
A Multi-Threshold Online Smoothing Technique for Variable

Rate Multimedia Streams ∗

Roger Zimmermann, Kun Fu, Mehrdad Jahangiri and Cyrus Shahabi
Integrated Media Systems Center and

Computer Science Department

University of Southern California

Los Angeles, California 90089

(rzimmerm,kfu,jahangir,shahabi@usc.edu)

Abstract. Variable bit rate (VBR) compression for media streams allocates more bits to

complex scenes and fewer bits to simple scenes. This results in a higher and more uniform

visual and aural quality. The disadvantage of the VBR technique is that it results in bursty

network traffic and uneven resource utilization when streaming media. In this study we propose

an online media transmission smoothing technique that requires no a priori knowledge of the

actual bit rate. It utilizes multi-level buffer thresholds at the client side that trigger feedback

information sent to the server. This technique can be applied to both live captured streams

and stored streams without requiring any server side pre-processing. We have implemented

this scheme in our continuous media server and verified its operation across real world LAN

and WAN connections. The results show smoother transmission schedules than any other

previously proposed online technique.

Keywords: Continuous Media Delivery, Continuous Media Servers, Smoothing, Video on

Demand

1. Introduction

Many multimedia applications, such as news-on-demand, distance learning,

and corporate training, rely on the efficient transfer of pre-recorded or live

multimedia streams between a server and a client. These media streams are

captured and displayed at a predetermined rate. For example, video streams

may require a rate of 24, 29.97, 30, or 60 frames per second. Audio streams

may require 44,100 or 48,000 samples per second. An important measure of

quality for such multimedia communications is the precisely timed playback

of the streams at the client location.

Achieving this precise playback is complicated by the popular use of

variable bit rate (VBR) media stream compression. VBR encoding algorithms

allocate more bits per time to complex parts of a stream and fewer bits to simple

parts to keep the visual and aural quality at near constant levels. For example,

an action sequence in a movie may require more bits per second than the

credits that are displayed at the end. As a result, different transmission rates

∗ This research has been funded in part by NSF grants EEC-9529152 (IMSC ERC), and

IIS-0082826, DARPA and USAF under agreement nr. F30602-99-1-0524, and unrestricted

cash/equipment gifts from NCR, IBM, Intel and SUN.

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

2

may be required over the length of a media stream to avoid starvation or

overflow of the client buffer. As a contradictory requirement we would like

to minimize the variability of the data transmitted through a network. High

variability produces uneven resource utilization and may lead to congestion

and exacerbate display disruptions.

The focus of this study is on achieving high quality media playback by

reducing the variability of the transmitted data and hence avoiding display

disruptions due to data starvation or overflow at the client. We propose a

novel technique that adjusts the multimedia traffic based on an end-to-end

rate control mechanism in conjunction with an intelligent buffer management

scheme. Unlike previous studies, we consider multiple signaling thresholds

and adaptively predict the future bandwidth requirements. With this Multi-

Threshold Flow Control (MTFC) scheme, VBR streams are accommodated

without a priori knowledge of the stream bit rate. Furthermore, because the

MTFC algorithm encompasses server, network and clients, it adapts itself to

changing network conditions. Display disruptions are minimized even with

few client resources (e.g., a small buffer size).

To verify the effectiveness of the MTFC protocol we have implemented it

in our Yima [31, 40] continuous media server and clients. The Yima server

is based on a scalable cluster design. Each cluster node is an off-the-shelf

personal computer with attached storage devices and, for example, a Fast

Ethernet connection. The server software manages the storage and network

resources to provide real-time service to the various clients that are requesting

media streams. The clients run on either Windows or Linux and utilize either a

hardware or software decoder to display media streams. We have implemented

a number of different clients that support media of varying display bandwidths

from less than 1 Mb/s (e.g., MPEG-4) to more than 20 Mb/s (e.g., HDTV).

For this study we have conducted extensive real world experiments in

both LAN and WAN network environments, with a range of buffer sizes

and prediction windows. The test video streams were of DVD quality with

a consumption rate of approximately 6 Mb/s. We have further compared

MTFC with two recently published online rate control algorithms [20, 14].

The experimental results show that our scheme outperforms these algorithms

in terms of traffic smoothness with similar or less signaling frequency. We

summarize the contributions of our work as follows.

− We present a flexible multi-threshold buffer model that incorporates var-

ious threshold spacing strategies: equi-distant, arithmetic and geometric

spacing. We evaluate the performance of the different threshold spacing

strategies with real world experiments.

− We introduce a consumption prediction component that employs predic-

tion algorithms based on: a window-based average consumption rate, a

3

window-based exponential average and a fuzzy exponential average. We

evaluate the efficiency of these prediction algorithms with simulations.

− We designed a modular rate change computation framework in which

new consumption prediction algorithms and feedback delay estimation

algorithms can be easily incorporated.

The remainder of this paper is organized as follows. In Section 2 we

review the related work. Section 3 describes our approach to the proposed

rate-control scheme. In Section 4 we present the results of our extensive

performance evaluation. Finally, Section 5 concludes the paper.

2. Related Work

A number of studies have investigated the transmission of multimedia streams

when faced with variable bit rate streams and/or a constrained client buffer

size. The techniques can be classified into two groups: server-controlled and

client-controlled.

Server-controlled algorithms generally pre-compute a transmission sched-

ule for a media stream based on a substantial knowledge of its rate require-

ments. The variability in the stream bandwidth is smoothed by computing a

transmission schedule that consists of a number of constant-rate segments. The

segment lengths are calculated such that neither a client buffer overflow nor an

underflow will occur. The various approaches differ in the optimization criteria

that they choose. Some examples are as follows: minimizing the number of

rate changes in the transmission schedule, minimizing the utilization of the

client buffer, minimizing the peak rate, or minimizing the number of on-off

segments in an on-off transmission model. A good summary of the different

techniques can be found in [2]. All these techniques require that complete or

partial traffic statistics are known a-priori.

These offline server-controlled techniques have several disadvantages.

They do not work with live streams where only a limited rate history is

available. They cannot adjust to changing network conditions and they may

get disrupted when users invoke interactive commands such as pause, rewind,

and fast forward.

Consequently, client-controlled techniques seem more appropriate in a

dynamic environment. Involving the client has the drawback of feedback

overhead and response delays (for a discussion see [5]). However, there are

several significant advantages. For example, such a technique adapts itself

to changing network conditions. In addition, the server does not need to be

aware of the content format of the stream, which results in a simpler and more

flexible architecture. Therefore, new media types such as haptic data can

automatically be supported without modification of the server software [30].

4

Client-controlled Techniques

in Multimedia Systems

QoS & Resource

Management

Synchronized

Transmission

& Presentation

Congestion

Control

Flow Control

& Smoothing

Error Recovery

& Resilience

Figure 1. Classification of applications of client controlled feedback techniques in multimedia

systems.

A number of studies have investigated client-side feedback control tech-

niques in multimedia systems. These previous studies can be classified into

the following groups according to their applications (as shown in Fig. 1):

− QoS and Resource Management [22, 4, 34, 36, 32, 33].

− Synchronized Transmission and Presentation [27, 26, 13, 7, 35].

− Congestion Control [11, 1, 12, 10].

− Flow Control and Smoothing [20, 14, 15, 21].

− Error Recovery and Resilience [25, 24, 28, 19, 39, 9, 23, 8].

Only a handful of studies [20, 14, 15, 21] have focused on client-side

feedback control smoothing techniques. In paper [21], the authors proposed

a feedback rate control technique in best effort mobile packet networks. The

proposed technique is quite similar to the approach introduced in [20]. Both

techniques trigger rate changes based on two pre-configured thresholds at the

receiver buffer. However, in [21] the authors applied the flow control between

the gateway and the base station router in stead of between the streaming server

and client as in [20] (to avoid buffer underflow and overflow conditions.) In

Section 4.4 we will compare our technique with two approaches proposed

in [14, 20] ([14] is an extension of [15] and we consider them the same

technique).

3. Multi-Threshold Flow Control (MTFC) Technique for Stream

Smoothing

The design of a new rate control algorithm was motivated in part by our

continuous media server implementation. We required an adaptive technique

that could work in a real-world dynamic environment with minimal prior

knowledge of the multimedia streams to be served. We identified the following

desirable characteristics for our new algorithm:

− Online operation: Required for live streaming and also desirable for

stored streams.

5

Table I. List of terms used repeatedly in this study and their respective definitions.

Term Definition Units

B Buffer size bytes

m Number of threshold levels

THi i-th Threshold, THi > THi−1 bytes

THO Overflow protection threshold bytes

THU Underflow protection threshold bytes

THR Resume threshold, e.g. B
2

bytes

THN Buffer target level, e.g. B
2

bytes

△tobsv Sampling interval seconds

tobsv(i) i-th observation point

tctrl(i) i-th feedback control point

wobsv Observation window size, i.e. the number of observation points

RS Observed server transmission rate window, 〈rs
1
, rs

2
, . . . , rs

wobsv
〉

rs
i

i-th latest observed server transmission rate, bytes/second

rs
wobsv

is the latest observed server transmission rate

RC Observed client consumption rate window, 〈rc
1
, rc

2
, . . . , rc

wobsv
〉

rc
i

i-th latest observed client consumption rate, bytes/second

rc
wobsv

is the latest observed client consumption rate

Bobsv Observed client buffer status window, 〈b1, b2, . . . , bwobsv
〉

bi i-th latest observed client buffer status, bytes

bwobsv
is the latest observed client buffer status

wpred Prediction window size, i.e. the number of predicted points

R̂ Predicted client consumption rate window, 〈r̂1, r̂2, . . . , r̂wpred
〉

r̂i i-th predicted future client consumption rate (consumption rate bytes/second

at time tobsv(wobsv) +△tobsv × i), and r̂wpred
is

the furthest predicted future client consumption rate

rnew The computed new server transmission rate bytes/second

wfcd Observation feedback control delay window size

SCR[i] i-th latest smoothed consumption rate bytes/second

r̂ Predicted client consumption rate bytes/second

αcr Client consumption rate predict parameter

tfeedback Feedback control delay second

rt Observed client consumption rate at time t bytes/second

r̂t Predicted client consumption rate at time t bytes/second

C Consumption component, i.e., data consumed during the bytes

prediction window

△r Rate change

µ Average consumption rate bytes/second

σ Standard deviation of consumption rate

− Content independence: An algorithm that is not tied to any particu-

lar encoding technique will continue to work when new compression

algorithms are introduced.

6

− Minimizing feedback control signaling: The overhead of online sig-

naling should be negligible to compete with offline methods that do not

need any signaling.

− Rate smoothing: The peak data rate as well as the number of rate changes

should be lowered compared with the original, unsmoothed stream. This

will greatly simplify the design of efficient real-time storage, retrieval,

and transport mechanisms to achieve high resource utilization [37, 29].

Considering these objectives, we designed our novel Multi-Threshold Flow

Control (MTFC) technique. It distinguishes itself from previously proposed

algorithms by incorporating the following: (1) a multi-threshold buffer model,

(2) a consumption prediction component and (3) a modular rate change

computation framework in which new consumption prediction algorithms

and feedback delay estimation algorithms can easily be incorporated.

The client playout buffer is a crucial component of any feedback control

paradigm. The server is the data producer that places data into the buffer while

the media decoder is the consumer that retrieves data. If the production and

consumption rates are exactly the same then the amount of data in the buffer

does not change. If there is a mismatch, however, data will either accumulate

or drain. If the buffer overflows or underflows then display disruptions will

appear. Hence, the goal of managing the buffer is to keep the data level

approximately at half the buffer size such that fluctuations in either direction

can be absorbed. In an online feedback scheme, when the data level sufficiently

deviates from the buffer midpoint, a correction message is sent to the server to

adjust the sending rate. We will first describe our buffer management scheme,

then elaborate on the rate adjustment calculation, and finally explain our

consumption prediction component.

3.1. Multi-Threshold Buffer Model

RTSP / TCP

RTP / UDP

Rate Control Adjustments

Media Data

Server Client

Amount

of

data

Playout

Buffer

0

Overflow

protection

Threshold

Threshold

Threshold

Threshold

Underflow

protection

LAN or WAN

B

Threshold

TH =5

TH1

TH2

TH3

TH4

THU

THO

THm

Figure 2. Components of our streaming media architecture experimental setup.

7

When placing thresholds within the client buffer there are two parameters

that need to be chosen: (1) the number of thresholds (denoted m) and (2) the

spacing between multiple thresholds.

We have investigated the following spacing policies: equi-distant, based on

an arithmetic series, and based on a geometric series. First, we will describe

the system behavior of the multi-threshold buffer model with an equi-distant

threshold spacing strategy. Subsequently, we will discuss the details of the

other two approaches.

3.1.1. System Behavior with Different Thresholds

As an example, Figure 2 illustrates how the client buffer (size B) is segmented

with m equally spaced thresholds THi (m = 5 in the example) where TH

stands for threshold. Table I lists all the terms used in this study. Additionally

there exists an overflow protection threshold THO and an underflow protection

threshold THU . The thresholds which are closest to the protection thresholds

THO and THU are also called warning thresholds (THm and TH1 in the

example). Equation 1 illustrates the calculation of the thresholds with 5%

protection levels.

THU = 0.05 × B

THO = 0.95 × B (1)

THi = THU + i ×
THO − THU

m + 1
for 1 ≤ i ≤ m

Whenever a threshold THi is crossed, a new server sending rate is calcu-

lated (details are described in the next section) and a △r rate adjustment is

sent to the server through an RTSP feedback command. If the THO overflow

or THU underflow protection thresholds are crossed then the rate adjustment

is more aggressive. In case of THO, the server is paused (i.e., the sending rate

is set to zero). It remains paused until the buffer level reaches the resume

threshold THR, e.g., the midpoint. In case of THU , the sending rate is

increased to one and a half times the average sending rate. The maximum

rate of 1.5 times the average rate (µ) was chosen because we empirically

observed that even highly variable streams typically cross this limit for less

than 5% of the playback time. Fig. 3(a) illustrates the consumption rate

distribution for the movie “Twister.” (Note that the movie consumption rate

is measured periodically at 1 second intervals). Similarly, the consumption

rate distribution for two other movies encoded with MPEG-4 and HDTV

MPEG-2 are shown in Figs. 3(b) and (c), respectively. Table II provides the

numerical consumption rate statistics for the three sample clips. The statistical

data shows that 11% of the time the data rate is outside of µ ± 0.5µ for this

particular example of MPEG-4. In fact, using a maximum and a minimum

rate of µ± 2σ (σ denotes the standard deviation) is a safer choice because the

8

data rate stays within this limit for more than 95% of the movie duration for

all three sample movie files.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 200 400 600 800 1000 1200 1400 1600 1800

P
e
rc

e
n
ta

g
e
 o

f
ti
m

e

Consumption rate (KBytes/sec)

Average rate

1.5 Average rate

0.5 Average rate

Fig. 3(a): DVD movie “Twister.”

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150 200 250 300 350 400

P
e
rc

e
n
ta

g
e
 o

f
ti
m

e

Consumption rate (KBytes/sec)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

4200 4400 4600 4800 5000 5200 5400

P
e
rc

e
n
ta

g
e
 o

f
ti
m

e

Consumption rate (KBytes/sec)

Fig. 3(b): MPEG-4 movie. Fig. 3(c): HDTV MPEG-2 movie.

Figure 3. Consumption rate distribution for different movie types.

Table II. Consumption rate characteristics for sample media

format.

Movie Type µ1 σ2 µ± 0.5µ3 µ± 2σ4

[Bytes/sec] [Bytes/sec]

MPEG4 107753.1 49193.0 11.0% 2.76%

DVD 693744.9 138442.3 1.7% 4.85%

HDTV 4752540.8 83658.9 0.0% 1.44%

1 µ is the average consumption rate of the movie
2 σ denotes the standard deviation of the movie consumption rate
3 µ± 0.5µ denotes the percentage of the movie duration

that has a consumption rate /∈ [0.5µ, 1.5µ]
4 µ± 2σ represents the percentage of the movie duration

that has a consumption rate /∈ [µ− 2σ, µ + 2σ]

9

The THO and THU buffer limits are very rarely reached when the rate

adjustment calculation is done properly and these aggressive actions are

invoked only to avoid display disruptions.

3.1.2. Threshold Spacing Strategies

Amount

of

data

Client Playout

Buffer

0

Overflow

protection
Threshold

Threshold

Threshold

Threshold

Underflow

protection

B

Threshold

TH 3

Amount

of

data

Client Playout

Buffer

0

Overflow

protection

Threshold

Threshold

Threshold

Threshold

Underflow

protection

B

Threshold

(a) Arithmetic spacing (b) Geometric spacing

a

a

2a

3a

3a

2a

a

2a

2a

a

a2
2

a2
2

TH U

TH1

TH 2

TH 3

TH 4

TH =5 TH m

TH O
TH =5 TH m

THO

TH 4

TH 2

TH1

TH U

Figure 4. Two non-uniform threshold spacing strategies.

Our MTFC have with three different threshold placement strategies: (1)

equi-distant, (2) based on an arithmetic series (arithmetic spacing), and (3)

based on a geometric series (geometric spacing). Equi-distant spacing has

already been discussed in the previous section.

Figs. 4(a) and (b) illustrate how the client buffer is segmented by m

thresholds (m = 5) with the arithmetic and geometric spacing strategies.

Note that a spacing parameter α appears in both figures. α is determined by

Equation 2 for geometric spacing and by Equation 4 for arithmetic spacing.

Both equations use the same variable i, defined by Equation 3.

α =







THO−THU

2i+2−2i−2
if m is even

THO−THU

(2i−1)×2
otherwise

(2)

i =

⌈

m

2

⌉

(3)

α =







THO−THU

(i+1)2
if m is even

THO−THU

i×(i+1) otherwise
(4)

3.2. Rate Change (△r) Computation

The server sending rate, the decoder consumption rate, and the buffer level are

sampled every△tobsv time instance. If the buffer level bwobsv
crosses any of the

thresholds THi, a new server sending rate is computed based on Equation 5.

It combines the following components. The target buffer level THN is usually

10

set to the buffer midpoint. The current buffer level is described by bwobsv
. The

expected duration wpred × △tobsv is the time to recover the current buffer

level back to the target buffer level THN . This parameter is adjustable and we

will discuss its impact on the system performance in Section 4. The amount

of data consumed during wpred ×△tobsv is C , as predicted with Equation 6.

rnew =
THN−bwobsv

+C−rs
wobsv

×tfeedback

wpred×△tobsv−tfeedback
(5)

with

C =

wpred
∑

i=1

(r̂i ×△tobsv) (6)

We investigated several different prediction algorithms (more on this later).

The last component is the round-trip feedback message delay tfeedback. In

Equation 6, the consumption prediction component is denoted r̂i, the future

consumption rate at time tobsv(wobsv) +△tobsv × i. r̂i is estimated using one

of the three prediction algorithms discussed in Section 3.3. When crossing

the thresholds THm and TH1, a rate change of △r may not be enough

to avoid reaching the overflow or underflow protection thresholds, THO or

THU . This is due to the error margin of the prediction algorithms. To decrease

the possibility of crossing the protection thresholds, a dynamically calculated

mean absolute percentage error (MAPE) is added or subtracted from r̂i as

shown in Equation 7. The error is computed using Equation 8 where N is the

number of prediction samples up to the current prediction time.

r̂i =

{

r̂i × (1 − MAPE) if THm is reached

r̂i × (1 + MAPE) if TH1 is reached
(7)

MAPE =

∑N
t=1 |rt − r̂t|

N
(N is the total number of predictions) (8)

In a final step the rate change △r is determined from the new server sending

rate rnew and the current server sending rate rs
wobsv

:

△r = 1 −
rnew

rs
wobsv

(9)

3.3. Consumption Rate Prediction

Complete knowledge of the future consumption rate of a stream enables the

client buffer management to be optimal. However, one of our objectives was

not to assume any a-priori knowledge of the stream bandwidth requirements

in order to support live streams. Consequently, we studied several prediction

algorithms to approximate the optimal case as closely as possible without

excessive computational complexity.

11

3.3.1. Window-Based Prediction Algorithms

Prediction algorithms commonly estimate future values based on information

collected within a past time window. We investigated several algorithms

that observe the wobsv most recent rate samples to predict wpred samples

into the future. We use the following notation: observation window RC

with samples 〈rc
1, r

c
2, . . . , r

c
wobsv

〉 and prediction window R̂ with samples

〈r̂1, r̂2, . . . , r̂wpred
〉. The estimated future rate is denoted r̂. We evaluated three

different prediction algorithms: (a) an average consumption rate algorithm,

(b) an exponential average algorithm, and (c) a fuzzy exponential average

algorithm. We will now describe each one in turn.

With the first approach the average consumption rate of the observation

window R is used to predict the average consumption rate throughout the

prediction window R̂ as shown in Equation 10.

r̂ =

∑wobsv

i=1 rc
i

wobsv
(10)

The second approach is based on an exponential average algorithm similar

to the TCP round-trip time estimation algorithm [16]. The predictor is char-

acterized by a parameter αcr, which could be intuitively interpreted as the

weight given to the samples in the past time window. Here, recent samples

are given more weight than older samples. The exact weight can be adjusted

with the parameter αcr as shown in Equation 11. Note that SCR[1] is just

the initialization, SCR[i] are intermediate results, and r̂ is the next predicted

consumption rate in the prediction window R̂.

SCR[1] = rc
1

SCR[i] = αcr × SCR[i − 1] + (1 − αcr) × rc
i−1 (11)

r̂ = SCR[wobsv + 1]

There are two variations to apply this algorithm in forecasting the future

consumption rates during the prediction window R̂. These two approaches

differ in the observation window size used to estimate r̂i. In the first approach,

r̂i is predicted based on an increasing window 〈RC , r̂1, r̂2, . . . , r̂i−1〉 using

Equation 11. With the second, the prediction is based on a fixed, sliding

window 〈rc
i , . . . , rc

wobsv−1
, rc

wobsv
, r̂1, r̂2, . . . , r̂i−1〉. The first one increases

the window size by one sample each time a new r̂i is generated. The second

approach keeps the window size constant and slides the observation window

RC forward when a new r̂i is generated. Throughout the rest of the paper, we

will call the first approach expanding-window exponential average algorithm

and the second approach sliding-window exponential average algorithm.

The third approach, based on a fuzzy exponential average algorithm [18],

combines a fuzzy logic controller with the window exponential average al-

gorithm. The idea is to dynamically calculate the parameter αcr used in the

exponential average algorithm (see Fig. 5 for details).

12

Fuzzy logic controller
var αcr

Exponential average

prediction algorithm

Observation

window (R)

Prediction

window ()R̂
C

Figure 5. Schematic diagram for fuzzy exponential average algorithm.

1

10 0.5

low medium high
1

10 0.5

low medium high

Fig. 6(a): var. Fig. 6(b): αcr.

Figure 6. Membership functions for the two variables var and αcr .

The parameter αcr can be interpreted as representing the variability of the

consumption rate in our system. To have a better prediction with a smooth

stream, we want to give more weight to past samples, which means a larger

αcr. On the other hand, if the stream is very bursty, we would like to give

more weight to recent samples, which means a smaller αcr
5. The input of the

membership function for a fuzzy logic controller should be in the range of

[0, 1]. Therefore, the variability of a stream is characterized by the normalized

variance var calculated as:

var = min









1,

∣

∣

∣

∣

rc
wobsv

−

∑wobsv
i=1

rc
i

wobsv

∣

∣

∣

∣

∑wobsv
i=1

rc
i

wobsv









(12)

These ideas translate into the following fuzzy control rules: (1) if var is low

then αcr is high, (2) if var is medium then αcr is medium, and (3) if var is

high then αcr is low. The shape and ranges of the fuzzy terms low, medium

and high and the membership functions for the two variables var and αcr are

shown in Fig. 6.

5 If a stream is smooth, then the window exponential average algorithm always generates a

fairly accurate estimate. That means, the prediction error is small and αcr should be large. In

contrast, if the stream is bursty, the past history cannot predict the future well. In this case, it

would be better to give little weight to the past history, and make αcr small, so that the recent

variability of the stream can be tracked.

13

3.3.2. Simulation Results of Rate Prediction Algorithms

We evaluated the effectiveness of the rate prediction algorithms with a simula-

tion program. We chose two different MPEG-2 encoded movies as test cases.

The first one was a 25 minute segment of the DVD movie “Twister,” that

exhibits a highly variable consumption rate, as shown in Fig. 8. The second

one called “Football” is our own recording of a USC football game and it

has a relatively smooth consumption rate. After we collected the consumption

rate traces for these two movies we performed the three prediction algorithms

on each of them. For the exponential average algorithm we chose the sliding

window approach with either αcr = 0.65 or αcr = 0.95. The fuzzy exponen-

tial average algorithm we evaluated here is also based on the sliding-window

exponential average algorithm. We used a number of different window sizes

and measured the prediction error for each algorithm. The Mean Absolute

Prediction Error (MAPE) [6] is used to evaluate the accuracy of the different

prediction algorithms as shown in Equation 8.

Fig. 7 illustrates the simulation results. MAPE is shown as a function

of the window size wobsv (note that here wobsv = wpred). We plotted the

results from our three rate prediction algorithms plus one additional reference

curve that represents MAPE calculated with a priori knowledge of the average

consumption rate. The error value for our smooth movie “Football” is consis-

tently below 3% for all algorithms except the reference one, as illustrated in

Figure 7(a). This is because our prediction algorithms keep track of the movie

consumption rate changes much more closely than assuming the average

consumption rate, which does not reflect any changes at all. For the movie

“Twister,” with its higher variability, the prediction error is between 15%

and 20%. Here there is a visible performance difference between the various

algorithms. The prediction algorithm that averages the consumption rate in

the observation window outperforms all the others. One intuition is that it

captures the consumption rate within the prediction window and recovers

some prediction error by averaging. It is also the simplest measure to compute

and therefore the least complex to compute in real-time. Because of its good

performance we chose this algorithm for the rest of our study and implemented

it in our prototype system.

4. Performance Evaluation

We integrated the MTFC technique into our operational distributed continuous

media architecture which serves as the platform for testing the effectiveness of

our algorithm. Fig. 2 illustrates our experimental setup. The server consists of

two Pentium II 450 MHz PCs with 384 MB of memory. Each PC is connected

to an Ethernet switch (model Cabletron 6000) in our laboratory via a 100

Mb/s network interface. Movies are striped over two 18 GB Seagate Cheetah

14

0

5

10

15

20

25

30

0 50 100 150 200 250 300

A priori knowledge of average consumption rate

Prediction window average

Fuzzy logic controller

Exponential window average, alpha = 0.65

Exponential window average, alpha = 0.95

Prediction window size [seconds]

Mean Absolute Prediction Error (MAPE) [%]

Fig. 7(a): MAPE for movie “Football.”

0 50 100 150 200 250 300
0

5

10

15

20

25

30

A priori knowledge of average consumption rate

Prediction window average

Fuzzy logic controller

Exponential window average, alpha = 0.65

Exponential window average, alpha = 0.95

Prediction window size [seconds]

Mean Absolute Prediction Error (MAPE) [%]

Fig. 7(b): MAPE for movie “Twister.”

Figure 7. The Mean Absolute Prediction Error (MAPE) of different prediction algorithms for

two MPEG-2 encoded movies “Football” and ”Twister.”

disk drives (one per server node). The disks are attached through Ultra2

low-voltage differential (LVD) SCSI connections that can provide 80 MB/s

throughput. Red Hat Linux 7.0 is used as the operating system for each server

PC. The client is based on a Pentium III 933 MHz PC. The player software that

includes the buffer management and rate prediction algorithms runs under Red

Hat Linux 7.0. Table III lists the input parameters and corresponding values

15

Table III. Input Parameters used in the experiments.

Input Parameters Configurations

Test movie “Twister” MPEG-2 video (NTSC resolution), AC-3 audio

Average bandwidth 698594 bytes/sec

Length 25 minutes

throughput std. dev. 308283.8

Client buffer sizes (B) 8, 16, 32 MB

Number of thresholds (m) 2, 3, 5, 9, 17

Sampling interval (△tobsv) 1 second

Prediction window size (wpred) 45, 90, 180 samples

i.e. 45, 90, 180 seconds

Table IV. Parameters measured in the experiments.

Measurement Parameters Definitions

x Throughput standard deviation

y Number of rate adjustments

z Number of times protection threshold crossed

u Number of buffer overflow or underflow

v Overhead of rate adjustments(ratio of

message size over total transmitted data size)

that we used in our experiments6 Note that we chose a one second sampling

interval since it is small enough to capture the system status (e.g., consumption

rate fluctuations) without utilizing too much of the system resources (e.g.,

CPU and memory). Table IV lists the all the parameters we measured in our

experiments.

The round-trip feedback message delay (tfeedback in Equation5) is a very

important factor. In the current implementation, it is manually configured as a

conservatively estimated constant delay for our experimental setup. However,

the algorithm could be extended with a dynamically estimated value based

on a prediction algorithm [3, 17] to adapt to various network conditions (note

that estimation of RTT is not the focus of this paper). To be more general, we

conducted the experiments with two different types of networks: (1) a LAN

6 The movie “Twister” used in our original experiments was obtained from a DVD. DVD

movies are usually optimized for constant visual quality with little concern for any bandwidth

changes (because playback is local). This means they generally exhibit extremely variable bit

rates.

16

Table V. End-to-end route from one Yima client (located at USC

campus, Los Angeles) to the Yima server (Metromedia Fiber

Network data center, El Segundo, CA). The distance between

these two is approximately 1000 km because two of the routers

are located in San Jose, CA.

Hop# Router

1 imsc-gw (128.125.163.254)

2 rtr-gw-43 (128.125.254.43)

3 c2-12008 (128.125.251.241)

4 ISI–USC.POS.calren2.net (198.32.248.26)

5 ISI-7507–ISI.POS.calren2.net (198.32.248.22)

6 mae-la.above.net (198.32.146.21)

7 sjc1-lax1-oc3.sjc1.above.net (216.200.0.166)

8 core1-core6-oc12.sjc1.above.net (64.125.31.29)

9 core2-sjc1-oc48.sjc2.above.net (208.184.102.26)

10 lax3-sjc2-oc48.lax3.above.net (208.184.232.138)

11 main1colo34-core1-oc48.lax3.above.net (208.185.175.230)

12 64.124.204.8.ismc.edu (64.124.204.8)

where the server and client are directly connected through a Fast-Ethernet

switch and the round-trip time (RTT) is usually less than 1 ms, and (2)

the public Internet, where the RTT is around several hundred ms. Table V

shows the data route between the client and server. Although the geographical

distance between the two end points is less than 40 km, a data stream travels

more than 1000 km due to the Internet topology. Since the MTFC technique

adapts to the network conditions, the results from these two setups are very

similar: they follow the same trend and differ from each other by less than 3%

of the throughput standard deviation. Thus, we only report the LAN result set.

Before we discuss our results in detail we would like to illustrate the

effectiveness of our MTFC algorithm with an example. Fig. 8(a) shows the

unsmoothed and the smoothed transmission rate of the DVD movie “Twister”

with B = 32 MB, m = 17 thresholds and wpred = 180 seconds. Similarly,

Figs. 8(b) and (c) show the experimental results for the MPEG-4 and HDTV

contents. The variability is clearly reduced as well as the peak rate. To quantify

the effectiveness of our technique, we measured the standard deviation of the

transmission schedule. Table VI summarizes the experimental results that we

collected from the LAN experimental setup. Note that no actual overflow or

underflow occurred in these experiments. We quantified the feedback message

overhead assuming that the length of each command is approximately 100

bytes. We also measured the impact of the rate adaptation on the server CPU

load and the results show that the overhead is negligible (significantly less

than 0.1%).

17

0

500000

1000000

1500000

2000000

2500000

3000000

0 200 400 600 800 1000 1200 1400

Data Rate [bytes/sec]

Time [seconds]

Movie consumption rate

Server sending rate

Fig. 8(a): A 25 minute segment of a typical DVD movie (“Twister”).

0

50000

100000

150000

200000

250000

300000

350000

400000

0 50 100 150 200 250 300 350 400 450

Data Rate [bytes/sec]

Time [seconds]

Movie consumption rate
Server sending rate

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

0 100 200 300 400 500 600 700 800 900

Data Rate [bytes/sec]

Time [seconds]

Movie consumption rate
Server sending rate

Fig. 8(b): MPEG-4 movie (640 × 480). Fig. 8(c): HDTV MPEG-2 movie (1920 × 1080).

Figure 8. Real consumption rate versus smoothed sending rate for different movie type. The

smoothing parameters used are as follows: 32 MB playout buffer size, 17 thresholds and 180

seconds prediction window size.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32

Memory size (MB)

N
o
rm
a
li
z
e
d
 t
h
ro
u
g
h
p
u
t
s
ta
n
d
a
rd
 d
e
v
.

unsmoothed 3 thresholds 5 thresholds 9 thresholds 17 thresholds offline_smooth

Figure 9. Reduction in rate variability of the movie “Twister” with different client buffer sizes

and number of thresholds. The transmission schedule becomes smoother as the number of

thresholds increases and with an increased buffer size.

18

Table VI. Experimental results for multiple client buffer

sizes, different number of thresholds, and different prediction

window sizes (DVD movie streams at 6 Mb/s).

Parameters Measurements

B m wpred x7 y8 z9 u10 v11

[samples]12

3 45 103428 50 2 0 4.66E-06

3 90 98633 43 1 0 4.00E-06

3 180 96566 43 1 0 4.00E-06

5 45 89599 69 3 0 6.43E-06

5 90 88286 57 3 0 5.31E-06

8 MB 5 180 88784 43 4 0 4.00E-06

9 45 84057 107 5 0 9.97E-06

9 90 82210 74 5 0 6.89E-06

9 180 85583 57 5 0 5.31E-06

17 45 79411 119 6 0 1.11E-05

17 90 80893 97 7 0 9.03E-06

17 180 81139 71 9 0 6.61E-06

3 45 98666 18 1 0 1.68E-06

3 90 95800 23 2 0 2.14E-06

3 180 97425 20 2 0 1.86E-06

5 45 79459 26 1 0 2.42E-06

5 90 76344 22 1 0 2.05E-06

16 MB 5 180 80309 27 1 0 2.51E-06

9 45 73864 45 1 0 4.19E-06

9 90 75791 47 1 0 4.38E-06

9 180 75522 31 1 0 2.89E-06

17 45 71066 93 1 0 8.66E-06

17 90 72237 49 4 0 4.56E-06

17 180 72060 39 3 0 3.63E-06

3 45 88102 10 0 0 9.31E-07

3 90 85399 9 0 0 8.38E-07

3 180 79669 11 0 0 1.02E-06

5 45 84403 18 0 0 1.68E-06

5 90 66974 17 0 0 1.58E-06

32 MB 5 180 59657 9 0 0 8.38E-07

9 45 70691 23 0 0 2.14E-06

9 90 64037 21 0 0 1.96E-06

9 180 51264 18 0 0 1.68E-06

17 45 71575 42 0 0 3.91E-06

17 90 56594 38 0 0 3.54E-06

17 180 51192 27 0 0 2.51E-06

7Throughput standard deviation
8Number of rate adjustments
9Number of times protection threshold (THO and THU) crossed
10Number of buffer overflow or underflow
11Overhead of rate adjustments(ratio of message size over total transmitted data size)
12Since the sampling interval is 1 second, the prediction window lengths are 45, 90

and 180 seconds, respectively.

4.1. Transmission Schedule Smoothness

We examined the effectiveness of MTFC by comparing the smoothed trans-

mission schedules to the unsmoothed schedule and the optimal offline sched-

ule [29] for the movie “Twister.” The prediction window size in these experi-

ments is 90 seconds.

19

Fig. 9 presents the reduction in standard deviation achieved by MTFC,

across client buffer sizes ranging from 8 MB to 32 MB and with the number

of thresholds ranging from 3 to 17. In all cases, the standard deviation is

reduced substantially, by 67-74% for a 8 MB client buffer, 67-76% for a 16

MB client buffer, and 72-81% for a 32 MB client buffer. This figure illustrates

what is intuitively clear: an increase in the client buffer size yields smoother

traffic. More importantly, it also shows that a higher number of thresholds

results in smoother traffic. Note that the optimal offline schedule is only 3-8%

smoother than the result of MTFC and the difference decreases with larger

client buffers.

The optimal buffer size is a direct function of the bandwidth required

by a stream and signaling latency between the client and the server. Our

DVD test streams required 6 Mb/s (on average) and hence using less than

8 MBs of buffer resulted in less than optimal performance. However, for

example with a wireless handset the stream bandwidth will most likely be

much lower. Assuming a 320 × 240 screen, an MPEG-4 movie would require

about 200-250 kb/s (note that the MPEG-4 movie used in Fig. 8(b) had a

video resolution of 640 × 480 and required about 800 kb/s). Therefore, a

buffer size of roughly 350 kB should suffice and yield similar results. In such

an application one would probably choose the simplest prediction algorithm

to reduce the processing power requirements.

In the next set of experiments we compared the impact of different pre-

diction window sizes. We expected that a longer prediction window would

result in a smoother transmission schedule. However, the longer the prediction

window extends into the future, the less accurate the prediction becomes.

Figs. 10(a), (b) and (c) show the rate variability reduction with a prediction

window size of 45, 90 and 180 seconds and buffer sizes of 8 MB, 16 MB

and 32 MB, respectively. With a 32 MB client buffer (Fig. 10(c)), for a given

number of thresholds, a longer prediction window results in smoother traffic.

However, with a smaller client buffer size (8 MB and 16 MB) the trend is

less clear. A longer prediction window corresponds to a longer prediction

time, which results in longer segments of a constant rate and hence smoother

streams. Although this holds true for larger memory sizes, smaller buffer sizes

with the same number of thresholds contain less data between two neighboring

thresholds, and hence server rate changes are triggered more quickly. Thus, if

the prediction window is too long, it does not necessarily extend the interval

during which the server sends data at a constant rate. In our experiments, a

window size of 45 seconds is already sufficient for buffer sizes of 8 MB and

16 MB. Therefore, increasing the prediction window to 90 or 180 seconds did

not reduce traffic variability any further.

20

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3 5 9 17

Number of thresholds
N
o
rm
a
li
z
e
d
 t
h
ro
u
g
h
p
u
t
s
ta
n
d
a
rd
 d
e
v
.

45 seconds 90 seconds 180 seconds

Fig. 10(a): B = 8 MB.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3 5 9 17

Number of thresholds

N
o
rm
a
li
z
e
d
 t
h
ro
u
g
h
p
u
t
s
ta
n
d
a
rd
 d
e
v
.

45 seconds 90 seconds 180 seconds

Fig. 10(b): B = 16 MB.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3 5 9 17

Number of thresholds

N
o
rm
a
li
z
e
d
 t
h
ro
u
g
h
p
u
t
s
ta
n
d
a
rd
 d
e
v
.

45 seconds 90 seconds 180 seconds

Fig. 10(c): B = 32 MB.

Figure 10. Impact of the prediction window size on the reduction in rate variability.

4.2. Rate Change Signaling Frequency

Feedback messages from the client to the server introduce overhead that

should be minimized. We examined the overhead generated by our MTFC

scheme in terms of the number of rate changes. The prediction window was

fixed at 90 seconds in these experiments.

Fig. 11 shows the number of rate changes across client buffer sizes ranging

from 8 MB to 32 MB and the number of thresholds varying from 3 to 17.

21

0

10

20

30

40

50

60

70

80

90

100

8 16 32

Memory size (MB)

N
u
m
b
e
r
o
f
ra
te
 c
h
a
n
g
e
s

3 thresholds 5 thresholds 9 thresholds 17 thresholds

Figure 11. Number of rate changes generated by MTFC as a function of the client buffer sizes

and the number of thresholds.

The figure clearly shows that an increase in the number of thresholds results

in a steady increase in the number of rate changes. It also demonstrates that

a larger client buffer reduces the number of rate changes. We also quantified

the overhead of the feedback messages as a fraction of the total transmission

bandwidth (see Table VI) and we found that it is negligible. As illustrated in

Fig.12 a longer prediction window generally results in fewer rate changes.

4.3. Evaluation of Different Threshold Spacing Strategies

Recall that one of the buffer management parameters is the threshold spacing

strategy. The simplest method will place thresholds at equal distances within

the buffer. However, one might conjecture that feedback actions should be

executed at a finer granularity when the amount of data is close to either a full

or an empty buffer. To test this hypothesis we evaluated our MTFC with the

three different threshold placement strategies: (1) equi-distant, (2) based on

an arithmetic series (arithmetic spacing), and (3) based on a geometric series

(geometric spacing).

We implemented these two non-uniform spacing strategies in our client and

conducted the same experiments as we did with equi-distant spacing. We again

used the rate variability and the number of rate changes as the performance

measure. Note that in all these experiments, the prediction window length was

45 seconds.

The smoothing results are shown in Fig.13(a) and interestingly, in most

experiments all three spacing strategies achieve very similar smoothing ef-

fects. One notable exception occurs for a small playout buffer size of 8MB or

16MB, when the number of thresholds m is high, e.g., 17. In this case, geo-

metric spacing performs considerably worse than the other two strategies. We

speculate that the density of thresholds is too high and hence rate corrections

22

0

20

40

60

80

100

120

3 5 9 17

Number of thresholds
N

u
m

b
e

r
o

f
ra

te

c
h

a
n

g
e

s

45 seconds 90 seconds 180 seconds

Fig. 12(a): B = 8 MB.

0

20

40

60

80

100

120

3 5 9 17

Number of thresholds

N
u

m
b

e
r

o
f

ra
te

c
h

a
n

g
e

s

45 seconds 90 seconds 180 seconds

Fig. 12(b): B = 16 MB.

0

20

40

60

80

100

120

3 5 9 17

Number of thresholds

N
u

m
b

e
r

o
f

ra
te

c
h

a
n

g
e
s

45 seconds 90 seconds 180 seconds

Fig. 12(c): B = 32 MB.

Figure 12. Impact of the prediction window size on the number of rate changes. As expected,

a larger window size reduces the number of rate changes.

become ineffective. Also, for B = 32MB and m = 3, both the arithmetic and

geometric spacing strategies performed not as good as expected. With this big

buffer size and small number of thresholds, non-uniform spacing strategies

result in a low threshold density near the buffer midpoint level THN . Hence,

the thresholds located far from THN may be reached infrequently, resulting

in less rate adjustments. Note that the equi-distant spacing strategy performs

consistently well with all parameters. Intuitively, the uniformly distributed

23

thresholds allow rate adjustments enough time to have the desired smoothing

effect.

Fig. 13(b) shows the number of rate changes for all three spacing strategies

with different client buffer sizes and different numbers of thresholds. With

a small number of thresholds, say 3 or 5, all three spacing strategies result

in a comparable number of rate changes since the positions of the thresholds

are either exactly the same or quite similar. For larger numbers of thresholds

and the client buffer is small, for example 8 MB or 16 MB, the non-uniform

spacing strategies result in a higher number of rate changes because some

thresholds are too close to each other. On the other hand, for large client

buffer sizes, the non-uniform spacing strategies generally result in a lower

number of rate changes. This is due to the lower threshold density near the

buffer level midpoint THN , where the data level fluctuates most of the time.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3 5 9

1
7 3 5 9

1
7 3 5 9

1
7

Number of Thresholds

N
o
rm
a
li
z
e
d
 t
h
ro
u
g
h
p
u
t
s
ta
n
d
a
rd
 d
e
v
.

Equi-distant Arithmetic Geometric

8 MB 16 MB 32 MB

Fig. 13(a): Throughput standard deviation.

0

50

100

150

200

250

3 5 9 17 3 5 9 17 3 5 9 17

Number of Thresholds

N
u
m
b
e
r
o
f
ra
te
 c
h
a
n
g
e
s

Equi-distant Arithmetic Geometric

16 MB 32 MB8 MB

Fig. 13(b): Number of rate changes.

Figure 13. Comparison of three threshold spacing strategies.

24

4.4. Comparison with Previously Proposed Techniques

We compared our MTFC technique with two previously proposed online

techniques by Hui et al. [14] and Mielke and Zhang [20]. We implemented

both algorithms in our distributed continuous media architecture. We will call

the two techniques FIXED3 and FIXED2, respectively, for the the number of

thresholds that they use. Our performance measures were the rate variability,

the number of rate changes and the number of times the protection thresh-

olds were passed. All experiments used the movie “Twister” and the MTFC

prediction window was fixed at 90 seconds.

4.4.1. Comparison with the FIXED3 Technique

The FIXED3 [14] technique utilizes three thresholds: low, medium and high.

Whenever a threshold is crossed, the server sending rate is set to a new

fixed rate, which is pre-calculated based on perfect knowledge of the average

consumption rate of the movie. If the high threshold is crossed, the server

sending rate is reduced to 0.5 times of the average rate. If the medium threshold

is crossed, the rate is set to the average rate. If the low threshold is passed,

the server sending rate is set to 1.5 times the average rate. To allow for a

fair comparison, we set the three thresholds to the same levels as our MTFC

technique with three thresholds. Furthermore, we added the two overflow and

underflow protection thresholds THO and THU to FIXED3.

Fig. 14(a) shows the standard deviation of the server sending rate of MTFC

and FIXED3 with client buffer sizes ranging from 8 MB to 32 MB. The stan-

dard deviations are normalized to the variability of the unsmoothed movie. The

figure illustrates that our MTFC techniques outperform FIXED3 by between

10% to 15%. Fig. 14(c) illustrates the number of rate changes generated by

both techniques as a function of different buffer sizes. Overall, MTFC results

in fewer rate changes than FIXED3. Fig. 14(e) shows the number of times the

protection thresholds are crossed. For this measure, FIXED3 performs better

because it changes the sending rate much more aggressively at both the high

and low thresholds. Since MTFC changes the sending rate based on a future

consumption rate prediction, the protection thresholds are rarely crossed. Note

that with both techniques the buffer never actually overflows or underflows.

4.4.2. Comparison with the FIXED2 Technique

The technique proposed by Mielke and Zhang uses only two thresholds and

the new server sending rate is calculated solely based on the buffer threshold

levels and the client buffer conditions. Hence, the major differences between

our MTFC and the FIXED2 technique are the lack of a prediction algorithm

and the non-existent multi-threshold buffer model of FIXED2. For a fair

comparison, we set the FIXED2 thresholds at the same level as with our

MTFC technique with two thresholds and we also added the two overflow and

25

MTFC versus FIXED3 MTFC versus FIXED2

0%

25%

50%

75%

100%

125%

8 16 32

Memory size (MB)

N
o
rm
a
li
z
e
d
 t
h
ro
u
g
h
p
u
t

s
ta
n
d
a
rd
 d
e
v
.

MTFC FIXED3

Normalized

throughput

standard

deviation.

← (a) (b)→
0%

25%

50%

75%

100%

125%

8 16 32
Memory size (MB)

N
o
rm
a
li
z
e
d
 t
h
ro
u
g
h
p
u
t

s
ta
n
d
a
rd
 d
e
v
.

MTFC FIXED2

0

10

20

30

40

50

60

70

80

90

100

8 16 32

Memory size (MB)

N
u
m
b
e
r
o
f
ra
te
 c
h
a
n
g
e
s

MTFC FIXED3

Number

of rate

changes.

← (c) (d)→

0

10

20

30

40

50

60

70

80

90

100

8 16 32

Memory size (MB)

N
u
m
b
e
r
o
f
ra
te
 c
h
a
n
g
e
s

MTFC FIXED2

0

5

10

15

20

25

30

35

40

8 16 32

Memory size (MB)

N
u
m
b
e
r
o
f
ti
m
e
s
 h
it
 p
ro
te
c
ti
o
n

th
re
s
h
o
ld
s

MTFC FIXED3

Number

of times

protection

thresholds

were crossed.

← (e) (f)→
0

5

10

15

20

25

30

35

40

8 16 32

Memory size (MB)

N
u
m
b
e
r
o
f
ti
m
e
s
 h
it
 p
ro
te
c
ti
o
n

th
re
s
h
o
ld
s

MTFC FIXED2

Figure 14. MTFC performance comparison of the FIXED3 versus the FIXED2 techniques.

underflow protection thresholds, THO and THU . Figs. 14(b), (d) and (f) show

the normalized server sending rate variability, the number of rate changes, and

the number of times both algorithms crossed the protection thresholds as a

function of three client buffer sizes. As shown in Fig. 14(b), MTFC results

in a 20%-60% smoother stream as compared with FIXED2. Figs. 14(d) and

(f) illustrate that FIXED2 has a higher feedback overhead and crosses the

protection thresholds 5-40 times more than MTFC. With both techniques,

no actual buffer overflow or underflow occurred. These figures clearly in-

dicate that the MTFC scheme outperforms the FIXED2 technique. In these

experiments, since MTFC also uses two thresholds, the better performance

should be attributed to the effectiveness of the prediction algorithm. Note

that without consumption prediction, the variability of the server sending rate

generated by FIXED2 sometimes (e.g., when B = 8 MB) is even higher than

the unsmoothed schedule.

26

Figs. 14(a), (c), (e) and Figs. 14(b), (d), (f) use the same scales and can be

compared directly. This demonstrates that increasing the number of thresholds

from two to three lowers the rate variability by approximately 30%-40% and

results in less feedback overhead. With the multi-threshold MTFC technique

we have increased the number of thresholds beyond three and we showed that

the sending rate variability is further reduced.

5. Conclusion and Future Research Directions

We have presented a novel online flow control technique for stream smoothing

that includes a consumption rate prediction component and a multi-threshold

buffer model. From our extensive experiments conducted in a real-world

environment we conclude that more than three buffer thresholds reduces

the variability of the data transmission and the feedback overhead. At the

same time, a consumption rate prediction algorithm allows the smoothing of

streams with no prior knowledge of their transmission schedule. Therefore,

our technique is very well suited for highly dynamic environments that need

to adapt to changing network and load conditions. Furthermore, the achieved

smoothing allows for improved resource utilization by significantly reducing

peak data rates.

As part of our future work we plan to extend our MTFC technique in several

directions. First, we intend to combine network congestion control mecha-

nisms with our smoothing technique to achieve even more robust media stream

transmissions. Second, we plan to evaluate the MTFC technique in other types

of network environments, for example mobile and wireless networks. Finally,

we are working towards incorporating MTFC into our new High-speed Data

Recording Architecture (HYDRA) [38] and evaluate its performance with a

combination of real time recording and playback streams.

References

1. Aboobaker, N., D. Chanady, M. Gerla, and M. Y. Sanadidi: 2002, ‘Streaming Media

Congestion Control using Bandwidth Estimation’. In: Proc. of IFIP/IEEE International

Conference on Management of Multimedia Networks and Services. Stockholm, Sweden.

2. Al-Marri, J. and S. Ghandeharizadeh: 1998, ‘An Evaluation of Alternative Disk Schedul-

ing Techniques in Support of Variable Bit Rate Continuous Media’. In: Proceedings of

the International Conference on Extending Database Technology.

3. Allman, M. and V. Paxson: 1999, ‘On Estimating End-to-End Network Path Properties’.

In: SIGCOMM. pp. 263–274.

4. Amir, E., S. McCanne, and R. Katz: 1997, ‘Receiver-driven Bandwidth Adaptation

for Light-weight Session’. In: Proceedings of the 5th ACM International Multimedia

Conference. Seattle, WA, pp. 415–426.

5. Chang, R., M. Chen, J. Ho, and M. Ko: 1999, ‘An Effective and Effcient Traffic Smoothing

Scheme for Delivery of Online VBR Media Streams’. In: Proceedings of the IEEE

INFOCOMM.

27

6. Chatfield, C.: 2001, Time-Series Forecasting. CHAPMAN&HALL/CRC Boca Raton

London New York Washington, D.C.

7. Chen, H. A., L. Qiao, and K. Nahrstedt: 2001, ‘Adaptive versus Reservation-based Syn-

chronization Protocols - Analysis and Comparison’. Multimedia Tools and Applications

Journal, num. 4, Kluwer Publisher pp. 219–257.

8. Cheung, G., W. Tan, and T. Yoshimura: 2003, ‘Double Feedback Streaming Agent

for Real-time Delivery of Media over 3G Wireless Networks’. In: IEEE Wireless

Communications and Networking Conference (WCNC2003). New Orleans, Louisiana,

USA.

9. Dogan, S., A. Cellatoglu, M. Uyguroglu, A. H. Sadka, and A. M. Kondoz: 2002, ‘Error-

Resilient Video Transcoding for Robust Internetwork Communications Using GPRS’.

IEEE Transactions on Circuits and Systems for Video Technology, Vol.12, No.6 pp.

453–464.

10. Feng, A. C., A. C. Kapadia, W. chun Feng, and G. G. Belford: 2002, ‘Packet Spacing:

An Enabling Mechanism for Delivering Multimedia Content in Computational Grids’.

The Journal of Supercomputing, 23(1) pp. 51–66.

11. Floyd, S., M. Handley, J. Padhye, and J. Widmer: 2000, ‘Equation-based congestion

control for unicast applications’. In: SIGCOMM 2000. Stockholm, Sweden, pp. 43–56.

12. Gevros, P., J. Crowcroft, P. Kirstein, and S. Bhatti: 2001, ‘Congestion control mechanisms

and the best effort service model’. IEEE Networking, Volume: 15, Issue: 3 pp. 16–26.

13. Hac, A. H. and C. X. Xue: 1997, ‘Synchronization in multimedia data retrieval’.

International Journal of Network Management, Volume: 7, Issue: 1 pp. 33–62.

14. Hui, J., E. Karasan, J. Li, and J. Zhang: 1996, ‘Client-Server Synchronization and

Buffering for Variable Rate Multimedia Retrievals’. IEEE Journal on Selected Areas in

Communications, 14(1) pp. 226–237.

15. Hui, J., J. Zhang, and J. Li: 1995, ‘Quality of Service Control in GRAMS for ATM Local

Area Networks’. In: Proceedings of the IEEE JSAC.

16. Jacobson, V. and M. J. Karels: 1988, ‘Congestion Avoidance and Control’. In:

Proceedings of ACM SIGCOMM ’88. pp. 314–329.

17. Karn, P. and C. Partridge: 1991, ‘Improving Round-Trip Time Estimates in Reliable

Transport Protocols’. ACM Transactions on Computer Systems 9(4), 364–373.

18. Khedkar, P. and S. Keshav: 1992, ‘Fuzzy Prediction of Time Series’. In: Proceedings of

IEEE Conference on Fuzzy Systems.

19. Loguinov, D. and H. Radha: 2001, ‘On Retransmission Schemes for Real-time Streaming

in the Internet’. In: INFOCOM. pp. 1310–1319.

20. Mielke, M. and A. Zhang: 1998, ‘A Multi-Level Buffering and Feedback Scheme for

Distributed Multimedia Presentation Systems’. In: Proceedings of Seventh Interna-

tional Conference on Computer Communications and Networks (IC3N’98). Lafayette,

Louisiana.

21. Morikawa, D., S. Ota, A. Yamaguchi, and M. Ohashi: 2002, ‘A Feedback Rate Control

of Video Stream in Best-Effort High-Speed Mobile Packet Network’. In: The 5th Inter-

national Symposium on Wireless Personal Multimedia Communications (WPMC2003).

Sheraton Waikiki, Honolulu, Hawaii, USA.

22. Nahrstedt, K.: 1995, ‘End-to-End QOS Guarantees in Networked Multimedia Systems’.

ACM Computing Survey, 27(4) pp. 613–616.

23. Nick Feamster, H. B.: 2002, ‘Packet Loss Recovery for Streaming Video’. In: Proceedings

of 12th International Packet Video Workshop.

24. Papadopoulos, C., G. M. Parulkar, and G. Varghese: 1998, ‘An Error Control Scheme

for Large-Scale Multicast Applications’. In: Symposium on Principles of Distributed

Computing. p. 310.

28

25. Pejhan, S., M. Schwartz, and D. Anastassiou: 1996, ‘Error Control using Retransmission

Schemes in Multicast Transport Protocols for Real-time Media’. IEEE/ACM Transactions

on Networking 4(3), 413–427.

26. Ramanathan, S. and P. V. Rangan: 1993a, ‘Feedback Techniques for Intra-Media Syn-

chronization in Distributed Multimedia Systems’. The Computer Journal, 36(1) pp.

19–31.

27. Ramanathan, S. and P. V. Rangan: 1993b, ‘Feedback Techniques for Synchronizated Mul-

timedia Retrieval over Integrated Networks’. IEEE/ACM Transactions on Networking,

1(2) pp. 246–260.

28. Rhee, I.: 1998, ‘Error Control Techniques for Interactive Low-Bit Rate Video

Transmission over the Internet’. In: SIGCOMM. pp. 290–301.

29. Salehi, J., Z.-L. Zhang, J. Kurose, and D. Towsley: 1998, ‘Supporting stored video: Re-

ducing rate variability and end-to-end resource requirements through optimal smoothing’.

IEEE/ACM Transactions on Networking pp. 397–410.

30. Shahabi, C., G. Barish, B. Ellenberger, N. Jiang, M. R. Koladouzan, S.-R. A. Nam, and

R. Zimmermann: 1999, ‘Immersidata Management: Challenges in Management of Data

Generated within an Immersive Environment’. In: Proceedings of the Fifth International

Workshop on Multimedia Information Systems (MIS’99). Indian Wells, California.

31. Shahabi, C., R. Zimmermann, K. Fu, and S.-Y. D. Yao: 2002, ‘Yima: A Second Generation

of Continuous Media Servers’. IEEE Computer Magazine pp. 56–64.

32. Tan, W., W. Cui, and J. G. Apostolopoulos: 2003, ‘Playback-Buffer Equalization for

Streaming Media using Stateless Transport Prioritization’. In: The 13th International

Packet Video Workshop (PV2003). Nantes, France.

33. Ueda, K., H. Ohsaki, S. Shimojo, and H. Miyahara: 2003, ‘Design and Implementation of

Real-Time Digital Video Streaming System over IPv6 Network using Feedback Control’.

In: Symposium on Applications and the Internet (SAINT2003). Orlando, Florida, USA,

pp. 111–119.

34. Wu, D., Y. T. Hou, W. Zhu, H.-J. Lee, T. Chiang, Y.-Q. Zhang, and H. Chao: 2000,

‘On End-to-End Architecture for Transporting MPEG-4 Viceo Over the Internet’. IEEE

Transactions on Circuits and Systems for Video Technology, Vol.10, No.6 pp. 923–941.

35. Zhang, A., Y. Song, and M. Mielke: 2002, ‘NetMedia: streaming multimedia pre-

sentations in distributed environments’. IEEE Multimedia, Volume: 9, Issue: 1 pp.

56–73.

36. Zhang, Q., W. Zhu, and Q.-Q. Zhang: 2001, ‘Resource Allocation for Multimedia

Streaming Over the Internet’. IEEE Transcations on Multimedia, Vol.3, No.3 pp. 339–355.

37. Zhang, Z.-L., J. Kurose, J. Salehi, and D. Towsley: 1997, ‘Smoothing, statistical multi-

plexing, and call admission control for stored video’. IEEE Journal on Selected Areas

in Communications, Volume: 16 Issue: 6 pp. 1148–1166.

38. Zimmermann, R., K. Fu, and W.-S. Ku: 2003a, ‘Design of a Large Scale Data

Stream Recorder’. In: Proceedings of the Fifth International Conference on Enterprise

Information Systems (ICEIS 2003). Angers, France.

39. Zimmermann, R., K. Fu, N. Nahata, , and C. Shahabi: 2003b, ‘Retransmission-Based

Error Control in a Many-to-Many Client-Server Environment’. In: Proceedings of

SPIE/ACM Conference on Multimedia Computing and Networking 2003 (MMCN 2003).

Santa Clara, CA.

40. Zimmermann, R., K. Fu, C. Shahabi, S.-Y. D. Yao, and H. Zhu: 2001, ‘Yima: Design

and Evaluation of a Streaming Media System for Residential Broadband Services’. In:

VLDB 2001 Workshop on Databases in Telecommunications (DBTel 2001). Rome, Italy.

