
TI
G

ER
Chapter 3
Scheduling

There cannot be a crisis next week. My schedule is already full. [Henry Kissinger]

3.1 Task scheduling concepts Page 32
We introduce basic concepts of tasks in RT operating systems.

3.2-3.3 Scheduling and resource access protocols Pages 35, 39
We consider RMS and EDF scheduling, priority inheritance and ceiling pro-
tocols.

Concepts introduced: Deadlines, feasability, schedulability, precedence con-
straints, resource constraints, process utilization factor, RMS, EDF, mutual
exclusion, critical sections, semaphores, priority inheritance and ceiling pro-
tocols.

IN CHAPTER 2, a structure of hard real-time systems is outlined in which special
purpose hardware is used to run a set of fixed duration tasks. Because of the hard
requirement for the RT systems, we do not want to use probabilistic ordering

(scheduling) of tasks. Instead we prefer to use scheduling algorithms which precisely
determine at which time each task executes. We begin by exploring the underlying
structure of tasks in the hard RT computing environment.

31



TI
G

ER
32

3.1 Task scheduling concepts

The underlying OS is responsible for scheduling the tasks, and the part of the OS that
does this is termed the scheduler. A preemptive scheduler can preempt (interrupt)
other tasks if a higher priority task needs to be scheduled. This may improve the
responsiveness of the system, but complicates the scheduling.

Consider a situation where we have a set of three tasks
���������	�����	
��

with a relative
priority or importance ���������������������� � � � such that  �"!  �#!  


. If the three tasks
took $ , $ and % msecs respectively, and they were scheduled to run at times & � �(' ,
& � ��% and & 
 �*) , then a non-preemptive scheduler would run the tasks as seen in
Figure 3.1(a), where

�+�
and

�	

are delayed from starting.

Priority

1 2 3

1

2

3

time

τ

τ

τ

ttt

(a) Non-preemptive

Priority

1 2 3

1

time

2

3

τ

τ

τ

ttt

(b) Preemptive

Figure 3.1: Scheduler preemption

A preemptive scheduler as seen in Figure 3.1(b), will not delay the start of the tasks,
and

��

(the highest priority task) completes as soon as possible. Note that task

�,�
does

not complete until after
��


, and also that if there was some other constraint on
�-�

(for
example:

�,�
must complete less than . msecs after it starts), then the preemptive

scheduler would not meet this constraint.

Definition 12 A schedule is feasible if all tasks can be completed while satisfying
the given constraints.

Definition 13 A task set is schedulable if there is at least one scheduling algorithm
which produces a feasible schedule.

3.1.1 Scheduling constraints

The constraints may be timing, precedence or resource constraints.



TI
G

ER
3.1 Task scheduling concepts 33

For timing constraints, the principal one is that a task should meet some deadline. In
the case of RT systems in this book, this will be a hard constraint. We associate with
each task

� � an arrival or activation time � � , and a computation time � � which is the
time needed to perform the task if there was no preemption. We assume a priority  �
for each task, and start and finish times for each task are � � and

� � respectively.

τ

timefis iai id

ic

iD

i

Figure 3.2: Times associated with a task

Definition 14 If a task & � needs to finish before some time � � , then this is called a
deadline. A relative deadline � � for the task is �#�����-���	�-� .

φ time

i i i

Di DiDi

T T T

i

Figure 3.3: Periodic tasks

Definition 15 A periodic task is one that is regularly activated at a constant rate.
Its period is 
 � , and the time of first activation (its phase) is � � .

It is OK if the start time �+� of a task is delayed, as long as the finish time
� � is before

the expiry of the (relative) deadline.

Precedence constraints are those that specify the ordering of tasks. Sometimes a task
may not be activated until after some other task has completed. We use the notation���� ���

to indicate that
���

precedes
���

, and the notation
����� ���

to indicate that
���

immediately precedes
���

. A precedence graph can be used to show the precedence
relation between tasks.



TI
G

ER
34

accelerator
pedal

actuator
Modify

Calculate
speed

Measure
current wheel

Calculate 
weighting

Measure
current
load rotations

position of
Measure

Figure 3.4: Precedence graph for car control system

For example, consider a vehicle system, which measures the speed of
the car, and the load on the engine to calculate a weighting factor, which
is then used to modify the adjustment of the carburettor depending on
the position of the accelerator pedal.

Each of the items introduced in this description may be implemented using a set of
tasks, but we cannot (for example) modify the carburettor if we have not finished
calculating the weighting factor. In Figure 3.4, we see a possible precedence graph
for this system.

The last form of critical constraint is a resource constraint, which may be some
variable or device or some other structure in the system. Resources only become
critical resource constraints when they are shared with other tasks.

An exclusive resource is one which may require exclusion of all other tasks when
the resource is accessed. This is called mutual exclusion, and operating systems
normally provide synchronization mechanisms to assist tasks to provide mutually
exclusive access to a resource. The code which requires this mutually exclusive
access is termed a critical section (CS).

The most common mechanism for this purpose is called the semaphore, where a
semaphore variable ��� is used to control access to an associated ��� � . The two func-
tions on the semaphore are:

1. �����	��
� ����� will block if � ����� , but otherwise it will pass through, setting � � to � .

2. ���	��������
� ����� sets � � to � .



TI
G

ER
3.2 The scheduling problem 35

The OS manages blocking and unblocking of tasks by keeping queues for each type
of task. A task waiting for an exclusive resource is blocked on that resource, and
tasks blocked on the same resource are kept in a wait queue associated with the
semaphore protecting the resource.

preempt

schedule

wait()

signal()

Running

Ready

Waiting

For each task: Only 1 running at a time
Queue of Ready tasks
Tasks block on semaphore

Figure 3.5: States of the tasks

Figure 3.5 shows the states of the tasks waiting for access to resources. A task
in the running state executing wait(s) on a locked semaphore enters the waiting
state. When a task currently using the resource executes signal(s), the semaphore
is released. When a task leaves its waiting state (because the semaphore has been
released) it goes into the ready state, to be scheduled later.

3.2 The scheduling problem

The general scheduling problem is NP-complete. There is a non-deterministic Tur-
ing Machine TM and a polynomial in one variable  ��� � such that for each problem
instance of size � , TM determines if there exists a schedule and if so outputs one in
at most  ��� � steps. Any non-deterministic polynomial time problem can be trans-
formed in deterministic polynomial time to the general scheduling problem, and only
exponential time deterministic algorithms are known.

Hence we must find imperfect but efficient solutions to scheduling problems. A great
variety of algorithms exist, with various assumptions, and with different complexi-
ties.



TI
G

ER
36

3.2.1 RMS - Rate monotonic scheduling

Much of the analysis of scheduling algorithms is based on statistical analysis of the
behaviour of various queuing strategies. By contrast, in a hard real-time environment
we are only interested in absolute results, and to this end we make assumptions about
the environment in which RMS operates.

In RMS [LL73], we assume a set of tasks
����� �

�����
� �
�

�
with periods 
 ���

�����
� 
 � ,

� � � ' and � � � 
 � for each task. We allow preemption, there is only a single
processor, and we have no precedence constraints. From the Liu article:

(A1) The requests for all tasks for which hard deadlines exist are periodic, with constant
interval between requests.

(A2) Deadlines consist of run-ability constraints only - i.e. each task must be completed
before the next request for it occurs.

(A3) The tasks are independent in that requests for a certain task do not depend on the
initiation or the completion of requests for other tasks.

(A4) Run-time for each task is constant for that task and does not vary with time.

(A5) Any nonperiodic tasks in the system are special; they are initialization or failure-
recovery routines; they displace periodic tasks while they themselves are being run,
and do not themselves have hard, critical deadlines.

The RMS approach assigns higher priorities to tasks with shorter periods. If higher
priority tasks arrive, they can preempt the currently running task. RMS is a static
scheduling policy.

�
�

�
�

�



� � 1 2 3
� � 4 6 10

Table 3.1: Task set for scheduling

For the periodic tasks given in Table 3.1, Figure 3.6 shows an RMS schedule.



TI
G

ER
3.2 The scheduling problem 37

τ

τ
τ

3

2

1

0 2010 30 40 50 60

This cycle repeats

Figure 3.6: RMS schedule for tasks

As you can see, RMS is a very simple algorithm, but even so, if a set of tasks with
the aformentioned constraints is not schedulable with RMS, then no static scheme
can schedule them.

Definition 16 The processor utilization factor � is the fraction of processor time
spent in the task set:

� �
��
��� ��� �


 �
If this factor is greater than � then of course, the task set can not be scheduled.
However if ����� then it is possible that it may be RMS-schedulable. If a particular
set of tasks has a feasible RMS schedule, and any increase of the runtime of any
task would render the particular set infeasible, then the processor is said to be fully
utilized.

Definition 17 The least upper bound of �
	��� is the minimum of the � over all sets
of tasks that fully utilize the processor.

If ������	��� , then the set of tasks is guaranteed to be schedulable. Table 3.2 gives
a sufficient value for ��	��� for different numbers of tasks, but note that it may be
possible to schedule a task set even if the criterion fails.

� � % $ ) . � �
��	��� � � '-'-' ' ��� % � ' ����� ' ' ��� . � ' ��� ) $ ' ��� $ . ' � ���-'

Table 3.2: RMS schedulability criterion

In the task set from Table 3.1, the processor utilization factor is � ��� ���� � �"!# ! ���"$&%('(' .
The least upper bound for rate monotonic scheduling for 3 tasks is given in Table 3.2
as ��	��� � ' ����� ' , and since �
	��) ! � , we cannot guarantee that this task set is
schedulable.



TI
G

ER
38

�
�

�
�

�



� � 1 2 3
� � 4 6 8

Table 3.3: Another task set for scheduling

With the set of tasks in Table 3.3, we have that task
� 


fails to complete within its
period (8), hence this task set is not schedulable using rate monotonic scheduling. I
have circled the area which fails to complete (time overflow) in Figure 3.7.

τ

τ
τ

3

2

1

0 8 16 24

This cycle repeats

Figure 3.7: Time overflow for task set

3.2.2 EDF - Earliest deadline first scheduling

In EDF scheduling, we manage both periodic and aperiodic tasks, and those with
earlier deadlines will have higher priorities. EDF is a dynamic algorithm, and is
optimal for dynamic priority scheduling.

Theorem 1 A task set is schedulable with EDF iff � ��� .
So, compared to fixed priority scheduling techniques like rate-monotonic scheduling,
EDF can guarantee all the deadlines in the system at higher loading. Consider the
example task set in Table 3.4. From � � ' � ) � ' � . � � ' � � � � � we know that it is
guaranteed to be schedulable under EDF.

�
�

�
�

� � 2 4
� � 5 7

Table 3.4: EDF task set for scheduling

In Figure 3.8(a) we see that it is not RMS schedulable, but EDF scheduling succeeds
in Figure 3.8(b).



TI
G

ER
3.3 Resource access protocols 39

τ
τ2

1

0 7 14 21

Time Overflow!

(a) RMS scheduling

τ
τ2

1

0 7 14 21

Cycle repeats

(b) EDF scheduling

Figure 3.8: Different schedules for tasks

It is possible to calculate worst case response times of processes in EDF, dealing
with other types of processes than periodic processes.

3.3 Resource access protocols

In a system with multiple tasks running on a single processor with shared resources,
we need proper protocols for accessing theose shared resources. These are termed
resource access protocols, and a principal method to avoid the serious problem of
priority inversion.

Figure 3.9: Mars rover

In 1997 the Mars pathfinder mission ran into serious problems. The spacecraft began
experiencing total system resets with loss of data each time. It turned out to be due
to priority inversion.

In Figure 3.10, we see a higher priority task
���

blocked by the much lower priority
task that is holding a shared resource. The lower priority task

� 

has acquired this

resource and then been preempted by the medium priority task
� �

. In summary,
���

is
blocking

�,�
. On the pathfinder, the resource that caused this problem was a mutual

exclusion semaphore.



TI
G

ER
40

ττ2 1

τ

τ
τ

3

2

1

has resource

wants resource, blocks finally runs

frees resource

is blocking

Figure 3.10: Priority inversion

So how can we avoid priority inversion? We could disallow preemption during the
execution of a critical section, but this works only if critical sections are short, and
might unneccesarily block higher priority processes that do not even use any shared
resources. It is better to use resource access protocols such as the priority inheritance
protocol, or the priority ceiling protocol.

3.3.1 Priority inheritance protocol

In the priority inheritance protocol, tasks have nominal and active priorities. A nom-
inal priority is assigned by the scheduling algorithm (RMS or EDF or some other
algorithm). The active priority is assigned by the protocol dynamically, specifically
to avoid priority inversion.

When
� � blocks higher-priority tasks, then its active priority is set to the highest of the

priorities of the tasks it blocks. Put in another way, we could say that it temporarily
inherits the highest priority of the blocked tasks. This prevents medium priority
tasks from preempting

� � and prolonging the blocking duration of the higher priority
tasks. When a task is blocked on a semaphore, it transmits its active priority to the
job that holds the semaphore; in general, a task inherits the highest priority of the
jobs blocked by it. When a task exits a critical section, it unlocks the semaphore; the
job with the highest priority that is blocked on the semaphore, if any, is awakened.

With the priority inheritance protocol, the good news is that if there are a set of
distinct semaphores that can block a task

�
then

�
can be blocked for at most the

duration of at most one critical section, one for each of the semaphores. It can never
be as long as the WCET of a lower priority task. The bad news is termed chained
blocking, where a task

�
is blocked on critical sections held by lower priority jobs.



TI
G

ER
3.3 Resource access protocols 41

� � � �
�
�

3 2 4 6
�
�

4 0 6 8
�



2 1 0 5

Table 3.5: Task set for resource protocols

Consider three periodic tasks
� �

,
���

and
��


(having decreasing priority) which share
four resources � , � , � and � accessed using the priority inheritance protocol. The
longest duration �#��� for the task

� � on resource � is given by the table below. ( � ��� �' means
� � does not use at all the resource � ). We can compute a (conservative)

maximum blocking time � � for each task like this:

� � � � � � 
 �
	��� ��� �
����� � 	� �

��
� � ��� ���������� � ���  
! � 
#"  �%$'& �)(

����� ��� �
��
 � � �����*,+.- � � �/�  
! � 
#"  �%$0& �)(

where � � is the sum of the durations of the longest critical sections guarded by
semaphore 1  that can block

� � , and � 	� is the sum of the durations of the longest
critical sections in tasks with lower priority than

� � , guarded by semaphore 1  , and
that can block

� � . For our example, we can use this to derive the following blocking
times

� 	 � � � � ."� ��$ � � � ) � � � � � � � �(�
� 	� � . � � � % � � � ."� �
� 	
 � ' � 
 � '

and so � � � ��$ , � � � . and � 
 � ' .

This calculation is reasonably efficient, but if you try to find a tighter bound, then
the complexity of the algorithm would be much higher (it is exponential). A branch-
and-bound algorithm (with worst-case exponential complexity) is given in Appendix
A of [Raj91].

3.3.2 Priority ceiling protocol

The priority ceiling protocol is an extension of the priority inheritance protocol,
which avoids chained blocking and deadlocks. The underlying idea is that a task is
not allowed to enter a critical section if there are already locked semaphores which



TI
G

ER
42

could block it eventually (due to a sub-critical section nested within the entering crit-
ical section). Hence, once a task enters a critical section, it can not be blocked by
lower priority tasks till its completion.

Each semaphore 1 is assigned a priority ceiling � � 1 � , the priority of the highest
priority task that can lock 1 . This is a static value. Suppose

�
is currently running

and it wants to lock the semaphore 1 .
�

is allowed to lock 1 only if the priority
of

�
is strictly higher than the priority ceiling � ��1 � � of the semaphore 1 � where 1 �

is the semaphore with the highest priority ceiling among all the semaphores which
are currently locked by jobs other than

�
. In this case,

�
is said to blocked by the

semaphore 1 � (and the job currently holding 1 � ).
When

�
gets blocked by 1 � then the priority of

�
is transmitted to the job that cur-

rently holds 1 � . When
� �

leaves a critical section guarded by 1 � then it unlocks 1 �
and the highest priority job, if any, which is blocked by 1 � is awakened. The priority
of

� �
is set to the highest priority of the job that is blocked by some semaphore that� �

is still holding. If none, the priority of
� �

is set to be its nominal one.

There are two critical properties of the priority ceiling protocol:

1. a job can be blocked for at most the duration of one critical section.

2. The priority ceiling protocol prevents deadlocks.

Consider the three periodic tasks in Table 3.5. The maximum blocking time �"� for
each task if the resources are accessed using the Priority Ceiling Protocol is

� � � ������ ��� � � ���  ���� � ! � � � � ��1  �
	 � � �

and we have that

� � � ������ ) � % � � � � � � � .�� � �
� � � ������ % � � � .-��� .
� 
 � '

3.4 Summary of topics

In this section, we introduced the following topics:



TI
G

ER
3.4 Summary of topics 43

Task scheduling concepts. Basic concepts of tasks in RT operating systems, feasabil-
ity, constraints, timing, precedence and resource.
Scheduling. RMS and EDF scheduling, processor utilization factor, schedulability
Resource access protocols. Priority inheritance and ceiling protocols, blocking times.


