CS 5224

Acknowledgement/Reference

Scheduling and Buffer

Management

Dr. Chan Mun Choon
School of Computing, National University of Singapore

August 18, 2004

m Slides are taken from the following source:

m S. Keshav, “An Engineering Approach to Computer
Networking”, Chapter 9: Scheduling

m Reading materials on course web-site

m References

m L. Kleinrock, “Queuing Systems,” Volume 11,
Chapter 3 and 4, 1975.

Sep 8, 2004 Scheduling

Outline

m What is scheduling, why we need it?

m Requirements of a scheduling discipline
m Fundamental choices

m Scheduling disciplines

m Buffer management and packet drop strategies

Sep 8, 2004 Scheduling

Scheduling

m Sharing always results in contention

® A scheduling discipline resolves contention:
® who’s next?

m Key is to share resources fairly and provide
some form of performance guarantees

Sep 8, 2004 Scheduling

Components

m A scheduling discipline does two things:
m decides service order (scheduling)

m manages queue of service requests (buffer
management)

m Example:
m consider queries awaiting web server
m scheduling discipline decides service order

m and also if some query should be ignored

Sep 8, 2004 Scheduling

Where?

m Anywhere where contention may occur
m At every layer of protocol stack

m Usually studied at network layer, at output
queues of switches

Sep 8, 2004 Scheduling

Why do we need one?

m Because applications need it
m We expect at least two types of future
applications
m best-effort (adaptive, non-real time)
m c¢.g. email, some types of file transfer

m guaranteed service (non-adaptive, real time)

m c.g. packet voice, interactive video, stock quotes

Sep 8, 2004 Scheduling

What can scheduling disciplines do?

m Give different users different qualities of service

m HExample of passengers waiting to board a plane
m carly boarders spend less time waiting
m bumped off passengers are ‘lost’!
m Scheduling disciplines can allocate
m bandwidth
m delay
m Joss

m They also determine how fair the network is

Sep 8, 2004 Scheduling

Outline

m What is scheduling, why we need it?

m Requirements of a scheduling discipline
m Fundamental choices

m Scheduling disciplines

m Buffer management and packet drop strategies

Sep 8, 2004 Scheduling

Requirements

m An ideal scheduling discipline
W is easy to implement
m is fair (what is fair?)
m provides performance bounds

m allows easy adwission control decisions

m to decide whether a new flow can be allowed

Sep 8, 2004 Scheduling

Ease of implementation

m Scheduling discipline has to make a decision
once every few microseconds!

m Should be implementable in a few instructions
or hardware
m for hardware: critical constraint is VLSI space
m Work per packet should scale less than linearly
with number of active connections

Sep 8, 2004 Scheduling

Fairness

m Scheduling discipline a/locates a resource

m An allocation is fair if it satisfies some notion of
fairness

m Intuitively

m cach connection gets what it “deserves”

Sep 8, 2004 Scheduling

Fairness (contd.)

m Fairness is tuitively a good idea

m But it also provides protection
m traffic hogs cannot overrun others

m automatically builds firewalls around heavy users

m Fairness is a global objective, but scheduling is
local

m Hach endpoint must restrict its flow to the
smallest fair allocation

Sep 8, 2004 Scheduling

Notion of Fairness

m What is “fair” in resource sharing?
m Everybody gets what they need?
|] How about excess resources?

m Example:

m A “flat” tax system whereby everybody pays the same tax
rate.

m A “progressive” tax system whereby people who has larger
income pay at a higher tax rate.

m Factors to consider
m How does fairness relate to ability to use resource?

m How does fairness affects overall resource utilization?

Sep 8, 2004 Scheduling 14

Fairness

m FEqual Share

m Resources are shared among all users independent of
user requirements and resource utilization

m Is it a good model for resource sharing?

Sep 8, 2004 Scheduling 15

Max-Min Fairness

m Maximizes the minimum share of a resource
whose demand is not fully satisfied
m Intuitively:
m cach connection gets no more than what it wants
m the excess, if any, is equally shared
m Start with max-min fairness for flow control
m [BG, chapter 6: Flow Control]

Sep 8, 2004 Scheduling 16

Max-Min Flow Control

S1 S3

SO meee

AR PRI S

c3) =3

v

s2
How much rate should be allocated to SO, S1, S2 and S3?
Two possibilities:
{0.5,0.5,0.5,0.5} but L3 is under-utilized
{0.5,0.5,0.5,2.5} S3 gets more bw with no impact on others

Sep 8, 2004 Scheduling 17

Max-Min Flow Control

m A rate allocation is max-min fair if no rate can be increased

without decreasing another rate with a smaller or equal value

S1 S4

5 Flows
All link capacities
are 1

S5

S3
S2

1. {1/3,1/3,1/3,1/3,1/3}
2. {2/3,1/3,1/3,2/3,1/3}
3. {2/3,1/3,1/3,1,1/3}

Sep 8, 2004 Scheduling 18

Max-Min Allocation

m Apply max-min allocation to a single resource

m Interesting case is when demand is greater
than capacity

m Given users with demands {2,2.6,4,5} and
capacity 10. Total demand = 13.5.

. {2.5,25,25,25) {0.5-0.1,-1.5,2.5} excess=0.5

2 {2,2.662.66,2.66) {0,0.06,1.34,2.34} excess=0.06

5 (2262727} {0,0,1.3,2.3}

Sep 8, 2004 Scheduling 19

Proportional Fair (PF)

m Maximize sum of utility (a function of the allocated rate), a
reasonable utility function is log()
m A PF allocation x; satisfies Z(y; — x;)/x, <= 0 for any feasible
allocation y
m The allocation below would be
m Max-Total: {0,1,1,1}. Total = 3. Utility = ?
m Max-Min Fair: {0.5,0.5,0.5,0.5}. Total = 2. Utlity = ?
m Proportional Fair: {0.25,0.75,0.75,0.75}. Total = 2.5. Utility = ?

v, S3 v
S0 .mﬂ-.. .I .»
can=17: Ca2= T CI3) =1
“ 1 ’:'
S2

Sep 8, 2004 Scheduling 20

Outline

m What is scheduling, why we need it?

m Requirements of a scheduling discipline
m Fundamental choices

m Scheduling disciplines

m Buffer management and packet drop strategies

Sep 8, 2004 Scheduling 21

Fundamental choices

1. Work-conserving vs. non-work-conserving

2. Degree of aggregation

Sep 8, 2004 Scheduling

Work conserving or not?

m Work conserving: server is never idle when there
1s packets awaiting service

m Maximizes utilization of server resource

m Why bother with non-work conserving?

A A

\ A B l'/

(s lllo——A2
/ B

Sep 8, 2004 Scheduling

Non-work-conserving disciplines

m Key conceptual idea: delay packet till e/zgible

m Reduces delay-jitter => fewer buffers in
network

m How to choose eligibility time?
m rate-jitter regulator
® bounds maximum outgoing rate
m delay-jitter regulator

m compensates for variable delay at previous hop

Sep 8, 2004 Scheduling

Do we need non-work-conservation?

m Can remove delay-jitter at an endpoint instead
m but also reduces size of switch buffers...
m Increases mean delay
m not a problem for playback applications
m Wastes bandwidth
m can serve best-effort packets instead
m Always punishes a misbehaving source
m can’t have it both ways

m Bottom line: not too bad, implementation cost may be
the biggest problem

Sep 8, 2004 Scheduling

Degtree of aggregation

m More aggregation
m less state: less memory and computation
m cheaper: smaller VLS, less to advertise
m cost: less individualization/differentiation
m Solution

m agoregate to a cass, members of class have same performance
requirement

® no protection within class

m issue: what is the appropriate class definition?

Sep 8, 2004 Scheduling

Outline

m What is scheduling, why we need it?

m Requirements of a scheduling discipline
m Fundamental choices

m Scheduling disciplines

m Buffer management and packet drop strategies

Sep 8, 2004 Scheduling 27

First In First Out (FIFO)

m Most common scheduling

m Schedule packets according to the time of arrival
m Disadvantages

m Cannot differentiate between packets
m Advantages

m Easy to implement

m Question: How does a complex scheduler
improves the performance?

Sep 8, 2004 Scheduling 28

The Conservation Law

m If the scheduler is work conserving, and the scheduling
is independent of the packet service time
m ¥ p,q; = constant
m where p; = mean utilization of connection i and q; = mean
waiting time of connection I
m Therefore, if by using a different scheduling discipline,
a particular connection receives a lower delay than with
FCFS, at least one other connection must have a higher
delay.

m The average delay with FCFES is a tight lower bound for
work conserving and service time independent
scheduling disciplines

Sep 8, 2004 Scheduling 29

Service-Time Dependent Scheduling

D(.) be the average waiting time

FCFS: First Come First Serve

SPT: shortest processing time first

SRPT: shortest remaining processing time first
D(FCFS) >= D(SPT) >= D(SRPT)*

m However, service-time dependent scheduling are not
common in packet switching because the packet
ordering will be modified and delay for large packets
increases

m *Reference: [KLE70]

Sep 8, 2004 Scheduling 30

General Process Sharing (GPS)

m A scheduler should be easy to implement, fair, provides
performance bounds, and allows easy admission control
decisions

m GPS achieves 2 max-min allocation

m provides performance (throughput/delay/jitter)
bound and allows admission control (when used
with additional mechanisms)

Sep 8, 2004 Scheduling 31

General Process Sharing (GPS)

m Conceptually, GPS serves packets as if they are
in separate logical queues, visiting each non-
empty queues in turn

m In each turn, an infinitesimally small amount of data
is served so that in any finite time interval, it can visit
all logical queues

m Obviously, GPS is unimplementable since one
cannot serve infinitesimals, only bits or packets

m However, GPS provides a baseline for the most
(max-min) fair packet scheduling

Sep 8, 2004 Scheduling 32

GPS

m A more formal definition of GPS
® A connection is backlogged whenever it has data in its queue
m There are N connections with real positive weights ¢(1),...,
O(N)
m Let S(i,7,t) be the amount of data from connection i served in
the interval [t,t]

m For any backlogged connection i, in any interval [t,t] and for
S@i,%,0)/8GyT,t) >= ¢(1)/ ¢G)
m A non-backlog connection is getting all the resource it
needs

m Backlog connections share all excess resources evenly

Sep 8, 2004 Scheduling 33

What next?

m We can’t implement GPS
m So, lets see how to emulate it

m We want to be as fair as possible (as close to
GPS as possible)

m But also have an efficient implementation

Sep 8, 2004 Scheduling 34

(Weighted) round robin

m Serve a packet from each non-empty queue in
turn

m Unfair if packets are of different length or
weights are not equal

m Different weights, fixed packet size

m serve more than one packet per visit, after
normalizing to obtain integer weights

m Example: weight = {1,1.5}, in each round, serves 2
packets from queue 1 and 3 packets from queue 2

Sep 8, 2004 Scheduling 35

(Weighted) round robin

m Different weights, variable size packets
m normalize weights by mean packet size

me.g. weights {0.5, 0.75, 1.0}, mean packet sizes
{50, 500, 1500}

mnormalize weights: {0.5/50, 0.75/500, 1.0/1500}
= {0.01, 0.0015, 0.000666}, normalize again {60,
9,4}

Sep 8, 2004 Scheduling 36

Problems with Weighted Round Robin

m With variable size packets and different weights,
need to know mean packet size in advance

m Can be unfair for long periods of time

m Eog
m T3 trunk with 500 connections, each connection has mean

packet length 500 bytes, 250 with weight 1, 250 with weight
10

m Each packet takes 500 * 8/45 Mbps = 88.8 microseconds

m Round time = (250*10 + 250*1) * 88.8 = 2750 * 88.8 =
244.2 ms

Sep 8, 2004 Scheduling 37

Weighted Fair Queueing (WFQ)

m Deals better with variable size packets and
weights

m The idea is that assume GPS is fairest discipline

m Find the finish time of a packet, had we been doing
GPS

m Then serve packets in order of their finish
times

m The scheduler tries to emulate the order in
which packets are processed by GPS

Sep 8, 2004 Scheduling 38

WFQ: first cut

m Suppose, in each round, the server served one bit
from each active connection
m begins with emulating bit-by-bit Round-Robin

m Round number is the number of rounds already
completed
m can be fractional

m Hach round of service takes a variable amount
of time

m The more connections served, the longer the round
takes

Sep 8, 2004 Scheduling 39

WFQ (cont’d)

m If a packet of length p arrives to an empty queue when
the round number is R, it will complete service when
the round number is R + p => finish numberis R + p

m independent of the number of other connections!

m If a packet arrives to a non-empty queue, and
the previous packet has a finish number of £
then the packet’s finish number is f#p

m Serve packets in order of finish numbers

Sep 8, 2004 Scheduling 40

10

WFQ: computing the round number

m Naively: round number = number of rounds of service
completed so far
m what if a server has not served all connections in a round?
m what if new conversations join in halfway through a round?
m Redefine round number as a real-valued variable that
increases at a rate inversely proportional to the
number of currently active connections
m With this change, WFQ emulates GPS instead of bit-
by-bit RR

A. Demers and S. Kevhav, “Analysis and Simulation of a Fair Queueing
Algorithm,” ACM SIGCOMM’89

Sep 8, 2004 Scheduling 41

WFQ implementation

m On packet arrival:

m classify packet and look up finish number of last packet
served (or waiting to be served)

= O(1) to O(N)
m re-compute round number
m worst case O(N)
m compute finish number
m insert in priority queue sorted by finish numbers
= O(logN)
m if no space, drop the packet with largest finish number
m On service completion

m sclect the packet with the lowest finish number

Sep 8, 2004 Scheduling 42

Example: FQ

m Three connections: A,B,C. At t=0, packet of size 1,2 and 2 arrives.
(A1,B1,C1). Finish time: A1 =1,B1 = C1 = 2.

m With GPS, at t=3, round 1 is completed, Al departs, only 2
connections active

m At t=4, round is 1.5, A2 of size 2 arrives, finish time is (1.5+2) 3.5

A Round

3 Al A2 C1 4
Bl arrives departs ;
departs departs 1 I 1
. . i
A2
departs
Time
Sep 8, 2004 1 2 Scheduling 6 :3

Example: GPS

m Three connections: A,B,C. At t=0, packet of size 1,2
and 2 arrives. (A1,B1,C1). At t=4, A2 of size 2 arrives
m Using GPS:
m At t=3, all packets get 1 bit of service
m Al departs
m At t=4, Bl and C1 get 1.5 bits of service
m A2 arrives
m At t=51/2,B1 and C1 get 2 bits of setvice
m A2 gets "2 bits of service
= B1 and C1 depart
m At t=7, A2 departs
m Sequence of service = Al, {B1,C1}, A2
m Departure time = 3, 5.5, 5.5, 7

Sep 8, 2004 Scheduling 44

11

Example

m FQ

m Finish #:
mAl=1,Bl=Cl=2
mA2=35

m Sequence of service: Al, {B1,C1}, A2
m Departure Time: 1, 2, 5, 7

m GPS
m Sequence of service: Al, {B1,C1}, A2
m Departure time: 3, 5.5, 5.5, 7

Sep 8, 2004 Scheduling 45

Analysis

m Unweighted case:
m if GPS has served x bits from connection A by time t

m WFQ would have served at least x - P bits, where P is
the largest possible packet in the network

m However, WFQ could send #uch more than GPS would =>
absolute fairness bound > P

Sep 8, 2004 Scheduling 46

Evaluation

m Pros
m like GPS, it provides protection
m can obtain worst-case end-to-end delay bound

m gives users incentive to use intelligent flow control
(and also provides rate information implicitly)

m Cons
m needs per-connection state

m iterated deletion is complicated (occurs during round
number computation)

W requires a priority queue

Sep 8, 2004 Scheduling 47

WFQ Variants

m There are many WFQ variants that are easier to
implement and provides different levels of
performance bounds

m SCFQ — self clock fair queueing (1994)
m DRR - Deficit Round-Robin (1995)

m W2FQ — worst-case fair WFQ (1996)
® and many, many more

m In practice, when WFQ variants are available on
routers, the number of classes/flows supported
tend to be small

Sep 8, 2004 Scheduling 48

12

Outline

m What is scheduling, why we need it?

m Requirements of a scheduling discipline
m Fundamental choices

m Scheduling disciplines

m Buffer management and packet drop strategies

Sep 8, 2004 Scheduling 49

Buffer Management

m Packets that cannot be served immediately are

buffered

m How should the buffer be shared among
flows/connections?

m When buffers is full, a packet drop strategy is
needed

m Packet losses happen almost always from best-
effort connections (why?)

m Shouldn’t drop packets unless imperative

m packet drop wastes resources (why?)

Sep 8, 2004 Scheduling 50

Why is buffer management important?

m Consider the case where there are 2 flows, flow 1 has
strict priority over flow 2.

m [et both flows share the same buffer, of size N, with no
differentiation.

m Let the buffer be empty initially

m Assume >N packets from flow 2 arrives, occupying all the
buffer space

m Packets from flow 1 arrives later and are dropped (since
buffer is full)

m With sufficiently large difference in arrival rates between flow
2 and flow 1, packets from flow 1 may never be (buffered
and) scheduled even though it has higher scheduling
priority!!!

Sep 8, 2004 Scheduling 51

Classification of drop strategies

1. Degree of aggregation
2. Drop priorities

3. Drop position

4. Early or late

Sep 8, 2004 Scheduling 52

13

1. Degree of aggregation

How much buffer space per flow?

m Degree of discrimination in selecting a packet to drop

m E.g. in vanilla FIFO, all packets are in the same class

m Instead, can classify packets and drop packets
selectively

m Issues:
m Who decides the aggregation: router or another element?

m If another element decides, how’s the aggregation indicated
to the router?

m How many aggregations are needed?

m The finer the classification the better the protection but more
work/overhead for the network elements

Sep 8, 2004 Scheduling 53

m One way is to define a maximum queue length threshold
m How should the maximum queue length be set ?
m Static threshold is inflexible

m If the thresholds are too small, does not support statistical
multiplexing efficiently

m If the thresholds are too large, does not provide isolation
m Number of flows/connections can change
m One approach: dynamic thresholding

m the maximum permissible length at any instant is proportional to the
amount of unused buffer

. T(t) =a (B - Q(t))7 o= 2)41“'
m Thresholds are sensitive to load and number of flows
m Some spare capacity is left to handle transit load

m A, K. Choudhury and E. L. Hahne, "Dynamic Queue Length Thresholds for Shared-Memory Packet
Switches," IEEE/ACM Trans. Commun., vol. 6, no. 2, Apr. 1998, pp. 130--40.

Sep 8, 2004 Scheduling 54

2. Drop priorities

CLP bit: pros and cons

m Drop lower-priority packets first

m How to choose?
m endpoint marks packets
m regulator marks packets

m congestion loss priority (CLP) bit in packet header

/_ _H“__
Marked ™
p'\d. oL -
ﬂ)e&f)
Saurce]khn.r
smn.p'\d. ol alse - |'I‘
marks S swich

ackels C Preferentially
L =l discands
AN rarked
e
-
O

Sep 8, 2004 Scheduling 55

m Pros
m if network has spare capacity, all traffic is carried

m during congestion, load is automatically shed

m Cons
m separating priorities within a single connection is
hard
m what prevents all packets being marked as high
priority?
Sep 8, 2004 Scheduling 56

14

2. Drop priority (contd.)

m Special case of AAL5
® want to drop an entire frame, not individual cells

m cells belonging to the selected frame are
preferentially dropped

m Drop packets from ‘nearby’ hosts first
m because they have used the least network resources

m can’t do it on Internet because hop count (TTL)
decreases

Sep 8, 2004 Scheduling 57

2. Drop priority (contd.)

m Given a set of aggregates of the same “weight”,
which aggregate to drop from?

m Drop packet from class with the longest queue
= Why?

m Max-min fair allocation of buffers to aggregates

Sep 8, 2004 Scheduling 58

3. Drop position

m Can drop a packet from head, tail, or random
position in the queue
m Tail
m casy ., 5
® defaultapproach ™ AN _3 —Q
m Head

m harder — —

Ackz

m lets source detect loss eatlier (useful for TCP)

Sep 8, 2004 Scheduling 59

3. Drop position (contd.)

m Random

m harder to implement

m if no aggregation, hurts hogs most
u DfOp entire lOﬂgCSt qucuc

m casy

m almost as effective as drop tail from longest queue

Sep 8, 2004 Scheduling 60

15

4. Early vs. late drop

RED

m Harly drop => drop even if space is available
m signals endpoints to reduce rate in eatly stages of congestion
m cooperative sources get lower overall delays, uncooperative
sources get severe packet loss
m Early random drop

m drop arriving packet with fixed drop probability if queue
length exceeds threshold

® intuition: misbehaving sources more likely to send packets
and see packet losses

® Does it work?

Sep 8, 2004 Scheduling

61

m Random early detection (RED) makes three improvements

m Metric is moving average of queue lengths
= small bursts pass through unharmed
= only affects sustained overloads
m Packet drop probability is a function of mean queue length
m prevents severe reaction to mild overload
m Can mark packets instead of dropping them
m allows sources to detect network state without losses
m RED improves performance of a network of cooperating TCP
sources
m No bias against bursty sources
= Controls queue length regardless of endpoint cooperation

Sep 8, 2004 Scheduling 62

RED Algorithm

Packet Drop Probability (P,)

m For each packet arrival

m Calculate the average queue size ave Q
m If min <= Q < <= max

m Calculate probability P,

m With probability P,, mark the packet
m Else if Q > max

m Mark the packet

m Q is the smoothed version of the queue defined by
Qu=(1-w) x Q+ wx q

where q is the current queue size.
m The smaller the w, the slower Q reflects changes in the queue size.

Sep 8, 2004 Scheduling

63

n P & max, (avg — ming,)

(max, — min,)
The final packet marking probability
mP & P,

(1 = count . P,))

m count: # of unmarked packets that have arrived since the
last marked packet

m Ensures that the gateway does not wait too long before
marking a packet

Sep 8, 2004 Scheduling 64

16

RED (cont’d)

p — drop probability

max,

Sep 8, 2004

ming,

Scheduling

Q

maxy,

65

Issues with RED

m RED is extremely sensitive to # sources and parameter
settings

m Static values of min, max and max are not good when

P
network conditions change

m Many variants of RED are proposed:
m ARED - Adaptive RED
m FRED - Flow Random Early Drop
m SRED - Stabilized RED
m Other Active Queue Management
m BLUE
= REM

Sep 8, 2004 Scheduling 66

17

