CS6204: Combinatorial and Graph Algorithms

CS6204: Combinatorial and Graph Algorithms
Semester 1, 2000/01 (Jul-Oct 2000)
Leong Hon Wai, S16 05-05

Pre-requisites: CS3230 Design and Analysis of Algorithms

Assessment:
(30%) Homework
(20%) Programming Project -- using C++ and LEDA
(50%) Final Exam [Open Book]

Objectives:
This course presents advanced material on the design and analysis of combinatorial algorithms with emphasis on efficient algorithms and data structures. It also provides practical experience of re-using a C++ library of advanced data structures and algorithms in software development. This course is meant for students/ candidates who intend to (i) do research in computer science in general, and algorithm design in particular, or (ii) do advanced application/ software development in other areas of computer science.

Tentative Course Outline (Semester 1, 2000/01)

A. ADVANCED DATA STRUCTURES
Priority Queues, Heaps and Graph Algorithms
Leftist Heaps and Fast MST Algorithm
Amortized Analysis
Fibonacci Heaps and Fast Shortest Path Algorithm
LEDA - A Library of Efficient Data Structures and Algorithms

B. COMBINATORIAL ALGORITHMS
Maximum Matching -- Problems, Algorithms, Applications
Network Flow -- Problem, Algorithms, Applications
Graph Partitioning -- Problem, Algorithms, Applications
Berth Allocation Problem
Knapsack Problem

C. NP-COMPLETENESS
Cook's Theorem
Proving NP-Completeness
Approximation Algorithms
Local Search Methods

Project Work:
For project work, each student is expected to do a C++ programming project using LEDA to solve a combinatorial optimization problem -- to be announced later. LEDA is a powerful C++ library of data structures and algorithms that can be reused to implement advanced algorithms covered in the course. To help learn LEDA and realize the power of LEDA, one or two simpler implementation exercises will also be included.

LeongHW, (10/07/2000)