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Abstract

We consider an environment where distributed
data sources continuously stream updates to a
centralized processor that monitors continuous
queries over the distributed data. Significant com-
munication overhead is incurred in the presence of
rapid update streams, and we propose a new tech-
nique for reducing the overhead. Users register
continuous queries with precision requirements at
the central stream processor, which installs filters
at remote data sources. The filters adapt to chang-
ing conditions to minimize stream rates while
guaranteeing that all continuous queries still re-
ceive the updates necessary to provide answers of
adequate precision at all times. Our approach en-
ables applications to trade precision for communi-
cation overhead at a fine granularity by individu-
ally adjusting the precision constraints of continu-
ous queries over streams in a multi-query work-
load. Through experiments performed on syn-
thetic data simulations and a real network moni-
toring implementation, we demonstrate the effec-
tiveness of our approach in achieving low com-
munication overhead compared with alternate ap-
proaches.

1 Introduction

Query processing overcontinuous data streamshas re-
ceived considerable attention recently,e.g., [CCC+02,
MF02, MWA+03]. We consider distributed environments
in which remote data sources continuously push updates
to a centralstream processor, whose job is to evalu-
ate multiplecontinuous queriesover the streamed data
[BW01, CDTW00, LPT99, MSHR02]. In these environ-
ments, significant communication overhead is incurred in
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the presence of rapid update streams. We offer an effective
method for reducing communication cost, taking advan-
tage of the fact that many applications do not require exact
precision for their continuous queries—examples are dis-
cussed shortly. When applications do not require exact pre-
cision and data values do not fluctuate wildly, approximate
answers of sufficient precision usually can be computed
from a small fraction of the input streams. In our approach,
users submit quantitativeprecision constraintsalong with
continuous queries to the stream processor, and the stream
processor installsfilters at the remote data sources. The
filters adapt to changing conditions to minimize communi-
cation cost while guaranteeing that all continuous queries
still receive the updates necessary to provide answers of
adequate precision at all times. In this way, users are of-
fered fine-grained control over the tradeoff between query
answer precision and communication cost. Imprecision of
query results is bounded numerically so applications need
not deal with any uncertainty.

Many stream-oriented applications do not need exact
answers, yet require quantitative guarantees regarding the
precision of approximate answers [YV00]. For example,
consider wireless sensor networks,e.g., [EGPS01, KKP99,
MF02, PK00], which enable continuous monitoring of en-
vironmental conditions such as light, temperature, sound,
vibration, structural strain, etc. [MSHR02]. Since the bat-
tery life of miniature sensors is severely limited, and ra-
dio usage is the dominant factor determining battery life
[MBC+01, PK00], it is crucial to reduce the amount of data
transmitted, even if a small increase in local processing by
the sensor is required [MF02]. Many applications that rely
on sensor data can tolerate approximate answers having a
controlled degree of imprecision [MBC+01], making our
approach ideal for reducing data transmission. Other ex-
amples with continuous queries over distributed data that
can tolerate a bounded amount of imprecision include in-
dustrial process monitoring, stock quote services, online
auctions, wide-area resource accounting, and load balanc-
ing for replicated servers [SBS+02, YV00].

1



Next we focus on one particular application, network
monitoring, and give examples of continuous queries that
arise in the context of that application to motivate our work.
Then in the remainder of Section 1 we provide an overview
of our approach.

1.1 Example Application: Network Monitoring

Managing complex computer networks requires tools that,
among other things, continually report the status of net-
work elements in real time, for applications such as traffic
engineering, reliability, billing, and security,e.g., [DR01,
vRB01]. Network monitoring applications do not typically
require absolute precision [vRB01]. Thus, our approach
can be used to reduce monitoring communication overhead
between distributed network elements and a central mon-
itoring station, while still providing quantitative precision
guarantees for the approximate answers reported.

Real-time network monitoring workloads often consist
of a set of queries that perform aggregation across dis-
tributed network elements [DR01, vRB01]. The data to be
aggregated is most commonly selected or grouped by iden-
tifiers such assource-addressanddestination-address, or
by attributes such as packet type. We now give two con-
crete examples of continuous query workloads for network
monitoring applications.

Example 1: Network path latencies are of interest for
infrastructure applications such as manual or automated
traffic engineering,e.g., [VGLA00], or quality of service
(QoS) monitoring. Path latencies are computed by monitor-
ing the queuing latency of each router along the path, and
summing the current queue latencies together with known,
static transmission latencies. Since the queue latency at
each router generally changes every time a packet enters
or leaves the router, a naive approach could generate moni-
toring traffic whose volume far exceeds the volume of nor-
mal traffic, a situation that is clearly unacceptable. Fortu-
nately, path latency applications can generally tolerate ap-
proximate answers with bounded absolute numerical error
(such as latency within5 ms of accuracy), so using our ap-
proach obtrusive exact monitoring is avoided.

Example 2: Network traffic volumes are of interest to or-
ganizations such as internet service providers (ISP’s), cor-
porations, or universities, for a number of applications in-
cluding security, billing, and infrastructure planning. Since
it is often inconvenient or infeasible for individual organi-
zations to configure routers to perform monitoring, a sim-
ple alternative is to instead monitor end hosts within the
organization. We list several traffic monitoring queries that
can be performed in this manner, and then motivate their
usefulness. These queries form the basis of performance
experiments on a real network monitoring system we have
implemented; see Section 5.

Q1 Monitor the volume of remote login (telnet, ssh, ftp,
etc.) requests received by hosts within the organiza-
tion that originate from external hosts.

Q2 Monitor the volume of incoming traffic received by all
hosts within the organization.

Q3 Monitor the volume of incoming SYN packets re-
ceived by all hosts within the organization.

Q4 Monitor the volume of outgoing DNS lookup requests
originating from within the organization.

Q5 Monitor the volume of traffic between hosts within the
organization and external hosts.

QueriesQ1 throughQ4 are motivated by security con-
siderations. One concern is illegitimate remote login at-
tempts, which often occur in bursts that can be detected us-
ing queryQ1. Another concern is denial-of-service (DoS)
attacks. To detect the early onset of one form of incoming
DoS attacks, organizations can monitor the total volume
of incoming traffic received by all hosts using queryQ2.
Another form of DoS attack is characterized by a large vol-
ume of incoming “SYN” packets that can consume local
resources on hosts within the organization, which can be
monitored using queryQ3. Organizations also may wish to
detect suspicious behavior originating from inside the orga-
nization, such as users launching DoS attacks, which may
entail sending an unusually large number of DNS lookup
requests detectable using queryQ4. In all of these exam-
ples, current results of the continuous query can be com-
pared against data previously monitored at similar times
of day or calendar periods that represents “typical” behav-
ior, and the detection of atypical or unexpected behavior
can be followed by more detailed and costly investigation
of the data. Finally, organizations can monitor the overall
traffic volume in and out of the organization using query
Q5, to help plan infrastructure upgrades or track the cost of
network usage billed by a service provider.

If traffic monitoring is not performed carefully, many of
these queries may be disruptive to the communication in-
frastructure of the organization [HMPW01]. Fortunately,
these applications also do not require exact precision in
query answers as long as the precision is bounded by a pre-
specified amount. Note that precision requirements may
change over time. For example, during periods of height-
ened suspicion about DoS attacks, the organization may
wish to obtain higher precision for queriesQ2 andQ3 even
at the cost of increased communication overhead.

1.2 Overview of Approach

We focus on continuous queries such as the network mon-
itoring examples above. All of these queries compute ag-
gregate values over streams of updates to numeric (real)
data objects, which may originate from many remote data
sources. The conventional answer to an aggregation query
is a single real value. We define abounded approximate
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answer(hereafterbounded answer) to be a pair of real val-
uesL andH that define an interval[L, H ] in which the
precise answer is guaranteed to lie. Precision is quantified
as the width of the range(H − L), with 0 corresponding
to exact precision and∞ representing unbounded impre-
cision. A precision constraintfor a continuous query is a
user-specified constantδ ≥ 0 denoting a maximum accept-
able interval width for the answer,i.e., 0 ≤ H − L ≤ δ at
all times.

Our goal is to provide guaranteed bounds[L, H ] as an-
swers to continuous queries at all times, while filtering up-
date streams at the sources as much as possible. For each
remote data objectO whose updates are sent to the central
stream processor for continuous query evaluation, astream
filter is installed atO’s source. Each filter maintains a nu-
meric bound[LO, HO] of width WO centered around the
most recent numeric updateV (whereV is the new value
for O) that passed the filter,i.e., LO = V − WO

2 and
HO = V + WO

2 . The filter eliminates from the stream
all updatesV that lie insideO’s bound, i.e., that satisfy
LO ≤ V ≤ HO. Each time an updateV passes the filter
and is transmitted to the central processor the filter recen-
ters the bound aroundV by settingLO := V − WO

2 and
HO := V + WO

2 . The central stream processor knows
each objectO’s bound widthWO, and uses it to main-
tain a cached copy of its bound[LO, HO] based on filtered
updates received fromO’s source. The stream processor
can be assured that the source (master) value ofO remains
within the bound until the next update ofO is received.
(Message latency is addressed in Section 4.)

Continuous queries are registered at the stream proces-
sor and whenever a relevant update is received on an input
stream query results are updated accordingly. Each contin-
uous query (CQ)Q has an associated precision constraint
δQ. We assume any number of arbitrary CQ’s with arbi-
trary individual precision constraints. The challenge is to
ensure that at all times the bounded answer to every con-
tinuous queryQ is of adequate precision,i.e., has width
at mostδQ, while filtering streams as much as possible to
minimize total communication cost. As a simple example,
consider a single CQ requesting the current average ofn
data values whose update streams are transmitted from dif-
ferent sources, with a precision constraintδ. We can show
arithmetically that the width of the answer bound is the av-
erage of the widths of then individual bounds. Thus, one
obvious way to guarantee the precision constraint is to use
filters with a bound of widthδ for each of then objects.
Although this simple policy, which we calluniform alloca-
tion, is correct (the answer bound is guaranteed to satisfy
the precision constraint at all times), it is not generally the
best policy. To see why, it is important to understand the
effects of update filter bound width [OLW01].

1.2.1 Effects of Filter Bound Width

A filter bound that is narrow,i.e., H − L is small, en-
ables continuous queries to maintain more precise answers,
but will fail to filter out a significant portion of the update
stream, leading to high communication cost. Conversely,
a bound that is wide,i.e., H − L is large, can reduce the
stream rate substantially due to a more restrictive filter, but
consequently results in more imprecision in query answers.
Uniform allocation can perform poorly for the following
two reasons:

1. If multiple continuous queries are issued on overlap-
ping sets of objects, different bound widths may be
assigned to the same object. While we could simply
choose to use the smallest bound width for the filter,
the higher update stream rate may be wasted on all but
a few queries.

2. Uniform bound allocation does not account for data
values that change at different rates due to different
rates and magnitudes of updates. In this case, we pre-
fer to allocate wider bounds to data values that change
rapidly, and narrower bounds to the rest.

Our performance experiments (Section 5) that compare
uniform against nonuniform bound allocation policies pro-
vide strong empirical confirmation of these observations.

Reason 2 above indicates that a good nonuniform bound
width allocation policy depends heavily on the data update
rates and magnitudes, which are likely to vary over time,
especially during the long lifespan of continuous queries
[MSHR02]. In Example 1 from Section 1.1, a router may
alternate between periods of rapidly fluctuating queue sizes
(and therefore queue latencies) and steady state behavior,
depending on packet arrival characteristics. Therefore, in
addition to nonuniformity, we propose anadaptivepolicy,
in which bound widths are adjusted continually to match
current conditions.

Determining the best bound width allocation at each
point in time without incurring excessive communication
overhead is challenging, since it would seem to require a
single site to have continual knowledge of data update rates
and magnitudes across potentially hundreds of distributed
sources. Moreover, the problem is complicated by Rea-
son 1 above: we may have many continuous queries with
different precision constraints involving overlapping sets of
data objects. In Example 1 from Section 1.1, multiple paths
whose latencies are monitored will not generally be dis-
joint, i.e., they may share routers, and precision constraints
may differ due to differences in path lengths (number of
routers) as well as discrepancies in user precision require-
ments for different paths.
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Figure 1: Our approach to stream filtering for continuous queries.

1.2.2 Adaptive Bound Width Adjustment

We have developed a low-overhead algorithm for setting
bound widths for stream filters adaptively to reduce com-
munication costs while always guaranteeing to meet the
precision constraints of an arbitrary set of registered CQ’s.
The basic idea is as follows. Each source filter for an ob-
ject’s update stream shrinks the bound width periodically,
at a predefined rate. Assuming the bounds begin in a state
where all CQ precision constraints are satisfied (we will
guarantee this to be the case), shrinking bounds only im-
proves precision, so no precision constraint can become vi-
olated due to shrinking. The central stream processor main-
tains a mirrored copy of the periodically shrinking bound
width of each object. Each time the bound width of each
object shrinks, the stream processor reallocates the “left-
over” width to the objects at the central processor it bene-
fits the most, ensuring all precision constraints will remain
satisfied.

1.2.3 Overall Approach

Our approach is illustrated in Figure 1:

• Data sources, on the right, each store master values
for one or more objects, and they generate streams of
updates to those values.

• Filters intercept update streams from sources and
maintain periodically-shrinking bounds for the ob-
jects. Each filter forwards updates that fall outside its
bound to the central stream processor, shown on the
left, and recenters that bound.

• A stream coordinatorin the central stream processor
receives all streamed updates from the filters.

• A precision managerinside the stream coordinator
maintains a copy of the periodically shrinking bound

width for each object. It reallocates width as de-
scribed earlier and notifies the corresponding sources
via growth messages.

• A bound cacheinside the stream coordinator receives
all bound width changes (growth and shrinks) from
the precision manager, along with all value updates
streamed from the data sources via the filters. The
bound cache maintains a copy of the bound for each
object.

• A CQ evaluatorin the central stream processor re-
ceives updates to bounds from the bound cache and
provides updated continuous query answer bounds to
the user.

Two aspects of our approach are key to achieving low
communication cost. First, width shrinking is performed
simultaneously at both the stream processor and the sources
without explicit coordination. Second, the precision man-
ager uses selective growth to tune the width allocation
adaptively. Informally, we minimize the overall cost to
guarantee individual precision constraints over arbitrary
overlapping CQ’s by assigning the widest bounds to the
data values that currently are updated most rapidly and are
involved in the fewest queries with the largest precision
constraints.

In addition to the overall approach, specific contribu-
tions of this paper are as follows:

• In Section 3 we specify the core of our approach:
a low-overhead, adaptive algorithm for assigning fil-
ters to data sources to reduce update stream rates. To
guarantee adequate precision for multiple overlapping
CQ’s while minimizing communication, the precision
manager (Figure 1) uses an optimization technique
based on systems of linear equations.
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• In Section 4 we describe mechanisms in the bound
cache (Figure 1) to handle replica consistency issues
that arise due to nonnegligible stream message laten-
cies.

• In Section 5 we describe our implementation of a real
network traffic monitoring system based on Example
2 in Section 1.1. We provide experimental evidence
that our approach significantly reduces overall com-
munication cost compared to a uniform allocation pol-
icy for a workload of multiple continuous queries with
precision constraints.

2 Related Work

The idea of using numeric bounds and queries with pre-
cision constraints to offer a smooth tradeoff between pre-
cision and performance in distributed data processing en-
vironments was introduced originally in [OLW01, OW00].
However, that work addressedone-timerather than contin-
uous queries, resulting in a very different approach. Specif-
ically, [OW00] developed algorithms for optimally com-
bining approximate cached data with exact source data to
meet the precision requirement for a single query at a single
time. Follow-on work [OLW01] proposed a technique for
adjusting cached approximations to minimize the overall
communication cost under a workload of one-time queries
like those in [OW00]. The precision level of each data ob-
ject is adjusted in isolation, independent of the precision
levels of other objects. Both [OLW01, OW00] exploit the
property that for many one-time queries, answer precision
can be improved to acceptable levels by accessing remote
sources at query-time. In contrast, we focus on applications
that require continuous answers to queries. For these appli-
cations, an answer of adequate precision for each continu-
ous query must be maintained by the central stream proces-
sor at all times.

In quasi copies[ABGMA88], centrally maintained ap-
proximations are permitted to deviate from exact source
values by constrained amounts, thereby providing preci-
sion guarantees. Recent work [SBS+02] extends the ideas
of [ABGMA88], proposing an architecture in which a net-
work of repositories cooperate to deliver data with pre-
cision guarantees to a large population of remote users.
In an environment with multiple cooperating repositories,
data may be propagated through several nodes before ulti-
mately reaching the end-user application, so latency can be
a significant concern. The work in [SBS+02] focuses on
selecting topologies and policies for cooperating reposito-
ries to minimize the degree to which latency causes pre-
cision guarantees to be violated. However, the work in
[ABGMA88] and [SBS+02] does not address queries over
multiple data values, whose answer precision is a function
of the precision of the input values, so they do not need to

deal with the optimization problem we address for mini-
mizing communication.

Recent work on reactive network monitoring [DR01]
addresses scenarios where users wish to be notified when-
ever the sum of a set of values from distributed sources
exceeds a prespecified critical value. In their solution each
source notifies a central processor whenever its value ex-
ceeds a certain threshold, which can be either a fixed con-
stant or a value that increases linearly over time. The local
thresholds are set to guarantee that in the absence of noti-
fications, the central processor knows that the sum of the
source values is less than the critical value. The thresh-
olds in [DR01], which are related to the bounds in our al-
gorithm, are set uniformly across all sources. Similarly,
in [YV00], which focuses on bounded approximate val-
ues under symmetric replication, error bounds are allocated
uniformly across all sites that can perform updates. In
contrast to these approaches, we propose a technique in
which bound widths are allocated nonuniformly and ad-
justed adaptively based on stream transmission costs and
data change rates.

Maintaining numeric bounds on aggregated values from
multiple sources can be thought of as ensuring the contin-
ual validity of distributed constraints. Most work on dis-
tributed constraint checking,e.g., [BBC80, GW93, Huy97]
only considers insertions and deletions from sets, not up-
dates to data values. We are aware of three proposals in
which sources communicate among themselves to verify
numerical consistency constraints across sources contain-
ing changing values:data-value partitioning[SS90], the
demarcation protocol[BGM92], and recent work by Ya-
mashita [Yam02]. The approach of these proposals could
in principle be applied to our setting: sources could rene-
gotiate bound widths in a peer-to-peer manner with the
goal of reducing stream rates. However, in many sce-
narios it may be impractical for sources to keep track of
the other sources involved in a continuous query (or many
continuous queries) and communicate with them directly,
and even if practical it may be necessary to contact multi-
ple peers before finding one with adequate “spare” bound
width to share. It seems unlikely that the overhead of inter-
source communication is warranted to potentially save a
single stream message. Furthermore, the algorithms in
[BGM92, SS90, Yam02] are not designed for the purpose
of minimizing communication cost, and they do not accom-
modate multiple queries with overlapping query sets.

Some work on real-time databases,e.g., [LLSY91], fo-
cuses on scheduling multiple complex, time-consuming
computation tasks that yield imprecise results that improve
over time. In contrast, our work does not focus on how best
to schedule computations, but rather on how to filter data
update streams in a distributed environment while bound-
ing the resulting imprecision.

Finally, [OW02] addresses the problem of maximizing
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data precision subject to constraints on the availability of
communication resources. That work considers the inverse
of the problem we address in this paper of minimizing com-
munication while meeting constraints on data precision.
The choice of which of these complementary approaches
is more appropriate in a given scenario depends on charac-
teristics of the environment and application. An interesting
topic for future work is to consider policies for automati-
cally choosing or switching between the two approaches,
possibly at a per-source granularity.

3 Algorithm Description

In this section we provide more details of our approach,
then we describe our algorithm for adjusting stream filter
bound widths adaptively,i.e., we focus on theprecision
managerin Figure 1 which is the core of our approach.
Recall that our goal is to minimize communication cost
while satisfying the precision constraints of all queries at
all times. We consider continuous queries that operate over
any fixed subset of the remote data values. (We do not con-
sider selection predicates over remote values [OW00], and
we assume that all insertions and deletions of new objects
into the data set are propagated immediately to the central
stream processor via special streams.)

Queries can perform any of the five standard relational
aggregation functions: COUNT, MIN, MAX, SUM, and
AVG. Of these, COUNT can always be computed ex-
actly in our setting, SUM can be computed from AVG and
COUNT, and MIN and MAX are symmetric. It also turns
out, as we show in Appendix A, that for the purposes of
bound width setting MIN queries can be treated as a col-
lection of AVG queries. Therefore, from this point forward
we discuss primarily the AVG function. Note that queries
can request the value of an individual data object by posing
an AVG query over a single object. For flexibility we also
allow objects to be weighted in SUM and AVG queries,
formalized in Appendix B.

Each registered continuous queryQj specifies aquery
setSj of objects and aprecision constraintδj . (Users may
later alter the precision constraintδj of any currently reg-
istered continuous queryQj; see Section 3.4.) The query
setSj is a subset of a set ofn data objectsO1, O2, . . . , On.
Each data objectOi has an exact valueVi stored at a re-
mote source that streams updates after filtering to the cen-
tral stream processor. Say there arem registered con-
tinuous AVG queriesQ1, Q2, . . . , Qm, with query sets
S1,S2, . . . ,Sm, respectively. Then the exact answer to
AVG queryQj is 1

|Sj | ·
∑

1≤i≤n,Oi∈Sj
Vi. Our goal is to be

able to compute an approximate answer continuously that
is within Qj ’s precision constraintδj , using cached bounds
maintained by the central stream processor.

Note that this goal handlessliding window queries
[MWA +03] as well as queries over the most recent data

Symbol Meaning

n number of data objects across all sources

Oi data object (i = 1 . . . n)

Vi exact source value of objectOi

[Li, Hi] bound for objectOi

Wi width of bound for objectOi (Wi = Hi − Li)

Ci update/growth msg. communication cost forOi

C overall communication cost

λ stream message latency tolerance

m number of registered continuous queries

Qj registered query (j = 1 . . . m)

Sj set of objects queried byQj

δj precision constraint of queryQj

T adjustment period (algorithm parameter)

S shrink percentage (algorithm parameter)

Pi streamed update period ofOi (lastT time units)

Bi burden score ofOi (computed everyT time units)

Tj burden target ofQj (computed everyT time units)

Di deviation ofOi (determines growth priority)

Table 1: Model and algorithm symbols.

values only. For the aggregation functions we consider, if
an aggregate value is continuously computed to meet a cer-
tain precision constraint, then the result of further aggre-
gating over time using any type of window also meets that
same precision constraint. However, our algorithm does
not necessarily minimize cost for sliding window queries,
because sliding windows offer some leniency in the way
precision bounds are set: bounds wider thanδ are accept-
able as long as they are compensated for by bounds nar-
rower thanδ within the same time-averaged window. Our
algorithm would need to be modified to take advantage of
this additional leniency in precision, which is a topic of fu-
ture work.

Let us assume that all messages (including update
streams) are transmitted instantaneously and all computa-
tion is instantaneous, for now. In Section 4 we discuss how
we handle realistic, non-negligible latencies. When the pre-
cision manager sends a bound growth message for object
Oi to its source, or an update is transmitted along the data
stream from the source to the stream processor (recall Fig-
ure 1), we model the cost as a known numerical constant
Ci. (Considering the possibility of batching stream updates
from the same source is a topic of future work.) For conve-
nience, the symbols we have introduced and others we will
introduce later in this section are summarized in Table 1.

Before presenting our general adaptive algorithm for
adjusting bound widths, we describe two simple cases in
which the bound width of certain objects should remain
fixed. First, consider an objectO that is involved only in
queries that request a bound on the value ofO alone (AVG
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queries over one value). Then it suffices to fix the bound
width of O to be the smallest of the precision constraints:
WO = min(δj) for queriesQj with Sj = {O}. Second,
for objects that are not included in any currently registered
query, the bound width should be fixed at∞ so that all up-
dates are filtered from its update stream and none are trans-
mitted to the central stream processor. The remainder of
the objects, namely those that are involved in at least one
query over multiple objects, pose our real challenge.

To guarantee that all precision constraints are met, the
following constraint must hold for each queryQj:∑

1≤i≤n,Oi∈Sj

Wi ≤ δj · |Sj |

In other words, the sum of bound widths for each query
must not exceed the product of the precision constraint and
the number of objects queried. Initially, the bounds can be
set in any way that meets the precision constraint of ev-
ery query,e.g., by performing uniform allocation for each
query, and for objects assigned multiple bound widths, tak-
ing the minimum. Then, as discussed in Section 1.2.3,
our general strategy is to reallocate bound width adaptively
among the objects participating in each query. Realloca-
tion is accomplished with low communication overhead by
having bounds shrink periodically over time and having the
stream processor’s precision manager periodically select
one or more bounds to grow based on current conditions.
In Section 3.1 we describe the exact way in which bounds
are shrunk in our algorithm, and then in Section 3.2 we de-
scribe when and how bounds are grown. In Section 3.3 we
provide empirical validation that our algorithm converges
on good bounds.

3.1 Bound Shrinking

Every objectOi has a corresponding bound widthWi that
is maintained simultaneously at both the central stream co-
ordinator and at the source filter. Periodically, everyT
time units (seconds, for example),Oi’s bound width is
decreased symmetrically at both the source filter and the
stream coordinator by settingWi := Wi · (1 − S). The
constantT is a global parameter called theadjustment pe-
riod, andS is a global parameter called theshrink per-
centage. The effect is to decrease the bound width by
the fractionS every time unit, rendering the update stream
filter less restrictive over time. (A filter is more restric-
tive when it blocks more updates from being streamed.)
All adjustments to the bound width—decreases as well as
increases—occur at intervals ofT time units. Note that up-
dates may be streamed to the central stream processor at
any time but they simply reposition bounds without alter-
ing the width. We will discuss good settings for algorithm
parametersT andS in Section 5.

To ensure correctness, each time the bound width for
objectOi shrinks, changing the filter condition, the source

must re-apply the filter to the current data valueVi. If Vi

passes the new filter and has not already been streamed
as an update, the source must generateVi on the update
stream.

3.2 Bound Growing

EveryT time units, when all the bound widths shrink au-
tomatically as described in the previous section, the preci-
sion manager selects certain bound widths to grow instead,
making the corresponding stream filters more restrictive.
Selecting bounds to increase (and how much) is one of the
most intricate parts of our approach.

The first step is to assign a numericalburden scoreBi to
each queried objectOi. Conceptually, the burden score em-
bodies the degree to which an object is contributing to the
overall communication cost due to streamed updates. (We
usestreamed updatesto refer to those data updates that pass
their filter and are sent to the stream processor.) The bur-
den score is computed asBi = Ci

Pi·Wi
where recall thatCi

is the cost to send a streamed update of objectOi, andWi

is the current bound width.Pi is Oi’s estimatedstreamed
update periodsince the previous width adjustment action,
computed asPi = T

Ni
whereNi is the number of updates

of Oi received by the stream coordinator in the lastT time
units. (If Ni = 0 thenPi = ∞ soBi = 0.) The burden
formula is fairly intuitive since,e.g., a wide bound or long
streamed update period reducesBi. The exact mathemati-
cal derivation is given in Appendix C.

Once each object’s streamed update period and burden
score have been computed, the second step is to assign a
valueTj , called theburden target, to each AVG queryQj.
Conceptually, the burden target of a query represents the
lowest overall burden required of the objects in the query
in order to meet the precision constraint at all times. Since
understanding the way we compute burden targets is rather
involved, we present our method later in Section 3.2.1, and
summarize the process here. For queries over objects in-
volved in no other queries, the burden target is set equal to
the average of the burden scores of objects participating in
that query. For queries that overlap it turns out that assign-
ing burden targets requires solving a system ofm equa-
tions with T1, T2, . . . , Tm asm unknown quantities. Be-
cause solving this system of equations exactly at run-time
is likely to be expensive, we find an approximate solution
by running an iterative linear equation solver until it con-
verges within a small errorε. (Performance is evaluated in
Section 3.2.2.)

Once a burden target has been assigned to each query,
the third step is to compute for each objectOi its deviation
Di:

Di = max


Bi −

∑
1≤j≤m,Oi∈Sj

Tj , 0
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Deviation indicates the degree to which an object is “over-
burdened” with respect to the burden targets of the queries
that access it. To achieve low overall stream rates, it is de-
sirable to equally distribute the burden across all objects
involved in a given query. We justify this claim mathe-
matically in Appendix C, and we verify it empirically in
Sections 3.3 and 5.

To see how we can even out burden, recall that the bur-
den score of objectOi is Bi = Ci

Pi·Wi
, so if the bound

[Li, Hi] were to increase in size,Bi would decrease.1

Therefore, the burden score of an overburdened object can
be reduced by growing its bound. Growth is allocated to
bounds using the following greedy strategy. Queried ob-
jects are considered in decreasing order of deviation, so that
the most overburdened objects are considered first. (It is
important that ties be resolved randomly to prevent objects
having the same deviation—most notably0—from repeat-
edly being considered in the same order.) When objectOi

is considered, the maximum possible amount by which the
bound can be grown without violating the precision con-
straint of any query is computed as:

∆Wi = min
1≤j≤m,Oi∈Sj


δj · |Sj | −

∑
1≤k≤n,Ok∈Sj

Wk




If ∆Wi = 0, then no action is taken. For each nonzero
growth value, the precision manager increases the width
of the bound forOi symmetrically by settingLi := Li −
∆Wi

2 andHi := Hi + ∆Wi

2 . After all growth has been
allocated the precision manager sends a message to each
source having objects whose bound width was selected for
growth.

In summary, the procedure for determining bound width
growth is as follows:

1. Each object is assigned aburden scorebased on its
stream transmission cost, estimated streamed update
period, and current bound width.

2. Each query is assigned aburden targetby either av-
eraging burden scores or invoking an iterative linear
solver (described next in Section 3.2.1).

3. Each object is assigned adeviationvalue based on the
difference between its burden score and the burden tar-
gets of the queries that access it.

4. The objects are considered in order of decreasing de-
viation, and each objectOi is assigned the maximum
possible bound growth∆Wi when it is considered.

Complexity and scalability of this approach are dis-
cussed in Section 3.2.2.

1This reasoning relies onPi not decreasing whenWi increases, a fact
that holds intuitively and is discussed further in Appendix C.

3.2.1 Burden Target Computation

We now describe how to compute the burden targetTj for
each queryQj , given the burden scoreBi of each objectOi

(Step 2 above). Recall that conceptually the burden target
for a query represents the lowest overall burden required
of the objects in the query in order to meet the precision
constraint at all times. For motivation consider first the
special case involving a single AVG queryQk over ev-
ery objectO1, . . . , On. In this scenario, the goal for ad-
justing the burden scores simplifies to that of equalizing
them (as shown mathematically in Appendix C) so that
B1 = B2 = · · · = Bn = Tk. Therefore, given a set of bur-
den scores that may not be equal, a simple way to guess at
an appropriate burden targetTk is to take the average of the
current burden scores,i.e., Tk = 1

|Sk| ·
∑

1≤i≤n,Oi∈Sk
Bi.

In this way, objects having higher than average burden
scores will be given high priority for growth to lower their
burden scores, and those having lower than average burden
scores will shrink by default, thereby raising their burden
scores. On subsequent iterations, the burden targetTk will
be adjusted to be the new average burden score. This over-
all process results in convergence of the burden scores.

We now generalize to the case of multiple queries over
different sets of objects. It is useful to think of the
burden score of each object involved in multiple queries
as divided into components corresponding to each query
over the object. Letθi,j represent the portion of ob-
ject Oi’s burden score corresponding to queryQj so that∑

1≤j≤m,Oi∈Sj
θi,j = Bi. The goal for adjusting burden

scores in the presence of overlapping queries is to have the
burden scoreBi of each objectOi equal the sum of the
burden targets of the queries overOi (as shown in Ap-
pendix C). This goal is achieved if for each queryQj

over Oi, θi,j = Tj . Therefore, our overall goal can be
restated in terms ofθ values as requiring that for every
queryQj , θ1,j = θ2,j = · · · = θn,j = Tj (the θi,j val-
ues for objectsOi /∈ Sj are irrelevant). Therefore, given
a set ofθ values, a simple way to guess at an appropri-
ate burden targetTj for each queryQj is by taking the
average of theθ values of objects involved inQj , i.e.,
Tj = 1

|Sj| ·
∑

1≤i≤n,Oi∈Sj
θi,j . For each object/query

pair Oi/Qj , we can expressθi,j in terms of Bi, which
is known, and theθ values for the other queries overOi,
which are unknown:θi,j = Bi −

∑
1≤k≤m,k 6=j,Oi∈Sk

θi,k.
If we replace each occurrence ofθi,k by Tk for all k 6= j
(because we want eachθ∗,k to converge toTk), we have
θi,j = Bi −

∑
1≤k≤m,k 6=j,Oi∈Sk

Tk. Substituting this ex-
pression in our formula for guessing at burden targets based
onθ values, we arrive at the following expression:

Tj =
1
|Sj |

·
∑

1≤i≤n,Oi∈Sj


Bi −

∑
1≤k≤m,k 6=j,Oi∈Sk

Tk
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Figure 2: Scalability of linear system solver.

This result is a system ofm equations withT1, T2, . . . , Tm

asm unknown quantities, which can be solved using a lin-
ear solver package.

3.2.2 Algorithm Complexity and Scalability

Let us consider the complexity of our overall bound growth
algorithm, which is executed once everyT time units.
Most of the steps involve a simple computation per ob-
ject, and the objects must be sorted once. In the last step,
to compute∆Wi efficiently, the precision manager can
continually track the difference (“leftover width”) between
each query’s precision constraint and the current answer’s
bound width. Then for each object we use the precomputed
leftover width value for each query over that object. When
queries are over overlapping sets of objects, an iterative lin-
ear solver is required to compute the burden targets, which
we expect to dominate the computation. The solver repre-
sents the system ofm equations havingT1, T2, . . . , Tm as
m unknown quantities as anm by (m + 1) matrix, where
entries correspond to pairs of queries. Fortunately, the ma-
trix tends to be quite sparse: whenever the query setsSx

andSy of two queriesQx andQy are disjoint, the corre-
sponding matrix entry is0. For this reason, along with the
fact that we can tune the number of iterations, burden target
computation using an iterative linear system solver should
scale well. We use a publicly-available iterative solver
package calledLASPack[Ska96], although many alterna-
tives exist. Convergence was generally achieved in very
few iterations, and the average running time on a modest
workstation was only2.73 milliseconds in our traffic mon-
itoring implementation using multiple overlapping queries
(Section 5).

To test the scalability of our algorithm to a larger num-
ber of queries and data objects than we used in our imple-
mentation, we generated two sets of synthetic workloads
consisting of AVG queries over a real-world200-host net-
work traffic data set (details on this data set are provided
in Section 5). We treated each host as a simulated data
source with one traffic level object. In one set of workloads,
each query is over a randomly-selected5% (10) of the data
sources. In the second set of workloads, each query is over

25% (50) of the data sources, resulting in a much higher
degree of overlap among queries. (The degree of overlap
determines the density of the linear equation matrix, which
is a major factor in the solver running time.) Varying the
number of queriesm, we measured the average running
time on a Linux workstation with a933 MHz Pentium III
processor. We set the error tolerance for the LASPack itera-
tive solver small enough that no change in the effectiveness
of our overall algorithm could be detected. Figure 2 shows
the fraction of available processing time used by the linear
solver when it is invoked once every10 seconds (when time
units are in seconds andT = 10, which turns out to be a
good setting as we explain later in Section 5). Allocating
bound growth to handle200 queries over25% of 200 data
sources requires only around1% of the CPU time at the
stream processor.

3.3 Validation Against Optimized Strategy

We performed an initial validation of our bound width allo-
cation strategy based on periodic shrinking and selective
growing using a discrete event simulator with synthetic
data. The goal of our simulation experiments is to show
that our algorithm converges on the best possible bound
widths, given a steady-state data set. For this purpose, we
generated data for one object per simulated source follow-
ing a random walk pattern, each with a randomly-assigned
step size, and compared two unrealistic algorithms. In
the “idealized” version of our algorithm, messages sent
by the stream coordinator to sources instructing them to
grow their bounds incur no communication cost. Instead,
only stream transmission costs were measured, to focus on
the bound width choices only. We compared the overall
stream transmission cost against the stream transmission
cost when bound widths are set statically using an opti-
mization problem solver, described next.

The nature of random walk data makes it possible to
simplify the problem of setting bound widths statically
to a nonlinear optimization problem, described in Ap-
pendix F. While nonlinear optimization problems with in-
equality constraints are difficult to solve exactly, an approx-
imate solution can be obtained with methods that use itera-
tive refinement. We used a package called FSQP [LZT97],
iterating1000 times with tight convergence requirements
to find static bound width settings as close as possible to
optimal.

Figure 3 shows the results of comparing the idealized
version of our adaptive algorithm against the optimized
static allocation, using a continuous AVG query over ten
data sources under uniform costs. The x-axis shows the
precision constraintδ, and the y-axis shows the overall cost
per time unit. In a second experiment we used a workload
of five AVG queries whose query sets were chosen ran-
domly from the10 objects. Figure 4 shows the result of
this experiment, for which the size of the query sets was
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Figure 3: Ideal adaptive algorithm vs. optimized static al-
location, random walk data.
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Figure 4: Ideal adaptive algorithm vs. optimized static al-
location, multiple queries.

assigned randomly between2 and5, and the precision con-
straint of each query was randomly assigned a value be-
tween0 andδmax , plotted on the x-axis. (For both work-
loads we also simulated nonuniform costs, and since the
results were similar in both cases we omit them.) These
results demonstrate that our adaptive bound width setting
algorithm converges on bounds that are on par with those
selected by an optimizer based on knowledge of the random
walk step sizes.

3.4 Handling Precision Constraint Adjustments

Users may at any time choose to alter the precision con-
straint δj of any currently running continuous queryQj.
If the user increasesδj (weaker precision), then addi-
tional bound width is allocated automatically by the bound
growth algorithm at the central precision manager at the
end of the current adjustment period. If the user decreases
δj (stronger precision), bound growth is suppressed, and
the automatic bound shrinking process will reduce the over-
all answer bound width over time until the requested pre-
cision level is reached. If an immediate improvement in
answer precision is required, the central precision manager
must proactively send messages to sources requesting ex-
plicitly that bounds be shrunk.

bound cache

queues
serializing

V table

W table

timestamped
V updates

W updates

timestamped

timestamped
[L, H] updates

Figure 5: Bound cache for consistent and ordered bound
updates.

4 Coping with Latency

In a real implementation of our approach we must cope
with message and computation latency. Suppose that each
message, including streamed update messages and bound
growth messages, has an associated transmission latency as
well as a processing delay by both the sender and receiver.
We first note that due to such latencies, bound growth will
be applied at sources after it is applied at the central stream
coordinator, and in the interim period the source filter is
less restrictive than it could be. This phenomenon leads to
a chance that some unnecessary updates are transmitted to
the stream processor, but correctness is not jeopardized. To
reduce the delay for growth messages and lessen the chance
of unnecessary streamed updates, the stream coordinator
can begin the growth allocation process prior to the end
of each adjustment period, and base the computations on
preliminary streamed update rate estimates.

Communication and computation latency for update
streams is of more concern because, if handled naively,
continuous queries may not access consistent data across
all sources, leading to incorrect answers. To ensure con-
tinuous query answers based on consistent data, source fil-
ters timestamp all updates transmitted to the stream pro-
cessor. (We assume closely synchronized clocks, as in
[Lam78, Mil91].) Similarly, the precision manager times-
tamps all bound width updates with an adjustment pe-
riod boundary. Value and width updates are converted
into bound updates via the bound cache (recall Figure 1).
Bound updates also have associated timestamps (we will
discuss how they are assigned shortly), and our CQ eval-
uator (Figure 1) treats bound update timestamps as logical
update times for the purposes of query processing. Correct-
ness can only be guaranteed if the CQ evaluator receives
bound updates monotonically in timestamp order, in which
case it produces a new output value for every unique times-
tamp it receives as part of any update. When multiple up-
dates have the same timestamp, the query evaluator treats
them as a single atomic transaction and only produces a
new output value for the last update with the same times-
tamp.

To ensure that the CQ evaluator receives bound updates
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that represent a consistent state and arrive in timestamp or-
der, the bound cache in the central stream coordinator is
implemented using a combination of twoserializing queues
(described shortly) and asymmetric hash join[WA91] (or
other non-blocking join operator), as illustrated in Figure 5.
The join operator combines value updates with width up-
dates to produce bound updates that mirror the bounds
maintained by source filters, using object identifier equal-
ity as the join condition. Each hash table stores only the
most recent value or width update for each object, based
on timestamp, and each join result is assigned a timestamp
equal to the timestamp of the input that generated the result.

Join inputs must arrive in timestamp order to ensure cor-
rect behavior. One way to guarantee global timestamp or-
dering across allV andW update streams is to delay pro-
cessing of each update received on a particular stream un-
til at least one update with a greater timestamp has been
received on each of the other streams [Lam78]. This ap-
proach is impractical in our setting, however, because it
can result in unbounded delays unless additional commu-
nication is performed, and delays tend to be longer when
the number of update streams is large. Instead, we take an
approach similar to one taken in the field of streaming me-
dia to handle unordered packets with variable latency (see,
e.g., [MKT98]), which relies on a reasonable latency upper
bound. In our approach, serializing queues are positioned
between the value and width update streams and the join.
The effect of each serializing queue is to order updates by
timestamp, and release each updateU as soon as the cur-
rent timetnow reachestU + λ, wheretU is U ’s timestamp
andλ is the latency tolerance: an upper bound on the la-
tency for any streamed update message that holds with high
probability and is determined empirically based on the net-
working environment. As long as all update messages obey
this latency tolerance and appropriate queue scheduling is
used, we can be assured that the serializing queues together
output to the join a monotonic stream of updates ordered by
timestamp. Of course in practice occasional messages may
be delayed by more thanλ, resulting in temporary viola-
tions of precision guarantees, an unavoidable effect in any
distributed environment with unbounded delays. Larger
values ofλ reduce the likelihood that update messages ar-
rive late, but also increase the delay before results are re-
leased to the user. In Section 5.3 we show that using a
reasonable choice ofλ, late update messages are very rare.

4.1 Exploiting Constrained Change Rates

In some applications, certain data objects may have known
maximum change rates, or at least bounds on change rate
that hold with very high probability. If each data objectOi

participating in a continuous queryQ has maximum change
rateRi, then an approximate answer toQ that bounds the
answer at timetnow−ε (for some local processing delayε at
the central stream processor), rather than timetnow−λ−ε,

can be provided by having the stream coordinator “pad” the
bounds to account for recent changes rather than using se-
rializing queues with a built-in delay as discussed above.
Padding is performed by addingφi = 2 · Ri · λ symmet-
rically to the width of each updated bound[Li, Hi] after it
is produced by the join. If this technique is employed, a
reduced precision constraintδ′Q ≤ δQ should be used for
the purposes of bound width allocation and adjustment to
ensure that padded answer bounds meet the original preci-
sion constraintδQ. The value ofδ′Q depends on the amount
of padding and the type of query. For example, for AVG
queries, we can setδ′Q = δQ − 1

|SQ| ·
∑

1≤i≤n,Oi∈SQ
φi.

5 Implementation and Experimental
Validation

We evaluated the performance of our technique and its
practical applicability by building a real network traffic
monitoring system. The system currently runs continuous
queries over10 hosts in our research group’s network, fol-
lowing Example 2 from Section 1.1. In our implementa-
tion, a special monitoring program executes on each host.
It captures network traffic activity using theTCPdumputil-
ity and computes packet rate measurements as needed by
the queries in the workload, representing them as time-
varying numerical data objects. We use time units of one
second, which matches the granularity at which our TCP-
dump monitor is able to capture data. Each host acts as a
data source, and in all cases objects and their updates cor-
respond to a one-minute moving window over packet rate
measurements. We use queriesQ1 − Q5 from Example 2
of Section 1.1, so different experiments use different ob-
jects. For example, queryQ5 uses one object for each of
the10 sources (hosts) for the overall windowed traffic vol-
ume between that host and external hosts. Each data object
is assigned a bound width for update filtering at the source.
Bounds are cached at a central monitoring station, which
updates the aggregated answers to continuous queries as
bound widths shrink and grow and as data updates stream
in. The communication cost (streamed update or growth
message) for each object is modeled as a uniform unit cost.

The first step in our experimentation was to determine
good settings for the two algorithm parametersT (adjust-
ment period) andS (shrink percentage). We experimented
with a real-world network traffic data set in our simulator,
with both uniform and nonuniform costs, and also with live
data in our network monitoring implementation, and found
that the following settings worked well in general:T = 10
time units to achieve low growth message overhead relative
to the timescale at which the data changes, andS = 0.05
(5%) to allow adaptivity while avoiding erratic bound width
adjustments that tend to degrade performance. We also de-
termined that our algorithm is not highly sensitive to the
exact parameter settings. Setting or adjusting these param-
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Figure 6: Adaptive algorithm vs. uniform static bound set-
ting, queryQ5 using network monitoring implementation.
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Figure 7: Adaptive algorithm vs. uniform static bound set-
ting, single query over large-scale network data using sim-
ulator.

eters automatically is a topic of future work.

5.1 Single Query

We now present our first experimental results showing the
effectiveness of our algorithm. We begin by considering a
simple case involving a single continuous AVG query. We
used queryQ5 from Example 2 of Section 1.1 applied over
the10 sources.Q5 monitors the average rate of traffic to
and from our organization, which ranged from about100
to 800 packets per second.

Since the optimized static bound width allocation de-
scribed in Section 3.3 relies on knowing the random walk
step size, it is not applicable to real-world data so cannot
be used for comparison. Assuming data update patterns are
not known in advance, the only obvious method of static
allocation is to set all bound widths uniformly. Thus, we
compare our algorithm against this setting.

Figure 6 compares the overall communication cost in-
curred in our real-world implementation by our adaptive
algorithm compared to uniform static allocation, measuring
cost for21 hours after an initial warm-up period. The con-
tinuous query monitors the average traffic level with pre-
cision constraintδ ranging from0 to 10 packets per sec-
ond. Our algorithm offers a mild improvement over uni-
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Figure 8: Adaptive algorithm vs. uniform static bound set-
ting, queriesQ1−Q5 using network monitoring implemen-
tation.

form bound allocation for a single query, bearing in mind
that the experiment was over small-scale network monitor-
ing data available for monitoring on a few hosts within our
organization.

To test our algorithm on large-scale network data with
many hosts, we ran a simulation on publicly available
traces of network traffic levels between hosts distributed
over a wide area during a two hour period [PF95]. For
each host, average packet rates ranged from0 to about
150 packets per second, and we randomly selected200
hosts as our simulated data sources. Figure 7 shows the
results using our simulator over this large-scale data set,
accounting for all communication costs. With this data set
our algorithm significantly outperforms uniform static al-
location for queries that can tolerate a moderate level of
imprecision (small to medium precision constraints). For
queries with very weak precision requirements (large pre-
cision constraints), even naive allocation schemes achieve
low cost, and the slight additional overhead of our algo-
rithm causes it to perform about on par with uniform static
allocation.

5.2 Multiple Queries

We now describe our experiments with multiple continuous
queries having overlapping query sets. We used a workload
of the five continuous AVG queriesQ1−Q5 from Example
2 in Section 1.1.25 − 1 “measurement groups” are defined
at each source based on which subsets of the five query
predicates a packet satisfies. Each measurement group is
aggregated and acts as a data object whose updates are fil-
tered with a bound and streamed to the central monitoring
station. (It may seem more natural for sources to further ag-
gregate data objects into one object per query; we discuss
this option shortly in Section 5.2.1.)

Figure 8 shows the results of our experiments measur-
ing cost for23 hours after an initial warm-up period. The
x-axis shows the precision constraints used for queriesQ2

andQ5. The other queries monitored a much lower volume
of data (by a factor of roughly100) so for each run we set
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their precision constraints to1/100th that shown on the x-
axis. As discussed in Section 1.2.1, uniform static bound
width allocation can be performed for multiple overlapping
queries if for each data object involved in more than one
query we maintain the narrowest bound assigned. Our al-
gorithm significantly outperforms uniform static allocation
for queries that can tolerate a moderate level of impreci-
sion (small to medium precision constraints). For exam-
ple, using reasonable precision constraints ofδ = 4 for
queriesQ2 andQ5 andδ = 0.04 for queriesQ1, Q3, and
Q4, our algorithm achieves a cost of only1.6 messages per
second, compared with a cost of5.4 with uniform static
bound width allocation. Furthermore, as with all previous
results reported, the overall cost decreases rapidly as the
precision constraint is relaxed, offering significant reduc-
tions in communication cost compared with not filtering.

5.2.1 Source Aggregation

In the multiple-query workload it may appear advantageous
for sources to further aggregate data objects to form one ob-
ject per query whose updates are streamed to the monitor-
ing station, instead of one per query subset. Interestingly,
doing so (a process we callsource aggregation) does not al-
ways result in lower overall cost, and whether it is cheaper
to perform source aggregation depends on the data, query
workload, and user-specified precision constraints. In Ap-
pendix G we show mathematically that there are reasonable
conditions under which source aggregation is expected to
achieve lower cost, and other reasonable conditions under
which cost is lower without source aggregation. Note that
the choice of whether to perform source aggregation can be
made independently for each source and for each indepen-
dent set of overlapping queries, and the best overall config-
uration may be to perform source aggregation selectively.

In general, if there is a large disparity between the pre-
cision constraints of overlapping queries, source aggrega-
tion achieves lower overall communication cost for update
stream transmission because queries with large precision
constraints can use separate wide bounds not constrained
by other queries with small precision constraints. On the
other hand, if most updates are to objects involved in mul-
tiple queries, it is preferable in terms of overall commu-
nication cost not to apply source aggregation, to avoid re-
dundantly applying those updates to one object per rele-
vant query. As an extreme case, consider Example 1 from
Section 1.1 in which each source (router) maintains a sin-
gle queue latency value accessed by multiple path latency
queries, and all updates at each source apply to objects in-
volved multiple queries. Source aggregation would have
each router maintain one copy of its queue size measure-
ment for each path latency query, each with a bound having
a potentially different width. Updates would fall outside
the bounds at different times causing unnecessary updates
to be transmitted to the central stream processor.
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Figure 9: Fraction of updates arriving after the maximum
latency toleranceλ for queryQ5.

As future work we plan to design and experiment with
an algorithm that monitors the expected cost of using ver-
sus not using source aggregation and switches adaptively
between them.

5.3 Impact of Message Latency

Our last experiment measures update message latency. In
Figure 9 we vary the maximum latency toleranceλ (re-
call Section 4) and measure the fraction of updates arriving
within λ for queryQ5 during a21-hour period. In our im-
plementation filtered update streams are transmitted over a
local area network. A value ofλ = 0.4 seconds, which is
reasonable since data changes are meaningful on a scale of
about1 second in our case, ensures that99.8% of updates
are received on time. When a moderate precision constraint
for this query ofδ = 5 is used, updates exceeding the la-
tency allowance occur only about once every65.7 minutes.
When an update does arrive late, the resulting inconsis-
tency in the output is brief, and based on our measurements
plotted in Figure 9 the overall fraction of time the answer
is consistent (fidelity in the terminology of [SBS+02]) is
at least99.997%. By adjustingλ, higher fidelity can be
achieved at the expensive of delayed output, or vice-versa.
([MKT98] proposes an algorithm for adjusting the latency
tolerance adaptively in a similar context based on observed
latency distributions.)

6 Summary and Future Work

We specified a new approach for reducing communication
cost in an environment of centralized continuous query pro-
cessing over distributed data streams. Our approach hinges
on specifying precision constraints for continuous queries,
which are used to generate adaptive filters at remote data
sources that significantly reduce update stream rates while
still guaranteeing sufficient precision of query results at all
times. Our approach enables users or applications to trade
precision for lower communication cost at a fine granular-
ity by individually adjusting precision constraints of con-
tinuous queries. Imprecision of query results is bounded

13



numerically so applications need not deal with any uncer-
tainty.

To validate our approach we performed a number of ex-
periments using simulations and a real network monitoring
implementation. Our experiments demonstrated:

• For a steady-state scenario our algorithm converges on
bound widths that perform on par with those selected
statically using an optimization problem solver with
complete knowledge of data update behavior.

• In the case of a single continuous query, our algorithm
significantly outperforms uniform bound width allo-
cation in some cases, and in other cases our algorithm
is only somewhat better than uniform allocation. As
future work we plan to characterize those cases for
which our algorithm achieves a significant improve-
ment over uniform static allocation, and those cases
for which uniform allocation suffices.

• In the case of multiple overlapping continuous
queries, our algorithm significantly outperforms uni-
form bound width allocation.

While our optimization techniques are specialized to ag-
gregation queries over numeric values, general continuous
query processing can in theory be performed over bounded
values to produce bounded answers with precision guar-
antees. Further work in this area includes understanding
how imprecision propagates through more complex query
plans, and developing appropriate optimization techniques
for adapting remote filter predicates in these more complex
environments.
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Appendix

A MIN Queries

We consider MIN queries, and show that for the purposes of bound width setting they can be treated as a collection of
AVG queries. Consider a MIN queryQj over query setSj with precision constraintδj . First, we show that if the bound
for each objectOi ∈ Sj has width at mostδj , the precision constraint is always met. To see this fact, observe that the
answer[L, H ] = [min(Li), min(Hi)], and it has widthH − L = min(Hi) − min(Li) ≤ Hk − min(Li), for the upper
boundHk of any objectOk ∈ Sj . If we chooseOk to be the object with the lowest lower bound,i.e., Lk = min(Li), we
obtainH − L ≤ Hk − Lk. Thus, if all bounds have width at mostδj , then the answer bound has widthH − L ≤ δj .

We now show the converse: if the bound for someOi ∈ Sj has width greater thanδj , then the precision constraint
cannot be guaranteed. To see this fact, consider an objectOi ∈ Sj whose value is far greater than the minimum value
of the queried objects. It may seem safe to assign a bound[Li, Hi] of width exceedingδj to Oi, as long asLi is greater
than the lowest lower bound, since[Li, Hi] will not contribute to the answer bound. However, if the stream processor
receives an update of one or more objects, causingLi to suddenly become the lowest lower bound andHi the lowest upper
bound, then the new answer bound has width greater thanδj . Although this situation could be remedied by requesting
a tighter bound forOi from its source, this procedure would incur a delay during whichQj ’s answer bound violates its
precision constraint, breaking our requirement of continuous precision for continuous queries. Therefore, for a MIN query
Qj , the bound for each queried object must have width at mostδj at all times, and those widths are guaranteed to uphold
the precision constraint. (In circumstances where occasional precision constraint violations for short periods of time are
tolerable, the technique of [BO03], which avoids communication altogether for objects far from the current minimum, can
be used instead.)

Based on the above observations, for the purposes of bound width setting, a MIN queryQj with precision constraint
δj over a set of objectsSj is equivalent to a set of single-object queries over eachOi ∈ Sj with precision constraintδj

for each. Since single-object queries are AVG queries over one object, the techniques in Section 3 can be applied to MIN
queries without modification.

Overall, since SUM can be computed from AVG, and MAX is symmetric to MIN, the Section 3 techniques can be
used for any workload consisting of a combination of SUM, AVG, MIN, and MAX queries.

B Modifications to Handle WeightedAVG and SUM Queries

We introduce modifications to handle continuous queries that monitor the weighted average (or weighted sum by extension)
of a set of data values. Say there arem such registered continuous queriesQ1, Q2, . . . , Qm. For each queryQj, each object
Oi in Qj ’s query setSj may have an associated (positive or negative) weightKi,j for the query. We letKi,j = 1 in the
absence of a specified weight. For notational convenience let us sayKk,j = 0 for all objectsOk in the stream processor but
not inQj ’s query setSj . Then the exact answer to AVG queryQj is 1

|Sj| ·
∑

1≤i≤n Ki,j · Vi, and our goal is to be able to
continuously compute an approximate answer from bounds that is withinQj ’s precision constraintδj . Note that weighted
AVG and SUM queries are quite flexible,e.g., we can monitor the difference between two values by using weights1 and
−1.

To guarantee that all precision constraints are met, the following constraint must hold for each queryQj (see Appendix D
for a derivation):

∑
1≤i≤n

|Ki,j | ·Wi ≤ δj · |Sj |

In other words, the weighted sum (in absolute value) of bound widths for each query must not exceed the product of
the precision constraint with the number of objects queried. Initially, the bounds can be set in any way that meets the
precision constraint of every query,e.g., allocating bound widths uniformly for each query and for each object using the
minimum width assigned as described in Section 1.2.1. Then, our adaptive algorithm described in Section 3 can be used to
adjust bound widths, with the following three modifications to the bound growth process (Section 3.2 and Section 3.2.1) to
incorporate weights.

First, we must modify the burden target computation described in Section 3.2.1. Recall thatθi,j represents the portion of
objectOi’s burden score corresponding to queryQj . Appropriately weighting the averageθ∗,j value for queryQj across
all queried objectsOi ∈ Sj , we haveTj = 1

|Sj| ·
∑

1≤i≤n,Oi∈Sj

θi,j

|Ki,j | . If we substitute our expression forθi,j and replace

each occurrence ofθi,k by |Ki,k| · Tk for all k 6= j, we arrive at the following expression:
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Tj =
1
|Sj |

·
∑

1≤i≤n,Oi∈Sj


 Bi

|Ki,j|
−

∑
1≤k≤m,k 6=j

|Ki,k|
|Ki,j |

· Tk




Second, when computing the deviationDi of each objectOi from the burden targets of the queries that access it, we must
weight the burden targets appropriately:

Di = max{Bi −
∑

1≤j≤m

|Ki,j| · Tj , 0}

Finally, during greedy allocation of growth,∆Wi, the maximum possible amount by which objectOi’s bound can be
grown without violating the precision constraint of any weighted query is computed as:

∆Wi = min
1≤j≤m,Oi∈Sj

δj · |Sj | −
∑

1≤k≤n |Kk,j | ·Wk

|Ki,j |

C Mathematical Justification for Bound Growth Strategy

We give a mathematical model for the behavior of objects whose update streams are filtered using bounds, and we use it
to justify the bound growth allocation strategy presented in Section 3.2 and extended in Appendix B to handle weighted
queries. We model the behavior of objects with filtered update streams as follows. For an objectOi whose exact value
Vi varies with time, we assume that the streamed update periodPi is a function of the bound widthWi = Hi − Li, and
signify this relationship by writingPi(Wi) instead ofPi. Intuitively, when a bound is narrow, the actual value is likely to
exceed it more often and therefore the streamed update period will be short. Conversely, when a bound is wide we expect
the streamed update period to be longer. The precise relationship betweenWi andPi depends on the behavior ofVi.

Since each streamed update of objectOi incurs a costCi, we can express the communication cost of the entire system
as:

C =
∑

1≤i≤n

Ci

Pi(Wi)

If no continuous queries are registered, then zero cost can be achieved by setting all bounds to[−∞,∞]. However, as
we will derive in Appendix D, each queryQj with weightsK1,j , K2,j, . . . , Kn,j and precision constraintδj imposes the
following constraint on the bound widths:

∑
1≤i≤n

|Ki,j | ·Wi ≤ δj · |Sj |

(Recall that we setKi,j = 0 for objectsOi /∈ Sj , and that all queries can be treated as weighted AVG queries.) We are
now faced with the optimization problem of minimizing the overall costC while satisfying the above constraint for each of
m queriesQ1, Q2, . . . , Qm.

Unless the functionPi(Wi) is inversely proportional toWi, which is unlikely as discussed above, we are faced with a
nonlinear optimization problem with inequality constraints. Since such problems are very difficult to solve, we decided to
try treating the inequality constraints as equality constraints to get an idea of the form of the solution. (We later verified the
success of this approach by comparing results obtained using the algorithm which we derive from it with results obtained
by executing a nonlinear optimization problem solver that operates over synthetic data; see Section 3.3.) We can apply the
method of Lagrange Multipliers [Ste91] to minimizeC under a set ofm equality constraints of the form:

∑
1≤i≤n

|Ki,j | ·Wi = δj · |Sj |

The solution [Ste91] has the property that there are a set ofm constantsλ1, λ2, . . . , λm such that for alli:

Ci ·
∂

∂Wi

(
1

Pi(Wi)

)
=

∑
1≤j≤m

|Ki,j | · λj
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To evaluate the derivative we make the assumption that the functionPi(Wi) has roughly the formPi(Wi) = Zi · (Wi)p,
where eachZi is an arbitrary constant andp can be any positive real number. For example, this model withp = 2 applies
to data that follows a random walk pattern, as shown in Appendix E. AssumingPi(Wi) roughly follows this form, we can
evaluate the partial derivative to obtain the following expression:

Ci

Pi ·Wi
= M ·

∑
1≤j≤m

|Ki,j| · λj

whereM is a constant. Finally, let the burden targetTj = M · λj and recall that the burden scoreBi = Ci

Pi·Wi
, giving:

Bi =
Ci

Pi ·Wi
=

∑
1≤j≤m

|Ki,j| · Tj

According to this formula, we wantPi andWi to be set such that the burden scoreBi of each objectOi roughly equals
the weighted sum of the burden targets of all queries overOi. Our algorithm described in Section 3 converges to this
state by monitoring the burden scores and increasingWi, and consequentlyPi as well, to decreaseBi when it becomes
significantly higher than the weighted sum of estimated targets.

D Derivation of Constraint Formula

We now derive the constraint formula referenced in Appendices B and C. The bound[L, H ] on the answer to a weighted
average queryQj is computed from the weightKi,j associated with each objectOi along with its bound[Li, Hi]. The
lowest possible weighted averageL occurs when the values of objects with a positive weight are as small as possible and
the values of objects with a negative weight are as large as possible. In other words, wheneverKi,j ≥ 0, the answer lower
bound hasVi = Li, and wheneverKi,j < 0, the answer lower bound hasVi = Hi. The converse holds for the upper
answer boundH . Therefore, a tight bound[L, H ] on the weighted average answer is:

L =
1
|Sj |

·


 ∑

1≤i≤n,Ki,j≥0

Ki,j · Li +
∑

1≤i≤n,Ki,j<0

Ki,j ·Hi




H =
1
|Sj |

·


 ∑

1≤i≤n,Ki,j≥0

Ki,j ·Hi +
∑

1≤i≤n,Ki,j<0

Ki,j · Li




which can be rewritten as:

L =
1
|Sj |

·


 ∑

1≤i≤n,Ki,j≥0

|Ki,j | · Li −
∑

1≤i≤n,Ki,j<0

|Ki,j| ·Hi




H =
1
|Sj |

·


 ∑

1≤i≤n,Ki,j≥0

|Ki,j | ·Hi −
∑

1≤i≤n,Ki,j<0

|Ki,j | · Li




The answer bound width isH − L, which using the second pair of formulae above simplifies to1
|Sj | ·

∑
1≤i≤n |Ki,j | ·

(Hi − Li), making our constraint:

∑
1≤i≤n

|Ki,j | ·Wi ≤ δj · |Sj |

E Streamed Update Period for Random Walk Data

We derive an expression for the expected streamed update periodPi(Wi) as a function of the bound widthWi for an object
Oi that changes according to a random walk pattern. In the random walk model, aftert steps of sizesi, the probability
distribution of the value is a binomial distribution with varianceσ2

i = (si)2 · t [GKP89]. Chebyshev’s Inequality [GKP89]

gives an upper bound on the probabilityP that the value is beyond any distancek from the starting point:P ≤ σ2
i

k2 . If we
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let k = Wi

2 , treat the upper bound as a rough approximation, and solve fort whenP = 1, we obtaint ≈ 1
(2·si)2

· (Wi)2,

which is roughly the expected streamed update period, soPi(Wi) ≈ 1
(2·si)2

· (Wi)2. This model for the streamed update
period of random walk data was verified empirically in [OLW01]. In relation to our general expression in Appendix C, for
random walksZi = 1

(2·si)2
andp = 2.

F Optimized Static Bound Width Allocation

Recall from Appendix C that the overall costC =
∑

1≤i≤n
Ci

Pi(Wi)
, wherePi(Wi) is the streamed update period as a

function of the bound width ofOi. In Appendix E, we derived an approximate formula for this function in the random
walk case:Pi(Wi) ≈ 1

(2·si)2
· (Wi)2, which depends on the step sizesi. If the step sizes of all the objects are known,

then a good static bound width allocation can be found by solving the following nonlinear optimization problem: minimize∑
1≤i≤n

Ci·(2·si)
2

(Wi)2
in the presence ofm constraints of the form

∑
1≤i≤n,Oi∈Sj

Wi ≤ δj · |Sj |.

G Mathematical Analysis of Source Aggregation

We analyze the effect of source aggregation mathematically. We show that cases exist where source aggregation is ad-
vantageous in terms of minimizing stream transmission cost, and cases also exist where it is not. Suppose there are three
data valuesV0, V1, andV2 at a single data source, and two continuous SUM queriesQ1 andQ2 at the stream processor.
Q1 computesV0 + V1 with a precision constraint ofδ1, andQ2 computesV0 + V2 with precision constraintδ2. If source
aggregation is not applied, then three bounds are maintained by the stream processor:[L0, H0], [L1, H1], and[L2, H2],
corresponding to the three source valuesV0, V1, andV2. Let width Wi = Hi − Li. The query precision constraints
require thatW0 + W1 ≤ δ1 andW0 + W2 ≤ δ2. On the other hand, if source aggregation is applied, then two bounds are
maintained by the stream processor: a bound[LQ1, HQ1] onVQ1 = V0 + V1 and a bound[LQ2, HQ2] onVQ2 = V0 + V2,
whereWQ1 ≤ δ1 andWQ2 ≤ δ2.

If all stream transmission costs are equal, then cost is determined by the sum of the streamed update frequencies of all
bounds, which can be estimated using our random walk model from Appendix E. The streamed update frequency for a

bound of widthWi on the valueVi is Fi ≈ (2·si)
2

(Wi)2
, wheresi is the random walk step size ofVi. Applying the law that

variances are additive for sums of independent random variables [GKP89], we can compute the streamed update frequency

for the source-aggregated boundsFQ1 ≈ ((2·s0)2+(s·s1)2)
(WQ1)2 andFQ2 ≈ ((2·s0)

2+(s·s2)
2)

(WQ2)2 . Therefore, the overall stream
transmission cost if source aggregation is not applied isCn = F0 + F1 + F2, and the overall cost if source aggregation is
applied isCp = FQ1 + FQ2.

Supposeδ1 � δ2, so there is a large disparity in the precision constraints of the two queries. For this purpose we can
treatδ1 as∞, and it is easy to verify mathematically that for any step sizes and any bound widths that meet the constraints,
Cp ≤ Cn so source aggregation achieves lower overall stream transmission cost. On the other hand, supposes0 � s1 and
s0 � s2, so valueV0 involved in both queries changes much more rapidly thanV1 andV2, which are each only involved in
a single query. If we take the extreme case wheres1 = s2 = 0, then if source aggregation is not performed any reasonable
width allocation strategy will assignW1 = 0, W2 = 0, andW0 = min{δ1, δ2}, and we can derive thatCn ≤ Cp.
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