CS 5224 High Speed Networks and Multimedia Networking

Dr. Chan Mun Choon Semester 1, 2005/2006 School of Computing National University of Singapore

August 10, 2005 (Week 1)

Organization

- Lecturer:
 - Dr. Chan Mun Choon (chanmc@comp.nus.edu.sg)
 - Homepage: <u>http://www.comp.nus.edu.sg/~chanmc</u>
 - Office: S14 #06-09
 - Tel: 6874-7372
- Course Information
 - Web-site: <u>http://www.comp.nus.edu.sg/~cs5224</u>
 - IVLE
 - Class Venue: S16 #04-05 (SR1)
 - Class Time: 6:30pm 8:30pm, Wednesday
 - Office Hours: 3:30pm 5:30pm Wednesday

Aug 10, 2005 (Week 1)

Introduction/Basic Concept

Course Description

- Introduce graduate students to fundamental networking problems and concepts
 - For students interested in the area of networking, this course will be rewarding
- Emphasis on problem solving and performance evaluation (queuing theory, graph algorithms etc.)
- Long homework
- Midterm + Finals

Introduction/Basic Concept

3

Course Pre-requisites
 Assume students have taken undergraduate

- networking classes like CS2105/CS3103
- Basic background on probability and algorithms
- Textbooks:
 - S. Keshav, "An Engineering Approach to Computer Networking", Addison-Wesley.
- Reference Books
 - Bertsekas and Gallager, "Data Networks", 2nd Edition, Prentice Hall

Introduction/Basic Concept

Aug 10, 2005 (Week 1)

1	10/8 Introduction and basic concepts	
2	17/8 Multiplexing, Queuing Theory	
3	24/8 Traffic Engineering	(HW1 Assign)
4	31/8 Simulation	(HW1 Due)
5	7/9 Scheduling and Buffer Management	(Hw 2 Assign)
6	14/9 Scheduling and Buffer Management	(HW 2 Due)
	21/8 Mid-Semester Break	
7	28/9 Midterm Exam	
8	5/10 Routing	
9	12/10 Routing	(HW3 Assign)
10	19/10 End-to-end Performance	(HW3 Due)
11	26/10 Transport	
12	2/11 Wireless Networks	(HW4 Assign)
13	9/11 Access/High Speed Networks	
	16/11 Reading Day	(HW 4 Due)

Characteristics of LANs

- Like WAN, LAN interconnects a variety of devices and provides a means for information exchange among them
- Legacy LANs
 - Provide data rates of 1 to 20 Mbps
- High-speed LANS
 - Provide data rates of 100 Mbps to 10 Gbps

Aug 10, 2005 (Week 1)

Introduction/Basic Concept

11

Switching Terms Switching Nodes: Intermediate switching device that moves data Not concerned with content/payload of data Switch based on timing or header information Stations: End devices that wish to communicate Each station is connected to a switching node Communications Network: A collection of switching nodes

Aug 10, 2005 (Week 1)

Introduction/Basic Concept

<section-header> Observations of Figure 3.3 Some nodes connect only to other nodes (e.g., 5 and 7) Some nodes connect to one or more stations Node-station links usually dedicated point-to-point links Node-node links usually multiplexed links Shared among difference source-destination pairs Not a direct link between every node pair Directly connecting all pairs requires N(N-1) or O(N²) links

Techniques Used in Switched Networks

- Circuit switching
 - Dedicated communications path between two stations
 - E.g., public telephone network
- Packet switching
 - Message is broken into a series of packets
 - Each node determines next leg of transmission for each packet

Aug 10, 2005 (Week 1)

Introduction/Basic Concept

15

Phases of Circuit Switching

- Circuit establishment
 - An end to end circuit is established through switching nodes
- Information Transfer
 - Information transmitted through the network
 - Data may be analog voice, digitized voice, or binary data
- Circuit disconnect
 - Circuit is terminated
 - Each node deallocates dedicated resources

Introduction/Basic Concept

Characteristics of Circuit Switching

Can be inefficient

Aug 10, 2005 (Week 1)

- Channel capacity dedicated for duration of connection
- Utilization not 100%
- Delay prior to signal transfer for establishment
- Once established, network is transparent to users
- Information transmitted at fixed data rate with only (fixed) propagation delay
- Best known circuit switched network is the Public Switch Telephone Network (PSTN)

Introduction/Basic Concept

Image: Approximate and approxim

How Packet Switching Works

- Data is transmitted in blocks, called packets
- Before sending, the message is broken into a series of packets
 - Packets consists of a portion of data plus a packet header that includes control information
- At each node en route, packet is received, stored briefly and passed to the next node
- The store and forward mode of operation incurred both (variable) queuing delay and propagation delay

Aug 10, 2005 (Week 1)

17

Introduction/Basic Concept

18

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row><table-row></table-row>

Packet Switching Networks – Virtual Circuit

■ Advantages:

- Packets arrive in original order
- Packets arrive correctly
- Packets transmitted more rapidly without routing decisions made at each node
- This is how ATM network works

Packet Switching Networks - Datagram

- Each packet treated independently, without reference to previous packets
- Each node chooses next node on packet's path
- Packets don't necessarily follow same route and may arrive out of sequence
- Exit node restores packets to original order
- Responsibility of exit node or destination to detect loss of packet and how to recover

Introduction/Basic Concept

Introduction/Basic Concept

23

Aug 10, 2005 (Week 1)

Aug 10, 2005 (Week 1)

Aug 10, 2005 (Week 1)

Types of data transfers

Introduction/Basic Concept

Stored

"Quality of Service" Measure

- How is level of service measured in the network?
- Measure can be *deterministic* or *statistical*
- Common parameters are
 - bandwidth
 - delay
 - delay-jitter
 - loss

Aug 10, 2005 (Week 1) Introduction

Introduction/Basic Concept

Bandwidth

- Specified as minimum bandwidth measured over a pre-specified interval
- E.g. > 5Mbps over intervals of > 1 sec
- Meaningless without an interval!
- Can be a bound on average (sustained) rate or peak rate
- Peak is measured over a 'small' inteval
- Average is asymptote as intervals increase without bound

Aug 10, 2005 (Week 1)

Packet Loss

- Specified ratio of packet loss over some interval
- Like bandwidth, meaningless without some reference to a measurement interval
- Common to use an average loss rate measured over a "sufficiently long" interval
- Consecutive packet loss can be of interest to some applications, e.g. those with errorcorrection capability

Aug 10, 2005 (Week 1)

43

Top level goal

- Use unconstrained resources to alleviate bottleneck
- How to do this?

Aug 10, 2005 (Week 1)

 Several standard techniques allow us to trade off one resource for another

Introduction/Basic Concept

Multiplexing

- Another word for sharing
- Trades time and space for money
- Users see an increased response time, and take up space when waiting, but the system costs less
 - economies of scale

- Examples
 - multiplexed links
 - shared memory
- Another way to look at a shared resource
 - unshared virtual resource
- *Server* controls access to the shared resource
 - uses a *schedule* to resolve contention
 - choice of scheduling critical in proving quality of service guarantees

Aug 10, 2005 (Week 1)

Introduction/Basic Concept

Statistical multiplexing

- Suppose resource has capacity C
- Shared by N identical tasks
- Each task requires capacity c
- If $Nc \leq C$, then the resource is underloaded
- If at most 10% of tasks active, then C >= Nc/10 is enough
 - we have used statistical knowledge of users to reduce system cost
 - this is *statistical multiplexing gain*

Statistical multiplexing (contd.)

- Two types: spatial and temporal
- Spatial
 - we expect only a fraction of tasks to be simultaneously active
- Temporal
 - we expect a task to be active only part of the time
 - e.g silence periods during a voice call

Aug 10, 2005 (Week 1)

Introduction/Basic Concept

47

45

Example of statistical multiplexing gain

Introduction/Basic Concept

46

48

- Consider a 100 room hotel
- How many external phone lines does it need?
 - each line costs money to install and rent
 - tradeoff

Aug 10, 2005 (Week 1)

- What if a voice call is active only 40% of the time?
 - can get both spatial and temporal statistical multiplexing gain
 - but only in a packet-switched network (why?)
- Remember
 - to get SMG, we need good statistics!
- Will cover statistical multiplexing in more detail in the queuing theory section

```
Aug 10, 2005 (Week 1)
```


Hierarchy

- Recursive decomposition of a system into smaller pieces that depend only on parent for
- Leaf-to-leaf communication can be expensive
- Most network naming schemes are hierarchical

More...

- Extensibility
 - Always a good idea to leave hooks that allow for future growth
 - Examples: version field in header, Modem negotiation
- Separation of Control and Data Path
 - Divide actions that happen once per data transfer from actions that happen once per packet
 - Can increase throughput by minimizing actions in data path

Introduction/Basic Concept

51

Acknowledgements

50

52

- Slides are taken from the following sources:
 - W. Stallings, "Wireless Communications and Networks", Chapter 3
 - S. Keshav, "An Engineering Approach to Computer Networking"
 - Kurose and Ross, "Computer Networking: A Top-Down Approach Featuring the Internet", Chapter 1

Aug 10, 2005 (Week 1)