
4/4/07 CS5270, Guest Lecture 1

Verification of Real Time Systems,
CS5270
Guest Lecture

Real-time logic. Graph-theoretic analysis

Stefan Andrei
http://www.comp.nus.edu.sg/~andrei

4/4/07 CS5270, Guest Lecture 2

Overview

 Real-time logic
 Counting true instances
 Incremental verification of the real-time

systems specifications

4/4/07 CS5270, Guest Lecture 3

PART 1. Real-time logic

4/4/07 CS5270, Guest Lecture 4

References

 Chapter 6 of [Che2002] Cheng, A.M.K.: Real-time
systems. Scheduling, Analysis, and Verification.
Wiley-Interscience, 2002

 [JaM87] Jahanian, F., Mok, A.: A Graph-Theoretic
Approach for Timing Analysis and its Implementation.
IEEE Transactions on Computers. Vol. C-36, No. 8,
1987

 [RiC99] Rice, L.E.P., Cheng, A.M.K.: Timing
Analysis of the X-38 Space Station Crew Return
Vehicle Avionics. Proceedings of the 5-th IEEE-CS
Real-Time Technology and Applications
Symposium, pp. 255-264, 1999

4/4/07 CS5270, Guest Lecture 5

Specification of real-time systems

 Structurally and functionally specification
(how the real-time system components work
as well as their functions and operations):
 Mechanical components
 Electrical components
 Electronic components

 Behavioral specification
 Sequences of events in response to actions

4/4/07 CS5270, Guest Lecture 6

Example: real-time anti-lock braking
system in an automobile
 Structural-functional specification refers to:

 Braking system components and sensors
 How they are interconnected, and
 How the actions of each component affects the other
 Example: how to connect the wheel sensors to the central

decision-making computer that controls the brake mechanism.
 Behavioral specification refers to:

 Events and effects
 Example: when the wheel sensors detect wet road conditions,

the decision-making computer will instruct the brake
mechanism to pump the brakes at a higher frequency within
100ms.

4/4/07 CS5270, Guest Lecture 7

Timing Constraints

 Behavioral specification without the
complexity of the structural specification often
suffices;

 We restrict the specification language to
handle only timing relations.

4/4/07 CS5270, Guest Lecture 8

Specification and safety assertion

 An implementation of a real-time system is
built from the structural-functional
specification;

 An implementation is correct (faithful) if
 the behavioral specification (denoted as SP)

implies safety assertions (denoted as SA).
 In other words, we have to check whether SP

SA is a theorem or not.

4/4/07 CS5270, Guest Lecture 9

Verification of Timing Properties

 In checking SP → SA, we may have the cases:
 (safe) SA is a theorem derivable from SP;
 (inherently unsafe) SA is unsatisfiable with respect

to SP;
 (safe if additional constraints are added) the

negation of SA is satisfiable under certain
conditions.

4/4/07 CS5270, Guest Lecture 10

Event-action model

 [Hen80] Heninger, K.L.: Specifying Software
Requirements for Complex Systems: New
Techniques and Their Applications. IEEE
Trans. Software Engineering. vol. SE-6, no. 1
(1980) 2-13

 Heninger captured the data dependency and
temporal ordering of computational actions
that must be taken in response to events in a
real-time application.

4/4/07 CS5270, Guest Lecture 11

Concepts of event-action model
 Syntax of Actions:

 <Action> = <primitiveAction> |
 <Action> ; <Action> |
 <Action> “||” <Action>

 Examples:
 TRAIN_APPROACH; DOWN_GATE is sequential execution

of two primitive actions, i.e. a composite action;
 DOWN_GATE || RING_BELL is parallel execution of two

primitive actions, i.e., a composite action;
 State predicate: Event x Time → Bool

 Example: GATE_IS_DOWN is true if the gate is in the
down position

4/4/07 CS5270, Guest Lecture 12

Concepts of event-action model (cont)
 Event

 External: APPLY_BRAKE
 Start: the start of DOWN_GATE
 Stop: the end of DOWN_GATE
 Transition: GATE_IS_DOWN becomes true when

gate is moved down.
 Timing constraint (absolute timing of system

events)
 Example: the timing difference between the start

and the end of DOWN_GATE may take at least 15
seconds.

4/4/07 CS5270, Guest Lecture 13

Real-Time Logic (RTL)

 Motivation: event-action model cannot be easily
manipulated by a computer ([JaM87]);

 RTL = first-order logic with special features to capture
the (absolute) timing requirements;

 RTL is based on the event-action model;
 @:: Event x Occurrence → Time, where

Occurrence=Nat-{0} and Time=Nat.
 Semantics:

 @(e, i) = t means the i-th occurrence of event e occurs at time t.
 ∀e∈Event, ∀i∈Occurrence, @(e,i) < @(e,i+1) if @(e,i+1) is

defined.

4/4/07 CS5270, Guest Lecture 14

Real-Time Logic (cont)

 Three types of RTL constants:
 Actions: a subaction Bi of a composite action A is

denoted by A.Bi

 Events constants are temporal markers
 External Events: Ωevent-name
 Start Events: ↑event-name
 Stop Events: ↓event-name
 Transition Events: change in certain attributes of the system

state;
 Integers: used for timing constraints.

4/4/07 CS5270, Guest Lecture 15

Example of a real-time system:
railroad crossing

 Structural-functional specification:
 Field measurements, mechanical characteristics of

the train, train sensor, gate controller, gate;
 The goal of gate controller: when train is

crossing the intersection, no car is on the
intersection;

 Simplified goal (safety assertion): when train is
crossing, the gate is in the down position.

4/4/07 CS5270, Guest Lecture 16

Behavioral Specification (English)

 When train approaches sensor, a signal will
initiate the lowering of gate, and

 Gate is moved to down position within 30s
from being detected by the sensor, and

 The gate needs at least 15s to lower itself to
the down position.

4/4/07 CS5270, Guest Lecture 17

Safety Assertion (English)

 If
 train needs at least 45s to travel from sensor to the

railroad crossing, and
 the train crossing is completed within 60s from being

detected by sensor,
 then

 we are assured that at the start of the train crossing,
gate has moved down and

 that the train leaves the railroad crossing within 45s
from the time the gate has completed moving down.

4/4/07 CS5270, Guest Lecture 18

Railroad crossing (animation)
60s

45s

4/4/07 CS5270, Guest Lecture 19

Behavioral Specification (RTL)

 ∀x (@(TrainApproach, x) ≤ @(↑DownGate, x) ∧
 @(↓DownGate, x) ≤ @(TrainApproach, x) + 30
)

 ∀y (@(↑DownGate, y) + 15 ≤ @(↓DownGate, y)
)

4/4/07 CS5270, Guest Lecture 20

Safety Assertion (RTL)

 ∀t ∀u (
 @(TrainApproach, t) + 45 ≤ @(↑TrainCrossing, u) ∧
 @(↓TrainCrossing, u) < @(TrainApproach, t) + 60 →
 @(↑TrainCrossing, u) ≥ @(↓DownGate, t) ∧
 @(↓TrainCrossing, u) ≤ @(↓DownGate, t) + 45
)
 In a simplified version, we can consider u = t

4/4/07 CS5270, Guest Lecture 21

Presburger Arithmetic Formulae

 Is built from constraints using: ∧, ∨, ¬, ∀, ∃, (,)
 A constraint is a series of expression lists,

connected with: =, !=, <, ≤, >, ≥

 If var is a variable, int is an integer, and e, e1, e2
are expressions, then var, int, e, int e, e1+e2 , e1-
e2 , int*e2 , -e and (e) are expressions;

 Each @(e,i) is replaced by a function fe(i), where
e is an event and i is an integer or an variable.

4/4/07 CS5270, Guest Lecture 22

Presburger Arithmetic Formulae

 Specification (SP)
 ∀x (f(x) ≤ g1(x) ∧ g2(x) ≤ f(x) + 30)
 ∀y (g1(y) + 15 ≤ g2(y))

 Safety Assertion (SA)
 ∀t ∀u (

 f(t) + 45 ≤ h1(u) ∧ h2(u) < f(t) + 60 →
 g2(t) ≤ h1(u) ∧ h2(u) ≤ g2(t) + 45
)

4/4/07 CS5270, Guest Lecture 23

Restricted RTL formulas
 The problem SP → SA is in general undecidable for

the full set of RTL formulas.
 [JaM87] motivated that RTL formulas of many real-

time systems:
 Consist in arithmetic inequalities involving two terms and an

integer constant in which a term is either a variable or a
function (difference constraints).

 Do not contain arithmetic expressions that have a function
taking an instance of itself as an argument.

 [WaM94] Wang, F., Mok, A. K.: RTL and Refutation by Positive
Cycles. Proceedings of Formal Methods Europe Symposium,
873, Lecture Notes in Computer Science, pp. 659-680, 1994.

4/4/07 CS5270, Guest Lecture 24

The path-RTL formulas [JaM87, WaM94]

 The general form of path-RTL formulas:
 functionOccurrence ± integerConstant ≤ functionOccurrence

 Industrial real-time systems:
 Railroad crossing [JaM87], [JaS88], [Che2002]
 Moveable control rods in a reactor [JaM87]
 Boeing 777 Integrated Airplane Information

Management System [MTR96]
 X-38, an autonomous spacecraft build by NASA

[RiC99]

4/4/07 CS5270, Guest Lecture 25

References
 This kind of Presburger Formulas was studied in

many papers, such as:
 [Pug94] Pugh, W.: Counting Solutions to Presburger

Formulas: How and Why. PLDI’94. ACM SIGPLAN
94-6/94 (1994) 121-134

 [LLP97] Larsen, K.G., Larsson, F., Pettersson, P., Yi,
W.: Efficient Verification of Real-Time Systems:
Compact Data Structure and State-Space Reduction.
IEEE RTSS’97, CS Press (1997) 14-24

 [Min2001] Miné, A.: A New Numerical Abstract
Domain Based on Difference-Bound Matrices.
Program as Data Objects II. LNCS 2053 (2001) 155-
172

4/4/07 CS5270, Guest Lecture 26

Behavioral Specification implies Safety
Assertions

 SP → SA is tautology iff ¬(SP → SA) is
unsatisfiable;

 ¬(SP → SA) ≡ ¬(¬ SP ∨ SA) ≡ SP ∧ ¬ SA
 Therefore, SP → SA is tautology iff SP ∧ ¬

SA is unsatisfiable.

4/4/07 CS5270, Guest Lecture 27

Clausal Form

 Specification (SP):
 ∀x∀y (f(x) ≤ g1(x) ∧ g2(x) - 30 ≤ f(x) ∧
 g1(y) + 15 ≤ g2(y))

 Negation of Safety Assertions (¬SA):
 ∃t∃u (f(t) + 45 ≤ h1(u) ∧ h2(u) < f(t) + 60 ∧
 (h1(u) < g2(t) ∨ g2(t) + 45 < h2(u)));

 Skolem normal form of RTL formulas [T/t][U/u]:
 f(T) + 45 ≤ h1(U) ∧ h2(U) – 59 ≤ f(T) ∧
 (h1(U) + 1 ≤ g2(T) ∨ g2(T) + 46 ≤ h2(U))

4/4/07 CS5270, Guest Lecture 28

[JaM87] Strategy

 F – the initial RTL Formula;
 F’ – the corresponding Presburger Formula;
 F’’ – the Clausal Formula corresponding to SP
∧ ¬ SA, that is: C1 ∧ C2 ∧ … ∧ Cn, where Ci =
Li,1 ∨ Li,2 ∨ … ∨ Li,n and each Li,j has the
general form: v1 ± I ≤ v2, I being a positive
integer constant.

4/4/07 CS5270, Guest Lecture 29

Constraint Graph Construction

 For each literal v1 ± I ≤ v2, we construct a node
labeled v1, a node labeled v2, and an edge
<v1,v2> with weight ±I from node v1 to node v2;

 If the constraint graph contains a cycle with
positive weight, then F’’ is unsatisfiable.

4/4/07 CS5270, Guest Lecture 30

Railroad Crossing Constraint Graph
(animation)

f(x) g1(x)
0 15

g2(x)

-30

45
h1(U)

f(T)

h2(U)

-59 46 g2(T)

1

4/4/07 CS5270, Guest Lecture 31

Positive cycles lead to unsatisfiability

 Let Xi,1, Xi,2,…, Xi,ni the i-th positive cycle. The
sum of weights of edges is positive, so Pi=Xi,1
∧ Xi,2 ∧ … ∧ Xi,ni is unsatisfiable ([JaM87]);
therefore, ¬Pi is tautology;

 Therefore, F’’ is (un)satisfiable iff F’’ ∧ {¬Pi |
for all positive cycle i} is (un)satisfiable;

4/4/07 CS5270, Guest Lecture 32

Railroad Crossing Satisfiability

 A= f(x) ≤ g1(x)
 B= g2(x) - 30 ≤ f(x)
 C= g1(y) + 15 ≤ g2(y)
 D= f(T) + 45 ≤ h1(U)
 E = h2(U) – 59 ≤ f(T)
 F = h1(U) + 1 ≤ g2(T)
 G = g2(T) + 46 ≤ h2(U)
 F’’ has the positive clauses: A, B, C, D, E, F ∨ G

4/4/07 CS5270, Guest Lecture 33

Positive cycles lead to unsatisfiability
(cont)
 A positive/negative clause contains only

positive/negative literals (for example, F ∨ G is
a positive clause, whereas ¬B ∨ ¬D ∨ ¬F is a
negative clause);

 F’’ contains positive clauses corresponding to all
edges, and negative clauses corresponding to a
positive cycle;

 The CNF satisfiability is NP-complete even if
each clause is positive or negative ([JaM87]).

4/4/07 CS5270, Guest Lecture 34

Railroad Crossing Satisfiability (cont)

 Three positive cycles in the constraint graph
imply that F’’ has the negative clauses:
 ¬B ∨ ¬D ∨ ¬F
 ¬F ∨ ¬G ∨ ¬E ∨ ¬D
 ¬A ∨ ¬C ∨ ¬G ∨ ¬E

4/4/07 CS5270, Guest Lecture 35

Search tree
 The Resolution Method works for F’’, but it is not

so efficient;
 More efficient, [JaM87] transformed the set of

negative clauses from conjunctive normal form
into disjunctive normal form;

 This corresponds to a tree, where each leaf will
be checked to at least one positive clause or by
itself;

 By considering the negation of unitary clauses as
early as possible, the strategy of building the tree
can be improved even more.

4/4/07 CS5270, Guest Lecture 36

Search tree for Railroad Crossing
root

¬B ¬D ¬F

¬F ¬D¬E¬G

¬A ¬E¬G¬C

 F’’ = A ∧ B ∧ C ∧ D ∧ E ∧ (F ∨ G) ∧ (¬B ∨ ¬D ∨ ¬F) ∧
(¬F ∨ ¬G ∨ ¬E ∨ ¬D) ∧ (¬A ∨ ¬C ∨ ¬G ∨ ¬E)

 F’’ is unsatisfiable, so SP → SA is tautology;

4/4/07 CS5270, Guest Lecture 37

Conclusions of Part 1
 So far, the presentation was based on [JaM87] and

[Che2002];
 We discuss another strategy based on counting the

number of true instances of F’’. This will tell us how
“far away” is the current specification from satisfying
the safety assertion;

 The addition of a new positive cycle may result from a
modification of the specification and/or safety
assertions. This is useful for incremental debugging, in
which bugs in problematic areas are fixed one at a
time until the system is correct.

 Special thanks to Professor Albert M. K. CHENG.

4/4/07 CS5270, Guest Lecture 38

PART 2. Counting true instances

4/4/07 CS5270, Guest Lecture 39

Counting true instances
 [Iwa89] Iwana, K.: CNF Satisfiability Test by Counting and

Polynomial Average Time. Siam J. Comput. 18, No. 2 (1989)
385-391

 [Dub91] Dubois, O.: Counting the number of solutions for
instances of satisfiability. Theoretical Computer Science. 81
(1991) 49-64

 [Tan91] Tanaka, Y.: A dual algorithm for the satisfiability
problem. Information Processing Letters 37 (1991) 85-89

 [And95] Andrei, S.: The Determinant of the Boolean Formulae,
Analele Universitatii Bucuresti, Informatica (1995) 83-92

 [And99] Andrei, S.: Weak Equivalence in Propositional
Calculus. Proceedings of European Summer School on Logic,
Language and Information, pp.79-89, Universiteit Utrecht,
August 1999

4/4/07 CS5270, Guest Lecture 40

Notations ([And95])

 F|V={C1,..,Cl} a clausal formula over V={A1,..,An}.
 Example: F|V={C1,C2,C3,C4}, V={p,q,r}, where

C1={p,¬r}, C2={¬q, r}, C3={q, ¬r}, C4={¬p, q, r}.
 If C1’,…,Cs’ ∈ F|V and s ≤ l, then:

 m(C1’,…,Cs’)= number of atomic formulae from V
which do not occur in C1’ ∩… ∩ Cs’. For example:
m(C1)=1, m(C2)=1, m(C3)=1, m(C4)=0, m(C1,C2)=0,
m(C1,C3)=0, m(C1,C4)=0, etc.

4/4/07 CS5270, Guest Lecture 41

Dual Resolution Theorem ([And95])
 dif(C1’,…,Cs’)=

 0 if ∃ i, j ∈ {1,…,s}, i ≠ j, ∃ L literal such that L ∈ Ci’ and ¬L ∈ Cj’
 2m(C1’,…,Cs’) otherwise

 Example: dif(C1)=2, dif(C2)=2, dif(C3)=2, dif(C4)=1,
dif(C1,C2)=0, dif(C1,C3)=1, dif(C1,C4)=0, etc.

 det(F|V)=2n- ∑s=1
l (-1)s+1* ∑ 1≤ i1<…<is≤l dif(C1’,…,Cs’) is

called the determinant of F|V ([And95]).
 Theorem. F|V has det(F|V) truth assignments. So, F|V is

satisfiable iff det(F|V) ≠ 0.
 Example: det(F|V)=23-(2+2+2+1-1)=2, so F|V is

satisfiable having 2 truth assignments.

4/4/07 CS5270, Guest Lecture 42

Ordered labelled standard tree

 A node in OLST is labelled with the clause
Ci,k and dif(Ci,1, .., Ci,k), where Ci,1, .., Ci,k is
the sequence of nodes from the root Ci,1 to
the current node Ci,k

 The total number of nodes is 2l.

4/4/07 CS5270, Guest Lecture 43

Ordered labelled standard tree (cont)

 The total number of nodes is 24=16 (there are 4 clauses).
 det(F|V)=23-(2+2+2+1)+(0+1+0+0+0+0)-(0+0+0+0)+0=2.

C1, 2 C2, 2 C3, 2 C4, 1

C2, 0 C3, 1 C4, 0 C3, 0 C4, 0 C4, 0

C4, 0

C3, 0 C4, 0 C4, 0 C4, 0

4/4/07 CS5270, Guest Lecture 44

Ordered labelled reduced tree (cont)

 The nodes labelled with dif(...)=0 need not be
generated!

 Now, the total number of nodes is 6.
 det(F|V)=23-(1+2+2+2)+(1)=2.

C1, 1

C4, 1 C2, 2 C3, 2 C1, 2

 If dif(C1’,…,Cs’)=0 then dif(C1’,…,Cs’,Cs+1’)=0.

4/4/07 CS5270, Guest Lecture 45

PART 3. Incremental verification of
the real-time systems specifications

4/4/07 CS5270, Guest Lecture 46

Our Incremental Approach for
Systematic Debugging [AnC04]

4/4/07 CS5270, Guest Lecture 47

Past Work [AnC04]
 The satisfiability of SPk+1→SAk+1 is expressed incrementally from

the satisfiability of SPk→SAk
 The manual debugging from step 3 is correlated with the

satisfiability of SPk→SAk
 We use #SAT problem rather than SAT problem:

 To know how “far away” is SP from satisfying SA;
 The modification of SP and/or SA is useful for

incremental debugging, in which bugs are fixed one at
a time until the system is correct.

 Andrei, S., Chin, W.-N.: Incremental Satisfiability Counting for Real-
Time Systems. The 10th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’04), Toronto, Canada, 25 May –
28 May, 482-489, 2004

4/4/07 CS5270, Guest Lecture 48

Past Work [ACCL05]
 The debugging from step 3 is done systematically, not manually.
 Since the industrial real-time systems may have large

specifications, it is impracticable for the designer to find the proper
missing or wrong constraints.

 Efficient Java implementation of systematic debugging
(http://www.comp.nus.edu.sg/~andrei/SDRTL/). Examples of real-
time systems have also been successfully tested by SDRTL.

 We simulated a real-life scenario, supposing that the designer may
forget to include some constraints or may give some incorrect
constraints.

 Andrei, S., Chin, W.-N., Cheng, A.M.K., Lupu, M.: Systematic Debugging
of Real-Time Systems based on Incremental Satisfiability Counting. The
11th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS'05), San Francisco, United States, 7 March - 10
March, 10 pages, 2005

4/4/07 CS5270, Guest Lecture 49

Re-design of Railroad Example
 We consider new events and new constraints.
 We add to SP:

 (English) A car needs at most 10 seconds to cross the
railroad;

 (RTL) @(↓CarCrossing, z) – 10 ≤ @(↑CarCrossing, z)
 We add to SA:

 (English) If the train starts to cross the railroad crossing,
there is no car crossing in the last 5 seconds;

 (RTL) @(↓CarCrossing, v) + 5 ≤ @(↑TrainCrossing, u)

4/4/07 CS5270, Guest Lecture 50

Re-design of Railroad Example -
Presburger Arithmetic Formulas
 SP1:

 ∀x (f(x) ≤ g1(x) ∧ g2(x) ≤ f(x) + 30)
 ∀y (g1(y) + 15 ≤ g2(y))
 ∀z (η2(z)-10 ≤ η1(z))

 SA1:
 ∀t ∀u ∀v (

 f(t) + 45 ≤ h1(u) ∧ h2(u) < f(t) + 60 →
 g2(t) ≤ h1(u) ∧ h2(u) ≤ g2(t) + 45 ∧ η2(v)+5 ≤ h1(u)
)

4/4/07 CS5270, Guest Lecture 51

Re-design of Railroad Example –
Clausal Form

 SP1:
 ∀x∀y∀z(f(x) ≤ g1(x) ∧ g2(x) - 30 ≤ f(x) ∧ g1(y) + 15 ≤ g2(y) ∧
η2(z)-10 ≤ η1(z))

 Negation of Safety Assertions (¬ SA1):
 f(T) + 45 ≤ h1(U) ∧ h2(U) – 59 ≤ f(T) ∧

 (h1(U) + 1 ≤ g2(T) ∨ g2(T) + 46 ≤ h2(U) ∨ h1(U) – 4 ≤ η2(V))

4/4/07 CS5270, Guest Lecture 52

Re-design of Railroad Crossing - Constraint Graph

f(x) g1(x)
0 15

g2(x)

-30

45
h1(U)

f(T)

h2(U)

-59 46 g2(T)

1

η2(z)

η1(z)

-10

-4

η2(V)

4/4/07 CS5270, Guest Lecture 53

Re-design of Railroad Crossing – PF1

 Literals:
 A= f(x) ≤ g1(x), B= g2(x) - 30 ≤ f(x), C= g1(y) + 15 ≤ g2(y),
 D= f(T) + 45 ≤ h1(U), E = h2(U) – 59 ≤ f(T),
 F = h1(U) + 1 ≤ g2(T), G = g2(T) + 46 ≤ h2(U),
 H = η2(z)-10 ≤ η1(z), I = h1(U) – 4 ≤ η2(V)

 PF1 has the positive clauses: A, B, C, D, E, H, F ∨ G ∨ I
 PF1 has the negative clauses:

 ¬B ∨ ¬D ∨ ¬F
 ¬F ∨ ¬G ∨ ¬E ∨ ¬D
 ¬A ∨ ¬C ∨ ¬G ∨ ¬E

4/4/07 CS5270, Guest Lecture 54

Re-design of Railroad Crossing – Satisfiability

 We get det(PF1) = 3 > 0, hence PF1 is satisfiable;
 So, the real-time system may be unsafe;
 Is it necessary to have at least one more positive cycle

containing H and I;
 Going back to SA1, we add:

 (English) If the gate starts to go down, then no car will
start to cross the railroad

 (RTL) @(↑CarCrossing, v) ≤ @(↑DownGate, t)
 (Presburger) η1(v) ≤ g1(t)

4/4/07 CS5270, Guest Lecture 55

Re-design - New Constraint Graph

f(x) g1(x)
0 15

g2(x)

-30

45
h1(U)

f(T)

h2(U)

-59 46 g2(T)

1

η2(z)

η1(z)

-10

-4

η2(V)

η1(V)

0

4/4/07 CS5270, Guest Lecture 56

Re-design of Railroad Crossing – PF2
 Literals:

 A= f(x) ≤ g1(x), B= g2(x) - 30 ≤ f(x), C= g1(y) + 15 ≤ g2(y),
 D= f(T) + 45 ≤ h1(U), E = h2(U) – 59 ≤ f(T), F = h1(U) + 1 ≤ g2(T),
 G = g2(T) + 46 ≤ h2(U), H = η2(z)-10 ≤ η1(z),
 I = h1(U) – 4 ≤ η2(V), J = η1(V) ≤ g1(T)

 PF2 has the positive clauses: A, B, C, D, E, H, J, F ∨ G ∨ I
 PF2 has the negative clauses:

 ¬B ∨ ¬D ∨ ¬F
 ¬F ∨ ¬G ∨ ¬E ∨ ¬D
 ¬A ∨ ¬C ∨ ¬G ∨ ¬E
 ¬I ∨ ¬H ∨ ¬J ∨ ¬C ∨ ¬B ∨ ¬D

4/4/07 CS5270, Guest Lecture 57

Incremental #SAT

 Problem: Knowing the number of true instances of PF,
what is the number of true instances of PFυ{C}, for any
arbitrary clause C?

 Incremental computation: we use detV(PF1) to get
detV(PF2), without recomputing the common parts of
PF1 and PF2

4/4/07 CS5270, Guest Lecture 58

The Increment of a Clausal Formula

 Definition: Given PF={C1,…,Cl} over V and C an
arbitrary clause, then

 incV(C,PF)=∑s=0
l(-1)s+1

* ∑1≤ i1<…<is≤l difV(C,Ci1,…,Cis)
 is called the increment of PF with C over V.
 incV(C, PF) is represented as an ordered labeled

reduced clausal incremental tree: CITred(C,PF).

4/4/07 CS5270, Guest Lecture 59

The Incremental Splitting of the Clausal Tree

4/4/07 CS5270, Guest Lecture 60

Incremental Computing is Optimal

 Theorem: Let PF={C1,…,Cl} be a clausal formula and
PF’={Cl+1,…,Cl+k}. Then:
 detV(PF υ PF’) = detV(PF) + incV(Cl+1, PF) + incV(Cl+2, PF
υ {Cl+1}) + .. + incV(Cl+k, PF υ {Cl+1,.., Cl+k-1})

 N’=N+Nl+1+…+Nl+k, where N’, N, Nl+1, …, Nl+k are the
number of nodes of the reduced clausal trees of detV(PF
υ PF’), detV(PF), incV(Cl+1,PF),…, incV(Cl+k,PF υ {Cl+1,…,
Cl+k-1}).

 Incremental computing is optimal.

4/4/07 CS5270, Guest Lecture 61

Properties of detV(PF) and incV(C,PF)

 Let PF = {C1, ..., Cl} be a clausal formula over V. Then:
 if A is an atomic variable, A∉ V, then incVU{A}({A}, PF) =

incVU{A}({¬A}, PF) = -detV(PF);
 If V' is an alphabet such that V⊆V' and C an arbitrary

clause over V, then detV'(PF)=2|V'|-|V|
* detV(PF) and

incV'(C,PF)=2|V'|-|V|
* incV(C,PF).

4/4/07 CS5270, Guest Lecture 62

Satisfiability of the Railroad Crossing

 PF1 = {{A}, {B}, {C}, {D}, {E}, {H}, {F,G,I}, {¬B,¬D,¬F}, {¬
F,¬G,¬E,¬D}, {¬A,¬C,¬G,¬E}} over V1 = {A, B, C, D,
E, F, G, H, I}

 PF2 = PF1 υ {{J},{¬I,¬H,¬J,¬C,¬B,¬D}} over V2 = V1 υ
{J}

 detV2(PF2) = detV2(PF1) + incV2({J}, PF1) + incV2({¬I,¬H,
¬J,¬C,¬B,¬D}, PF1 υ {{J}}) =

 = 2 * detV1(PF1) - detV1(PF1) - 3 = 3 - 3 = 0
 The real-time system is safe now!

4/4/07 CS5270, Guest Lecture 63

Experimental results
 Denote

 CTred(F U {Cl+1} U {Cl+2}) by CTred
new

 CITred(Cl+1,F) by CITred
1

 CITred(Cl+2, F U {Cl+1}) by CITred
2

 n the number of variables, l the number of clauses

4/4/07 CS5270, Guest Lecture 64

Related Work: Incremental Approaches
 An incremental positive cycle detection

algorithm [MTR96] is also based on the
constraint-graph technique and uses an
algorithm for single source with positive weight
in the graph.

 An incremental algorithm for model checking
using transition systems in the alternation-free
fragment of the modal µ-calculus was
presented in [SoS94].

 Instead, our incremental approach is applied to
propositional formulas.

4/4/07 CS5270, Guest Lecture 65

History of SAT and #SAT problems

 The SAT problem
 [Cook, 1971]

 The #SAT problem
 [Valiant, 1979]

 The incremental
#SAT problem

 [Andrei & Chin, 2004]

 The incremental
SAT problem

 [Hooker, 1993]

4/4/07 CS5270, Guest Lecture 66

Automatic Debugging [ACCL06]
 Motivation: The embedding and the integration of our

debugger in autonomous systems where the
specifications must meet timing constraints, but without
human interaction.

 The idea is to consider in advance all the necessary
information such as the designer's guidance.

 Efficient Java implementation for automatic debugging.

 [ACCL06] Andrei, S., Chin, W.-N., Cheng, A.M.K., Lupu, M.: Automatic
Debugging of Real-Time Systems based on Incremental Satisfiability
Counting. IEEE Transaction on Computers, vol. 55(7), pp. 830-842
(2006) Selected as July issue's Feature Article for ‘hot’ topic and fast
publication.

4/4/07 CS5270, Guest Lecture 67

Optimization of Specifications[AnC06’]
 Motivation: After verifying SP -> SA, and the system

implementing SP is deployed, performance changes as a
result of power-saving, faulty components, and cost-saving
in the processing platform for the tasks specified in SP.

 This leads to a different but related SP.
 It is desirable to determine an optimal SP with the slowest

possible computation times for its tasks such that SA holds.
 The idea: relax SP and tighten SA such that SP -> SA is still

a theorem.

 [AnC06’] Andrei, S., Cheng, A.M.K.: Optimization of Real-Time Systems
Timing Specifications. Proceedings of the 12th IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA 2006), 7 pages, IEEE Computer Society, Sydney,
August 16-18, 2006

4/4/07 CS5270, Guest Lecture 68

Extension of Path-RTL [AnC06’’]
 We shall present an extension of the path RTL class by

allowing inequalities like
∀i @(e1, i) + @(e2, i) ≤ k

and
 ∀i @(e1, i) + @(e2, i) ≥ k

to be part of the specification.
 Obviously, equalities like ∀i @(e1, i) + @(e2, i) = k may

be also part of the extended path RTL specification.
 Then a new and fast algorithm based on a translation to

an extended constraint graph is described, too.

 [AnC06’’] Stefan Andrei, Albert M.K. Cheng: Faster Verification of RTL-
Specified Systems via Decomposition and Constraint Extension, Real-
Time Systems Symposium (RTSS’06), December 5-8, 2006, Rio de
Janeiro, 10 pages

4/4/07 CS5270, Guest Lecture 69

 Divide and Conquer [AnC06’’]
 For real-time systems with large specifications, there

is a lot of room for improvement in the algorithms
used for verification and debugging.

 There is a need of an efficient method to perform
verification and debugging of real-time systems
specifications using decomposition techniques.

 The idea is to decompose the constraint graph, used
in existing approaches, into independent sub-graphs
so that it is no longer necessary to analyze the entire
specification at once, but rather its individual and
smaller components.

 Efficient implementation of this method in the Java-
based tool and tested it on several industrial real-
time systems.

4/4/07 CS5270, Guest Lecture 70

Future Work

 Identify new subclasses of timing formulae
for which the satisfiability problem is
decidable:
 by considering a non-unit scalar integer, e.g.,
± a * @(X, i) ± b * @(Y, j) ≤ c
 by considering more than two variables, e.g.,
± @(X, i) ± @(Y, j) ± @(Z, k) ≤ c

4/4/07 CS5270, Guest Lecture 71

Summary

 Real-time logic
 Counting true instances
 Incremental verification of the real-time

systems specifications

4/4/07 CS5270, Guest Lecture 72

Thank you for your attention!

 Questions?

