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Scheduling

m Sharing always results in contention

® A scheduling discipline resolves contention:
® who’s next?

m Key is to share resources fairly and provide
some form of performance guarantees
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Components

m A scheduling discipline does two things:
m decides service order (scheduling)

m manages queue of service requests (buffer
management)

m Example:
m consider queries awaiting web server
m scheduling discipline decides service order

m and also if some query should be ignored
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Where?

m Anywhere where contention may occur
m At every layer of protocol stack

m Usually studied at network layer, at output
queues of switches
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Why do we need one?

m Because applications need it
m We expect at least two types of future
applications
m best-effort (adaptive, non-real time)
m c¢.g. email, some types of file transfer

m guaranteed service (non-adaptive, real time)

m c.g. packet voice, interactive video, stock quotes
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What can scheduling disciplines do?

m Give different users different qualities of service

m HExample of passengers waiting to board a plane
m carly boarders spend less time waiting
m bumped off passengers are ‘lost’!
m Scheduling disciplines can allocate
m bandwidth
m delay
m Joss

m They also determine how fair the network is
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Requirements

m An ideal scheduling discipline
W is easy to implement
m is fair (what is fair?)
m provides performance bounds

m allows easy adwission control decisions

m to decide whether a new flow can be allowed
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Ease of implementation

m Scheduling discipline has to make a decision
once every few microseconds!

m Should be implementable in a few instructions
or hardware
m for hardware: critical constraint is VLSI space
m Work per packet should scale less than linearly
with number of active connections
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Fairness

m Scheduling discipline a/locates a resource

m An allocation is fair if it satisfies some notion of
fairness

m Intuitively

m cach connection gets what it “deserves”
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Fairness (contd.)

m Fairness is tuitively a good idea

m But it also provides protection
m traffic hogs cannot overrun others

m automatically builds firewalls around heavy users

m Fairness is a global objective, but scheduling is
local

m Hach endpoint must restrict its flow to the
smallest fair allocation

Sep 8, 2004 Scheduling

Notion of Fairness

m  What is “fair” in resource sharing?
m  Everybody gets what they need?
| ] How about excess resources?

m  Example:

m A “flat” tax system whereby everybody pays the same tax
rate.

m A “progressive” tax system whereby people who has larger
income pay at a higher tax rate.

m  Factors to consider
m  How does fairness relate to ability to use resource?

m  How does fairness affects overall resource utilization?

Sep 8, 2004 Scheduling 14

Fairness

m FEqual Share

m Resources are shared among all users independent of
user requirements and resource utilization

m Is it a good model for resource sharing?
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Max-Min Fairness

m Maximizes the minimum share of a resource
whose demand is not fully satisfied
m Intuitively:
m cach connection gets no more than what it wants
m the excess, if any, is equally shared
m Start with max-min fairness for flow control
m [BG, chapter 6: Flow Control]
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Max-Min Flow Control

S1 S3

SO meee

AR PRI S
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How much rate should be allocated to SO, S1, S2 and S3?
Two possibilities:
{0.5,0.5,0.5,0.5} but L3 is under-utilized
{0.5,0.5,0.5,2.5} S3 gets more bw with no impact on others
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Max-Min Flow Control

m A rate allocation is max-min fair if no rate can be increased

without decreasing another rate with a smaller or equal value

S1 S4

5 Flows
All link capacities
are 1

S5

S3
S2

1. {1/3,1/3,1/3,1/3,1/3}
2. {2/3,1/3,1/3,2/3,1/3}
3. {2/3,1/3,1/3,1,1/3}
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Max-Min Allocation

m  Apply max-min allocation to a single resource

m  Interesting case is when demand is greater
than capacity

m  Given users with demands {2,2.6,4,5} and
capacity 10. Total demand = 13.5.

. {2.5,25,25,25)  {0.5-0.1,-1.5,2.5} excess=0.5

2 {2,2.662.66,2.66)  {0,0.06,1.34,2.34} excess=0.06

5 (2262727} {0,0,1.3,2.3}
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Proportional Fair (PF)

m  Maximize sum of utility (a function of the allocated rate), a
reasonable utility function is log()
m A PF allocation x; satisfies Z(y; — x;)/x, <= 0 for any feasible
allocation y
m The allocation below would be
m Max-Total: {0,1,1,1}. Total = 3. Utility = ?
m Max-Min Fair: {0.5,0.5,0.5,0.5}. Total = 2. Utlity = ?
m Proportional Fair: {0.25,0.75,0.75,0.75}. Total = 2.5. Utility = ?

# v, S3 v
S0 .mﬂ-.. .I .»
can=17:  Ca2= T CI3) =1
“ 1 ’:'
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Fundamental choices

1. Work-conserving vs. non-work-conserving

2. Degree of aggregation
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Work conserving or not?

m Work conserving: server is never idle when there
1s packets awaiting service

m Maximizes utilization of server resource

m Why bother with non-work conserving?
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Non-work-conserving disciplines

m Key conceptual idea: delay packet till e/zgible

m Reduces delay-jitter => fewer buffers in
network

m How to choose eligibility time?
m rate-jitter regulator
® bounds maximum outgoing rate
m delay-jitter regulator

m compensates for variable delay at previous hop
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Do we need non-work-conservation?

m Can remove delay-jitter at an endpoint instead
m but also reduces size of switch buffers...
m Increases mean delay
m not a problem for playback applications
m Wastes bandwidth
m can serve best-effort packets instead
m Always punishes a misbehaving source
m can’t have it both ways

m Bottom line: not too bad, implementation cost may be
the biggest problem
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Degtree of aggregation

m More aggregation
m less state: less memory and computation
m cheaper: smaller VLS, less to advertise
m cost: less individualization/differentiation
m Solution

m agoregate to a cass, members of class have same performance
requirement

® no protection within class

m issue: what is the appropriate class definition?
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First In First Out (FIFO)

m Most common scheduling

m Schedule packets according to the time of arrival
m Disadvantages

m Cannot differentiate between packets
m Advantages

m Easy to implement

m Question: How does a complex scheduler
improves the performance?
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The Conservation Law

m If the scheduler is work conserving, and the scheduling
is independent of the packet service time
m ¥ p,q; = constant
m where p; = mean utilization of connection i and q; = mean
waiting time of connection I
m Therefore, if by using a different scheduling discipline,
a particular connection receives a lower delay than with
FCFS, at least one other connection must have a higher
delay.

m The average delay with FCFES is a tight lower bound for
work conserving and service time independent
scheduling disciplines

Sep 8, 2004 Scheduling 29

Service-Time Dependent Scheduling

D(.) be the average waiting time

FCFS: First Come First Serve

SPT: shortest processing time first

SRPT: shortest remaining processing time first
D(FCFS) >= D(SPT) >= D(SRPT)*

m However, service-time dependent scheduling are not
common in packet switching because the packet
ordering will be modified and delay for large packets
increases

m *Reference: [KLE70]
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General Process Sharing (GPS)

m A scheduler should be easy to implement, fair, provides
performance bounds, and allows easy admission control
decisions

m GPS achieves 2 max-min allocation

m provides performance (throughput/delay/jitter)
bound and allows admission control (when used
with additional mechanisms)

Sep 8, 2004 Scheduling 31

General Process Sharing (GPS)

m Conceptually, GPS serves packets as if they are
in separate logical queues, visiting each non-
empty queues in turn

m In each turn, an infinitesimally small amount of data
is served so that in any finite time interval, it can visit
all logical queues

m Obviously, GPS is unimplementable since one
cannot serve infinitesimals, only bits or packets

m However, GPS provides a baseline for the most
(max-min) fair packet scheduling
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GPS

m A more formal definition of GPS
® A connection is backlogged whenever it has data in its queue
m There are N connections with real positive weights ¢(1),...,
O(N)
m Let S(i,7,t) be the amount of data from connection i served in
the interval [t,t]

m For any backlogged connection i, in any interval [t,t] and for
S@i,%,0)/8GyT,t) >= ¢(1)/ ¢G)
m A non-backlog connection is getting all the resource it
needs

m Backlog connections share all excess resources evenly
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What next?

m We can’t implement GPS
m So, lets see how to emulate it

m We want to be as fair as possible (as close to
GPS as possible)

m But also have an efficient implementation
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(Weighted) round robin

m Serve a packet from each non-empty queue in
turn

m Unfair if packets are of different length or
weights are not equal

m Different weights, fixed packet size

m serve more than one packet per visit, after
normalizing to obtain integer weights

m Example: weight = {1,1.5}, in each round, serves 2
packets from queue 1 and 3 packets from queue 2
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(Weighted) round robin

m Different weights, variable size packets
m normalize weights by mean packet size

me.g. weights {0.5, 0.75, 1.0}, mean packet sizes
{50, 500, 1500}

mnormalize weights: {0.5/50, 0.75/500, 1.0/1500}
= {0.01, 0.0015, 0.000666}, normalize again {60,
9,4}
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Problems with Weighted Round Robin

m With variable size packets and different weights,
need to know mean packet size in advance

m Can be unfair for long periods of time

m Eog
m T3 trunk with 500 connections, each connection has mean

packet length 500 bytes, 250 with weight 1, 250 with weight
10

m Each packet takes 500 * 8/45 Mbps = 88.8 microseconds

m Round time = (250*10 + 250*1) * 88.8 = 2750 * 88.8 =
244.2 ms
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Weighted Fair Queueing (WFQ)

m Deals better with variable size packets and
weights

m The idea is that assume GPS is fairest discipline

m Find the finish time of a packet, had we been doing
GPS

m Then serve packets in order of their finish
times

m The scheduler tries to emulate the order in
which packets are processed by GPS
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WFQ: first cut

m Suppose, in each round, the server served one bit
from each active connection
m begins with emulating bit-by-bit Round-Robin

m Round number is the number of rounds already
completed
m can be fractional

m Hach round of service takes a variable amount
of time

m The more connections served, the longer the round
takes
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WFQ (cont’d)

m If a packet of length p arrives to an empty queue when
the round number is R, it will complete service when
the round number is R + p => finish numberis R + p

m independent of the number of other connections!

m If a packet arrives to a non-empty queue, and
the previous packet has a finish number of £
then the packet’s finish number is f#p

m Serve packets in order of finish numbers
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WFQ: computing the round number

m Naively: round number = number of rounds of service
completed so far
m what if a server has not served all connections in a round?
m what if new conversations join in halfway through a round?
m Redefine round number as a real-valued variable that
increases at a rate inversely proportional to the
number of currently active connections
m With this change, WFQ emulates GPS instead of bit-
by-bit RR

A. Demers and S. Kevhav, “Analysis and Simulation of a Fair Queueing
Algorithm,” ACM SIGCOMM’89
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WFQ implementation

m On packet arrival:

m classify packet and look up finish number of last packet
served (or waiting to be served)

= O(1) to O(N)
m re-compute round number
m worst case O(N)
m compute finish number
m insert in priority queue sorted by finish numbers
= O(logN)
m if no space, drop the packet with largest finish number
m On service completion

m sclect the packet with the lowest finish number
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Example: FQ

m Three connections: A,B,C. At t=0, packet of size 1,2 and 2 arrives.
(A1,B1,C1). Finish time: A1 =1,B1 = C1 = 2.

m With GPS, at t=3, round 1 is completed, Al departs, only 2
connections active

m At t=4, round is 1.5, A2 of size 2 arrives, finish time is (1.5+2) 3.5

A Round

3 Al A2 C1 4
Bl arrives departs ;
departs departs 1 I 1
. . i
A2
departs
Time
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Example: GPS

m Three connections: A,B,C. At t=0, packet of size 1,2
and 2 arrives. (A1,B1,C1). At t=4, A2 of size 2 arrives
m Using GPS:
m At t=3, all packets get 1 bit of service
m Al departs
m At t=4, Bl and C1 get 1.5 bits of service
m A2 arrives
m At t=51/2,B1 and C1 get 2 bits of setvice
m A2 gets "2 bits of service
= B1 and C1 depart
m At t=7, A2 departs
m Sequence of service = Al, {B1,C1}, A2
m Departure time = 3, 5.5, 5.5, 7
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Example

m FQ

m Finish #:
mAl=1,Bl=Cl=2
mA2=35

m Sequence of service: Al, {B1,C1}, A2
m Departure Time: 1, 2, 5, 7

m GPS
m Sequence of service: Al, {B1,C1}, A2
m Departure time: 3, 5.5, 5.5, 7
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Analysis

m Unweighted case:
m if GPS has served x bits from connection A by time t

m WFQ would have served at least x - P bits, where P is
the largest possible packet in the network

m However, WFQ could send #uch more than GPS would =>
absolute fairness bound > P
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Evaluation

m Pros
m like GPS, it provides protection
m can obtain worst-case end-to-end delay bound

m gives users incentive to use intelligent flow control
(and also provides rate information implicitly)

m Cons
m needs per-connection state

m iterated deletion is complicated (occurs during round
number computation)

W requires a priority queue
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WFQ Variants

m There are many WFQ variants that are easier to
implement and provides different levels of
performance bounds

m SCFQ — self clock fair queueing (1994)
m DRR - Deficit Round-Robin (1995)

m W2FQ — worst-case fair WFQ (1996)
® and many, many more ....

m In practice, when WFQ variants are available on
routers, the number of classes/flows supported
tend to be small
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Buffer Management

m Packets that cannot be served immediately are

buffered

m How should the buffer be shared among
flows/connections?

m When buffers is full, a packet drop strategy is
needed

m Packet losses happen almost always from best-
effort connections (why?)

m Shouldn’t drop packets unless imperative

m packet drop wastes resources (why?)
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Why is buffer management important?

m Consider the case where there are 2 flows, flow 1 has
strict priority over flow 2.

m [ et both flows share the same buffer, of size N, with no
differentiation.

m Let the buffer be empty initially

m Assume >N packets from flow 2 arrives, occupying all the
buffer space

m Packets from flow 1 arrives later and are dropped (since
buffer is full)

m With sufficiently large difference in arrival rates between flow
2 and flow 1, packets from flow 1 may never be (buffered
and) scheduled even though it has higher scheduling
priority!!!
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Classification of drop strategies

1. Degree of aggregation
2. Drop priorities

3. Drop position

4. Early or late
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1. Degree of aggregation

How much buffer space per flow?

m Degree of discrimination in selecting a packet to drop

m E.g. in vanilla FIFO, all packets are in the same class

m Instead, can classify packets and drop packets
selectively

m Issues:
m Who decides the aggregation: router or another element?

m If another element decides, how’s the aggregation indicated
to the router?

m How many aggregations are needed?

m The finer the classification the better the protection but more
work/overhead for the network elements
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m One way is to define a maximum queue length threshold
m How should the maximum queue length be set ?
m Static threshold is inflexible

m If the thresholds are too small, does not support statistical
multiplexing efficiently

m If the thresholds are too large, does not provide isolation
m Number of flows/connections can change
m One approach: dynamic thresholding

m  the maximum permissible length at any instant is proportional to the
amount of unused buffer

. T(t) =a (B - Q(t))7 o= 2)41“'
m Thresholds are sensitive to load and number of flows
m Some spare capacity is left to handle transit load

m A, K. Choudhury and E. L. Hahne, "Dynamic Queue Length Thresholds for Shared-Memory Packet
Switches," IEEE/ACM Trans. Commun., vol. 6, no. 2, Apr. 1998, pp. 130--40.

Sep 8, 2004 Scheduling 54

2. Drop priorities

CLP bit: pros and cons

m Drop lower-priority packets first

m How to choose?
m endpoint marks packets
m regulator marks packets

m congestion loss priority (CLP) bit in packet header

/_ _H“\__
Marked ™
p'\d. oL -
ﬂ)e&f )
Saurce ]khn.r
smn.p'\d. ol alse - |'I‘
marks S swich

ackels C Preferentially
L =l discands
AN rarked
e
-
O
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m Pros
m if network has spare capacity, all traffic is carried

m during congestion, load is automatically shed

m Cons
m separating priorities within a single connection is
hard
m what prevents all packets being marked as high
priority?
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2. Drop priority (contd.)

m Special case of AAL5
® want to drop an entire frame, not individual cells

m cells belonging to the selected frame are
preferentially dropped

m Drop packets from ‘nearby’ hosts first
m because they have used the least network resources

m can’t do it on Internet because hop count (TTL)
decreases
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2. Drop priority (contd.)

m Given a set of aggregates of the same “weight”,
which aggregate to drop from?

m Drop packet from class with the longest queue
= Why?

m Max-min fair allocation of buffers to aggregates
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3. Drop position

m Can drop a packet from head, tail, or random
position in the queue
m Tail
m casy ., 5
® defaultapproach ™ AN _3 —Q
m Head

m harder — —

Ackz

m lets source detect loss eatlier (useful for TCP)
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3. Drop position (contd.)

m Random

m harder to implement

m if no aggregation, hurts hogs most
u DfOp entire lOﬂgCSt qucuc

m casy

m almost as effective as drop tail from longest queue
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4. Early vs. late drop

RED

m Harly drop => drop even if space is available
m signals endpoints to reduce rate in eatly stages of congestion
m cooperative sources get lower overall delays, uncooperative
sources get severe packet loss
m Early random drop

m drop arriving packet with fixed drop probability if queue
length exceeds threshold

® intuition: misbehaving sources more likely to send packets
and see packet losses

® Does it work?
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m Random early detection (RED) makes three improvements

m Metric is moving average of queue lengths
= small bursts pass through unharmed
= only affects sustained overloads
m Packet drop probability is a function of mean queue length
m prevents severe reaction to mild overload
m Can mark packets instead of dropping them
m allows sources to detect network state without losses
m RED improves performance of a network of cooperating TCP
sources
m No bias against bursty sources
= Controls queue length regardless of endpoint cooperation
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RED Algorithm

Packet Drop Probability (P,)

m For each packet arrival

m Calculate the average queue size ave Q
m If min <= Q < <= max

m Calculate probability P,

m With probability P,, mark the packet
m Else if Q > max

m Mark the packet

m  Q is the smoothed version of the queue defined by
Qu=(1-w) x Q+ wx q

where q is the current queue size.
m  The smaller the w, the slower Q reflects changes in the queue size.
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n P & max, (avg — ming, )

(max, — min, )
The final packet marking probability
mP & P,

(1 = count . P,))

m count: # of unmarked packets that have arrived since the
last marked packet

m Ensures that the gateway does not wait too long before
marking a packet
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RED (cont’d)

p — drop probability

max,

Sep 8, 2004

ming,

Scheduling

Q

maxy,
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Issues with RED

m RED is extremely sensitive to # sources and parameter
settings

m Static values of min, max and max  are not good when

P
network conditions change

m Many variants of RED are proposed:
m ARED - Adaptive RED
m FRED - Flow Random Early Drop
m SRED - Stabilized RED
m Other Active Queue Management
m BLUE
= REM
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