � 

� �	�� is an array of length� of

boolean values where� 

� �	�� �� � � means that the subtree
rooted at the node denoted by the stack entry directly or indirectly
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J B C
0 T F F
0 F F F
0 F F F

(a) node
� �� ��

J B C
0 F F T
1 F F F
0 T F F

(b) node
� ����

0 T F F
0 F F F
0 F F T
1 F F F
0 T F F

(c) node
� ���� �� ��

1 F F T
1 T F T
0 T F T

(d) node
� ����

0 T F F
1 F F F
1 F F T
1 T F T
0 T F T

(e) node
� ��������

0 F T F
2 F F F
1 T F T
1 F F F
0 T F T

(f) node
� ������ ��

2 F F T
1 F F F
0 F F F

(g) node
� ����

, report
� ����

as a SLCA

Figure 3: States of stack, where J stands for “John”, B stands
for “Ben” and C stands for “Class”

contains the keyword� �. For example, the top entry of the stack
in Figure 3(b) denotes the node

� ����
, and the middle entry denotes

the node
� ��

. The Stack algorithm merges all keyword lists and
computes the longest common prefix of the node with the smallest
Dewey number from the input lists and the node denoted by the
top entry of the stack. Then it pops out all top entries containing
Dewey components that are not part of the common prefix. If a
popped entry
�

contains all keywords, then the node denoted by

�

is a SLCA. Otherwise the information about which keywords
�
contains is used to update its parent entry’s� 

� �	�� array. Also
a stack entry is created for each Dewey component of the smallest
node which is not part of the common prefix, effectively pushing
the smallest node onto the stack. The above action is repeated for
every node from the sort merged input lists.

Consider again the query “John, Ben, Class” applied on the data
of Figure 1. The keyword lists for “John, Ben, Class” are [0.0.0,
0.1.0.0.0, 0.1.1.1.0, 0.1.2.0.0, 0.2.0.0.0], [0.1.1.2.0, 0.1.2.1.0,
0.2.0.0.1, 0.3.0.0.0, 0.3.1.0.0] and [0.1.0, 0.1.1, 0.1.2, 0.1.3., 0.1.4]
respectively. Initially, the smallest node is

� �� ��
and Figure 3(a)

shows the initial state of the stack where� 

� �	�� �� � � in
the top entry denotes that the node (

� �� ��
) represented by the top

entry contains the first keyword “John”. The next smallest node
is the “Class” node

� ����
. Since the longest common prefix of� �� ��

and
� ����

is
�

(line #4), the top two entries are popped out
(line #6).

� �� ��
contains “John” and this information is passed to

the current top entry (lines #12-13). Then two new entries from
the two components of node

� ����
that are not among the longest

common prefix are pushed into the stack (line #16). Notice that in
Figure 3(b)� 

� �	�� �� � � in the bottom entry denotes that the
node

�
(School) contains the keyword “John”. Each figure in Fig-

ure 3 shows the state of the stack after processing the node shown
in the caption. For example, when the algorithm processes node� ����

, the initial stack is shown in Figure 3(f) and the stack after
processing

� ����
is shown in Figure 3(g). The longest common pre-

fix of
� ����

and the stack (
� ������ ��

) is
� ��

(line #4). Thus the top
three entries are popped out (line #6). When popping out the third
entry, the algorithm reports

� ����
as a SLCA since its� 

� �	��

array contains all� (line #7). Notice that the� for “Ben” from the
top entry in Figure 3(f) is used in the decision that the thirdentry is
a SLCA.

The complexity of Stack is� �� � ��� � ��� �� since both the num-
ber of ��� operations and the number of Dewey number compar-
isons are� ��� � ��� �. The Scan Eager algorithm has several ad-

vantages over the Stack algorithm. First, the Scan Eager algo-
rithm starts from the smallest keyword list, does not have toscan
to the end of every keyword list and may terminate much earlier
than the Stack algorithm as we will see in an example soon. Sec-
ond, the number of��� operations of the Scan Eager algorithm
(� �� �� � ��) is usually much less than that of the Stack algorithm
(� �� ��� � ��� ��). Third, the Stack algorithm operates on a stack
whose depth is bounded by the depth of the input tree while the
Scan Eager algorithm with

� � �
only needs to keep three nodes

in the whole process and no push/pop operations are involved.

ALGORITHM 2 (STACK ALGORITHM). �
1 stack=empty
2 while (has not reached the end of all keyword lists)�
3 � � � 
��� ���
��
 ��
 ��

//find the largest p such that����� �� � � �� � � � � � �
4 � � ��� ������ � � �
5 while (����� ���� 
 � � ) �
6 stackEntry=stack.pop()
7 if (isSLCA(stackEntry))�

//Any other stack entry cannot represent a SLCA
8 output stackEntry as a SLCA
9 set all entries of the Keywords array of

any stack entry all falses
10 �
11 else� //pass keyword witness information to the top entry
12 � �	 �" � � 	 � �
13 if (stackEntry.Keywords[j]=true)

stack.top.Keywords[j]=true
14 �
15 �

//add non-matching components of� to stack
16 � �	 �� 
 " � � ��
�� �� � stack.push(v[j],[])

stack.top.Keywords[i]=true 17
18 �
19 check entries of the stack and return any SLCA if exists
�
isSLCA(stackEntry)�

if (stackEntry.Keywords[i]=true for
� � � � �)

return true
else return false�

getSmallestNode�
/* returns the node� with the smallest Dewey number from
all keyword lists and advances the cursor of the list where�
is from. Assume� is an array consisting of its Dewey num-
ber components. For example� is 0 1 3 if its Dewey
number is 0.1.3 */�
We consider again the query “John, Ben, Class” applied on the

data of Figure 1 and assume the tree does not have the “Ben” node
with id

� �� �� �� ��
to show the first advantage of the Scan Eager

algorithm over the Stack algorithm. Hence� �=[
� �� ��

,
� ���� �� ��

,� ��������
,
� ���� �� ��

,
� �� �� �� ��

], ��=[
� ������ ��

,
� ���� ����

,
� �� �� �� ��

,� �� ���� ��
]3 , and��=[

� ����
,
� ����

,
� ����

,
� ����,

� ����].
For node

� ���� �� ��
in � � the Scan Eager algorithm finds its match� ���� ����

in �� , and computes their LCA
� ����

; then it finds the
match

� ���� ����
for

� �� �� �� ��
in ��, and computes their LCA

�
.

Since node
�

is an ancestor of node
� ����

, node
�

is discarded and
no further access to�� is needed. The last node in�� accessed by
the Scan Eager algorithm is node

� ����
. The Stack algorithm has

to visit all �� nodes because it cannot tell whether the last node

3For the sake of this example, we neglect that��� � 
 �� � �.
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0.1.0   0.1.1
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0.1 0.1.2.2.0

0.1.3.0.0 0.1.4.0.0 0.0
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0.1.2.0

0.0.0
0.1.0.0.0
0.1.1.1.0
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0.2.0.0.0

0.3.1

0.2.0.0  0.3.0.0
0.3.1.0

0.3.0 0.2 0 0.3

0.1.2.1 0.1.1.2

0.1.1.0
0.1.2.2
0.1.3.0
0.1.4.0

Dean ParticipantsCS2A SportsClub

Autonet Ben Class Classes CS2A CS3A CS4A CS5A

Figure 4: B+ tree from the data of Figure 1 for Scan Eager and Stack algorithms

� �� �� �� ��
may lead to a SLCA or not until it comes to process node� �� �� �� ��
and it has to repeatedly compute the longest common an-

cestor of each�� node with the node represented by the top entry
of the stack. Notice that the “Class” list may have arbitrarily many
nodes after node

� ����
and before node

� �� �� �� ��4 that Stack has to
access but Scan Eager does not need to.

4. XKSEARCH SYSTEM IMPLEMENTATION
In this section we present the architecture of the XKSearch im-

plementation, then discuss how the keyword lists are compressed
and stored on disk-based B tree index structures, and finallypro-
vide disk access complexity analysis summarized in Table 1 for the
three algorithms discussed in Section 3 - Indexed Lookup Eager,
Scan Eager and Stack.

We implemented the Indexed Lookup Eager, Scan Eager and
Stack algorithms in Java using the Apache Xerces XML parser and
Berkeley DB [4]. The architecture of the implementation (XK-
Search) is shown in Figure 6. The LevelTableBuilder reads anin-
put XML document� and outputs a level table!� . The inverted
index builder reads in the level table!� and outputs a keyword list
� � for each keyword� in � . Those keyword lists are stored in a
B-tree structure that allows efficient implementation of the match
operations.

The index builder also generates a frequency table, which records
the frequencies of keywords in� , is read into memory by the ini-
tializer, and is stored as a hash table. The query engine accepts a
keyword search, uses the frequency hash table to locate the small-
est keyword list, executes the Indexed Lookup Eager, Scan Eager
and the Stack algorithms and returns all SLCAs.

For performance reasons, Dewey numbers are compressed. We
introduce alevel table!� with � entries where� is the depth of
the input tree. The entry!� ��� denotes the maximum number of
bits needed to store the

�
-th component in a Dewey number, i.e.,!� ��� � ���� ����, where� is the number of children of the node

at the level of
� � �

that has the maximum number of children among
all nodes at the same level. The root is at level

�
, !� ��� � �5. In

general�� �	 �� ���� � bytes are needed to store the Dewey number of
a node at level

�
. The level table!� for Figure 1 is

i 1 2 3 4 5
LT(i) 1 2 3 2 1
There are two types of B tree structures implemented in XK-

Search; the first is for the Indexed Lookup Eager algorithm, the
second is for the Scan Eager and the Stack algorithms. In the im-
plementation of the Indexed Lookup Eager algorithm, we put all
keyword lists in a single B+ tree where keywords are the primary
key and Dewey numbers are the secondary key (See Figure 5 where

4Of course the Dewey number of the node
� �� �� �� ��

would be
changed accordingly.
5We could have!� ��� � �

. However, the root is conveniently
represented by

�
.

each block can store up to four entries). No data values are asso-
ciated with keys since the keys contain both keywords and Dewey
numbers. Given a keyword� and a Dewey number� , it takes a
single range scan operation [11] to find the right and left match of
� in the keyword list of� . Since B+ tree implementations usually
buffer top level nodes of the B+ tree in memory, we assume the
number of disk accesses for finding a match in a keyword list does
not include the accesses to the non-leaf nodes in the B+ tree and is
� ���.

The number of disk accesses of the Indexed Lookup Eager is
� �� �� � �� because for each node� � in � � the IL algorithm needs to
find a left and a right match in each one of the other� � �

keyword
lists. Notice that the number of disk accesses of IL cannot bemore
than � ��� � � � where� � is the number of blocks of the keyword
list ��. This is because the IL algorithm accesses all keyword lists
strictly in order.

In the implementation of the Scan Eager algorithm and the� ����
algorithm, the keys in the B+ tree are simply keywords. The data
associated with each key� is the list of Dewey numbers of the
nodes directly containing the keyword� (See Figure 4). All key-
word lists are clustered. The number of disk accesses of ScanEager
or Stack is� �� ��� � � � � where� � � 	�� 	


�
. 
 � is the average num-

ber of nodes in a disk block of�� and ��� � is the number of nodes
in the keyword list��. 
 � depends on the page size� , the depth
of the XML tree�, and the maximum out-degrees of nodes at each
level. 
 � is at least �
�� ���

	 
���� � �
����� where� � is the maximum

out-degree of nodes at level
�
. In our experiments, using the DBLP

dataset,
 � on average is around
���

.
The full size keyword lists are not needed to compute SLCAs

according to the following property���� �� � � � � � � �� � � ���� ���	 
 �� �� � � � � � ��	 
 ��� ��
where��	
 �� � � 	
� �� 
� ��
���	 �� �. ��	 
 ��� � is called the
core-keyword list of the keyword� �. To turn a keyword list� into
a core-keyword list, the brute-force algorithm compares each node
to every other node.

Given any two nodes� � � � � such that� 	 
 �� �� 
 � 	
 �� � �, if
� � is not an ancestor of�� , then for any� such that� 	
 �� � �
� 	
 �� � �, � � cannot be an ancestor of� . IndexBuilder (Figure 6)
uses an algorithm that produces all core-keyword lists in one pass
of parsing an input XML document based on the above fact. The
description of the algorithm is omitted to save space.

5. THE ALL LOWEST COMMON ANCES-
TOR PROBLEM (ALCA)

We can use the Indexed Lookup Eager algorithm to derive an
efficient algorithm to find all LCAs, that is, LCAs for each com-
bination of nodes in� � through�� . Because an LCA is either an
ancestor of a SLCA or is a SLCA itself, we can find all LCAs by
walking up in the tree beginning from SLCAs. We solve the ALCA
problem by first finding the list! of all SLCAs and then for each
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Figure 5: B+ tree from the data of Figure 1 for Indexed Lookup Eager Algorithm
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Figure 7: Finding all LCAs

ancestor� of each node� � in ! check whether� is an LCA, as
explained next.

Let � � be a SLCA. Consider any node� that is an ancestor of� �
(See Figure 7). If the subtree rooted at� contains a node� � with a
keyword, say� �, that is not under node� � and is not an ancestor of
� �, then� is an LCA. To determine whether� contains such a node
� � we use at most two lookups. The nodes under� but not under
� � are divided into two parts by the path

�
from � to � �. Let node� be the right match node of� in � � (the keyword list of� �). If

node� is not under� � and� � is not under�, then� is in the left part
of

�
(otherwise� would be under� � because� � is a SLCA) which

means� is an LCA. Next, let� be the child of� on the path from
� to � �. If the Dewey id of� is � then the Dewey id of� is � ��,
where� is the ordinal number of� among its siblings. The node�
, which is the immediate right sibling of�, has Dewey number
� ��� � �� and is called the uncle node of� � under� . Let � be the
right match node of

�
in � �. If � � �, then� is in the right side of�

, which makes� an LCA. The existence of any node containing a
keyword from� � � � � � � � � under� but not under� � can be checked
similarly. The subroutine��
��! # �

in Algorithm 3 is based on
the above observations.

Since a node� might be an ancestor node of multiple SLCAs,
we want to avoid repeatedly checking whether� is an LCA. Instead
of maintaining some data structures to record whether a nodehas
been identified as an LCA or not, we use an approach that only
needs to keep three nodes in memory. Let� � � �� � �� be the first
three nodes (see Figure 7) in the list! of SLCAs produced by the
Eager algorithm, and let	 � ��� �� � � � � �. For each node� in the
path from� � to 	, we check whether� is an LCA or not. Then

we check each node in the path from�� to � � ��� �� � � �� � 6, and
so on. Algorithm 3 is based on this approach and guarantees that
each of the ancestor nodes of all SLCAs is checked exactly once.
Notice that in Algorithm 3 we do not need to produce all SLCAs
first. Algorithm 3 pipelines the delivery of LCAs since Algorithm
IL pipelines the delivery of SLCAs.

The number of disk accesses of Algorithm 3 is� ��� �� � ��. The
main memory complexity of Algorithm 3 is� � �� � ���� ��� �� ��.
Finding all SLCAs costs� � �� � ��� ��� �� ��. Checking whether the
ancestors of the�! # � � are LCAs or not costs� � �� � ���� ��� �� ��
since we need to check� � �� � ��� nodes and checking each node
costs� ��� ��� �� ��.

ALGORITHM 3 (COMPUTING ALL LCAS).
findLCA(List L)� //! is the list of SLCAs
�� � � � � 	
� �� 
� 
�� �! �;
while ! has more nodes�

� � = �� ;
�� = removeHead(!);
current-lca=lca(� �,��);
for each ancestor node� of � � until current-lca
//not including current-lca

if (checkLCA(� ,� �)==true) output � .
� �

boolean checkLCA(� � � �) �
for

� � �
to � ��= rm(� , ��)

if ( � � � � �� � � � � ) return true; �
for

� � �
to � �

"= the uncle node of� � under� ;
 � 	� �" � �� �;
if (� � 
 ) return true; �

return false;
�

6. EXPERIMENTS
We have run XKSearch on the DBLP data7. We filter out citation

and other information only related to the DBLP website and group
first by journal/conference names, then by years. The experiments
have been done on a 1.2GHz laptop with 512MB of RAM. An
online demo, which enables keyword search in the same grouped
83MB DBLP data used in the experiments is provided at
http://www.db.ucsd.edu/projects/xksearch.

The demo runs as a Java Servlet using Apache Jakarta Tom-
cat server. The Xalan engine is used to translate XML resultsto
HTML.

We evaluate the Scan Eager, Indexed Lookup Eager and Stack al-
gorithms discussed in Section 4 for the SLCA semantics by varying
the number and frequencies of keywords both on hot cache (Fig-
ures 8, 9 and 10) and on cold cache (Figures 11, 12 and 13).

A program randomly chose forty queries for each experiment.
The response time of each experiment on hot cache in Figures 8, 9

6� could be a descendent of	.
7http://www.informatik.uni-trier.de/�ley/db
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# of disk main memory operations main memory
accesses #��� operations #�
��
�����

operations
# Dewey number compar-
isons

complexity

IL � �� �� � �� � �� �� � �� � �� �� � �� � �� �� � � ��� �� �� � ��� �� � � ��� �� ��
Scan � �� � � �� �� � �� � �� �� � �� � �� �� �� � ��� �� ��
Stack � �� � � �� �� �� – � �� �� �� � ��� �� ��

Table 1: Complexity Analysis for Indexed Lookup Eager, ScanEager and Stack where�� � � ( �� �) is the minimum (maximum) size of
keyword lists � � through �� , � is the total number of blocks of all keyword lists on disk and� is the maximum depth of the tree.

and 10 is the average of the corresponding forty queries after five
executions. The response time of each experiment on cold cache
in Figures 11, 12 and 13 is the average of the corresponding forty
queries each of which was run just once after a machine reboot.

In Figure 8 each query� contains two keywords. The smaller fre-
quency is shown in the caption while the bigger frequency is vari-
able. For example, each query of Figure 8(c) in the “Frequency of
the large list=1000” category contains two keywords where one of
them has frequency of

���
while the other keyword has frequency

of
����

. As can be seen from Figure 8, the performance of the Scan
Eager and Stack algorithms degrades linearly when the size of the
large keyword list increases, while the run time for IL algorithm
is essentially constant and its performance is often several orders
of magnitude better than Scan Eager and Stack. In all experiments
Scan Eager performs a little better than Stack for the reasons ex-
plained in Section 3.3.

In Figure 9, each query� contains a keyword of “small” fre-
quency (

��
in Figure 9(a),

���
in Figure 9(b),

����
in Figure 9(c),�����

in Figure 9(d)) and all other keywords of� have frequency
of

������
. For example, each query of Figure 9(b) in the�� 

� �	�� � � category contains five keywords where one of

them has frequency of
���

and the other four have frequency of������
. The performance of the Scan Eager and the Stack algo-

rithms is essentially independent of�� � �.
Keywords in Figure 10 have the frequencies shown in the cap-

tion. The Scan Eager and the Stack algorithms perform a little bet-
ter than the Indexed Lookup Eager algorithm in most experiments
since the Indexed Lookup Eager performs best when the frequen-
cies of keyword lists vary greatly, while all keyword lists in Fig-
ure 10 have the same size and the cost of index lookups is more
likely greater than the cost of a single scan.

We repeated the experiments in Figures 8, 9 and 10 with cold
cache and the results are reported in Figures 11, 12 and 13 respec-
tively. We see similar relationships among the Scan Eager, Indexed
Lookup Eager and Stack algorithms. However the differencesbe-
tween the performance of algorithms is not as significant as those
in the hot cache experiments. The reason is that most keywordlists
do not take many pages. Hence making a random access on the list
is effectively equivalent to fetching the complete list. Notice that
disk access time dominates any main memory cost as can be seen
from the significant response time increases from the hot cache ex-
periments to the cold cache experiments.

We implemented XKSearchB that stores Dewey numbers with-
out using a level table as discussed in Section 4. Experiments
show that the size of the keyword lists and the time to construct
them are proportional to the size of the input XML documents.On
average, the size of indexes constructed by XKSearch is��� of
XKSearchB; the construction time of XKSearch is��� of XK-
SearchB; the query response time of XKSearch for hot cache is
70% of XKSearchB for the queries in Figures 8, 9 and 10.

7. RELATED WORK

LCA computation and proximity search are the two areas most
related to this work. Computing the LCA of two nodes has been ex-
tensively studied and constant time algorithms are known for main
memory data structures [20, 26]. These algorithms were designed
without the concern of minimizing disk accesses. For example, to
compute the LCA of two nodes in [20], two lookups may be needed
even after we adapt data structures for disk access minimization.
Computing the LCA of nodes using the Dewey numbers does not
need any disk access, which is the reason we use Dewey numbers.

Works on integrating keyword search into XML query languages
[9, 10, 21, 24, 25] augment a structured query language with key-
word search primitive operators. [21] proposes ameetoperator,
which operates on multiple sets where all nodes in the same set are
required to have the same schema, which is a special case of the
all LCAs problem. The meet operator of two nodes� � and �� is
implemented efficiently using joins on relations, where thenum-
ber of joins is the number of edges on the path from� � to their
LCA. This technique is good for relational database implementa-
tions. The XXL search engine [25] extends an SQL-like syntax
with ranking and ontological knowledge for similarity metrics.

In BANKS [5] and Proximity Search [12], a database is viewed
as a graph of objects with edges representing relationshipsbetween
the objects. Proximity Search [12] enables proximity searches by
a pair of queries. One example is “� ��� Movie 
 
�	 Travolta
Cage”. BANKS uses heuristics to approximate the Steiner tree
problem. Discover [15], DBXplorer [1] and XKeyword [16] per-
form keyword search on relational databases, modeled as graphs.
XKSearch delivers much higher efficiency than the above systems,
which perform keyword search on arbitrary graphs, by being tuned
for SLCA keyword search on trees.

XRANK[13] extends Web-like keyword search to XML. Results
are ranked by a Page-Rank [6] hyperlink metric extended to XML.
The ranking techniques are orthogonal to the retrieval and hence
can easily be incorporated in our work. The keyword search al-
gorithm in XRANK that is relevant to our problem is adapted as
the Stack algorithm in the paper, which we have described and
compared with the Indexed Lookup Eager and Scan Eager algo-
rithms. Notice that XRANK’s query result�	��� �� � � � � � � �� �
has the following relationship to the semantics used in the paper,���� �� � � � � � � �� � � �	��� �� � � � � � � �� � � ��� �� � � � � � � �� �. A
recent work XSEarch [8] supports extended keyword search inXML
documents and focuses on the semantics and the ranking of there-
sults. It extends information-retrieval techniques (tfidf) to rank
the results.

[14] provides an optimized version of the LCA-finding stack al-
gorithm. Most important, the algorithm of [14] returns the set of
LCAs along with efficiently (for performance and presentation pur-
poses) summarized explanations on why each node is an LCA.

[18] proposes a simple, novel search technique called Schema-
Free XQuery to enable users to query an XML document using
XQuery without requiring full knowledge of the document schema.
In particular, [18] introduces a function namedmlcasto XQuery
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Figure 8: #Keywords=2, keeping the small frequency constant, varying the frequency of the large keyword list (hot cache)
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Figure 9: Varying the number of keywords, keeping frequencies constant (hot cache)
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Figure 10: Varying the number of keywords, all keyword listshaving the same size (hot cache)
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Figure 11: #Keywords=2, keeping the small frequency constant, varying the frequency of the large keyword list (cold cache)
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Figure 12: Varying the number of keywords, keeping frequencies constant (cold cache)
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Figure 13: Varying the number of keywords, all keyword listshaving the same size (cold cache)
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based on the concept ofMLCA (Meaningful Lowest Common An-
cestor) where the set of MLCAs of� sets� �, . . . ,�� is the same as���� �� � � � � � � �� �. The complexity of the stack based algorithm
proposed in [18] to compute the set of MLCAs of� �, . . . , �� ,
which is similar to the sort merge stack algorithm in XRANK, is
� ��� �� ��, the same as that of the Scan and Stack algorithms. Sim-
ilar to [14], [18] returns the set of MLCAs with explanationson
why each node is an MLCA.

A popular numbering scheme is to use a pair of numbers consist-
ing of preorder and postorder numbers [2, 17]. Given two nodes
and their pairs of numbers, it can be determined whether one of
them is an ancestor of the other in constant time. However, this
type of scheme is inefficient in finding the LCA of two nodes.

Tree query patterns for querying XML trees have received great
attention and efficient approaches are known [3, 7, 22]. These ap-
proaches are not applicable for the keyword searching problem be-
cause given a list of keywords, the number of tree patterns from
the keywords is exponential in the size of the schema of the input
document and the number of keywords.

Finally there are research prototypes and commercial products
that allow keyword searches on a collection of XML documents
and return a list of (ranked) XML documents that contain the key-
words [19, 27].

8. CONCLUSIONS
The XKSearch system inputs a list of keywords and returns the

set of Smallest Lowest Common Ancestor nodes, i.e., the listof
nodes that are roots of trees that contain the keywords and contain
no node that is also the root of a tree that contains the keywords.

For each keyword the system maintains a list of nodes that con-
tain the keyword, in the form of a tree sorted by the id’s of the
nodes. The key property of SLCA search is that, given two key-
words� � and�� and a node� that contains keyword� �, one need
not inspect the whole node list of keyword�� in order to discover
potential solutions. Instead, one only needs to find the leftand
right match of� in the list of ��, where the left (right) match is
the node with the greatest (least) id that is smaller (greater) than
or equal to the id of� . The property generalizes to more than two
keywords and leads to the Indexed Lookup Eager algorithm, whose
main memory complexity is� � �� � ��� ��� �� �� where� is the max-
imum depth of the tree,� is the number of keywords in the query,
and �� � � ( �� �) is the minimum (maximum) size of keyword lists
� � through�� . Assuming a B-tree disk-based structure, where the
non-leaf nodes of the B-tree are cached in main memory the num-
ber of disk accesses needed is� �� �� � ��.

The analytical results, as well as the experimental evaluation,
show that the Indexed Lookup Eager algorithm outperforms, often
by orders of magnitude, other algorithms when the keywords have
different frequencies. We provide the Scan Eager algorithmas the
best variant for the case where the keywords have similar frequen-
cies. The experimental evaluation compares the Indexed Lookup
Eager, Scan Eager and Stack (described in [13]) algorithms.

The XKSearch system is implemented, using the BerkeleyDB
[4] B-tree indices and a demo of it on DBLP data is available at
http://www.db.ucsd.edu/projects/xksearch.
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