
TI
G

ER
Chapter 4
Timed transition systems

If you put tomfoolery into a computer, nothing comes out of it but tomfool-
ery. But this tomfoolery, having passed through a very expensive machine, is
somehow enobled and no-one dares criticize it. [Pierre Gallois]

4.1 State transition systems Page 46
We introduce useful basic concepts of state transition systems.

4.2 Timed transition systems Page 48
Basic concepts, state invariants.

4.3 Reduction of timed transition systems Page 52
The reduction of a timed transition system to finite state transition systems.

Concepts introduced: Finite and infinite systems, reduction using equivalence
classes, reachability, regions, zones, DBMs, quotienting, automata.

S TATE TRANSITION SYSTEMS are abstract machines that are used in the
study of computation. The machine consists of a set of states and transitions
between states, and they differ from finite state automata in that state transition

systems do not have accepting states, and also may have a set of states that is not
necessarily finite, or even countable.

45

TI
G

ER
46

4.1 State transition systems

In this chapter, we follow a progressive development, starting from the formal def-
initions of simple state transition systems, and using these to show how the parallel
composition of state transition systems may be used to model a network of state
transition systems. Later we continue, developing timed transition systems.

The formal definition of a transition system was given in Definition 4 on page 12,
and is not repeated here, but please note that

�
and ����� are often finite sets, there is

often only a single
���	�

state, and the transition relation is often deterministic (to be
defined soon).

on−heat

off−heat

C H

off−ac

on−ac

okok

S

S

S

SS

S

S

0

1

2

3

4

5

6

Figure 4.1: Temperature regulator

Consider a control system for a temperature regulator, which controls a heater and
an air conditioning unit. In Figure 4.1, we see a transition system that could form
the basis for a controller. For clarity, the states have been labelled, and we can use
the labels to identify valid and invalid traces:

TRACE:
�� on-heat
� ok
�� off-heat
�� ...

NON-TRACE:
 off-heat
 � off-heat
 � ...

In this system the transition relation is deterministic, i.e. if ��� ���� ��� and ��� ���� ���
then ��� � ��� . Non-determinism is useful for getting succinct specifications. When
you abstract out elements of a program, this may give rise to non-determinism.

TI
G

ER
4.1 State transition systems 47

arrive−junction toss−coin
turn−left

turn−right

H

T

(a) Deterministic TS

turn−left

turn−right

toss−coinarrive−junction

(b) Non-deterministic TS

Figure 4.2: Abstraction leading to non-determinism

Consider the model in Figure 4.2(a), which deterministically models a system arriv-
ing at a road junction, tossing a coin, and then depending on the coin toss (Heads or
Tails), turning left or right. The more abstract model in Figure 4.2(b) has less states,
and is non-deterministic, and may still be sufficient for modelling purposes.

Definition 18 A path is an allowable sequence of states. Any path starting from an
initial state is termed a run.

In a transition system, � � � � � � ��� ��������� ��� (written � � ���� ���) is a run, with a
complete trace of � ��� � � � � � ��� � � ���	����� ����
 � � � ��� .

Definition 19 The sequence of actions � � � � � ������� � � is termed a computation.

Every run � induces a computation , and given a specific run � , the corresponding
computation is not unique. However, if the system is deterministic, for every
computation , there is a unique run � .

4.1.1 Parallel composition of transition systems

It is common for transition systems to be presented as an array of smaller transition
systems, as we saw in the gate controller system in Section 1.3.2, where three transi-
tion systems (Gate, Train, Controller) model the behaviour of the gate, the controller
and the train. We now show how to construct the parallel composition of a finite set
of such transition systems ������������������� ��� � ����� �!����"�#$�&%(')#��*�*')������� where � is an
operator representing parallel composition. We can construct the parallel composi-
tion of finite state transition systems by taking the cartesian product of all the states

TI
G

ER
48

of each transition system ���������
	������� �	� 	������ � ������������� , and then deriving any allowable
transitions for each of these states, performing common actions together.

For the � ����������� ����� system, the cartesian product of all the states gives ��� potential
new states (a state space explosion), although only � of these are actually used. An
efficient way to generate a new transition system is to start from the new starting
state (� ��� �����) synthesized from the starting states (� � , � � and ���), and then construct
all possible future states by taking any actions common to the transition systems.
For example, the action available at (� � � �����) is approach, common to both the Train
and the Controller. When we take this action, the next state is (� ��� �!� �). This process
continues, at each stage constructing any new future state(s), until we have exhausted
all possible actions. The end result is seen in Figure 4.3.

g t c g t c g t c g t c

g t c g t c

g t c g t c

g t c

fin−close

open

close

g

g

t

c

ct

t

t11

2

g3

2

3

4

c1

2 c3

c4

c56

Gate Train Controller

2 3

3

33

21 21 1 1 2 2 3

3

3

4342

541 6

approach close brake

fin−close fin−close

proceedproceed

left

1 3 2

brake close

proceed

close

approach fin−close

left

open

approach
brake

proceed

proceed

left

open

ParallelTS

brake

Figure 4.3: Parallel composition of the gate-train-controller

4.2 Timed transition systems

Timed transition systems are transition systems with clock variables which are used
to record the passage of time. Clock variables operate like hardware timers, can
be reset to " during a transition, and can be read. Transitions are guarded (or con-
strained) by the current values of the relevant clock variables, which evolve in real-
time until reset to " . To capture all this, transitions are annotated with # items: the
action, a set of clocks to reset, and a guard predicate over the clock variables:

TI
G

ER
4.2 Timed transition systems 49

Definition 20 A timed transition system � ��� is a 6-tuple � ��� � �	��� � ��� �������	��
�
:

1.
�

,
���	��� �

and ����� are as defined before

2.
�

is a finite set of clock variables

3.
��� ��
 � � ���

assigns a clock invariant to each state. The clock constraints
are limited to constraints of the form

� � ��� ����� ��� ��� ��� ��� ��� ��� ��� ���"!�� �
where �$#�% .

4.

&��� 	 ����� 	 �(' 	 � � ��� 	 �

is the transition relation, and ��' is the set of
subsets of

�
(the powerset of

�
)1.

S

S S

0 S
add;x

data;yack.data

x>2 y<3

ack.add

y<5

1

23

Figure 4.4: Example of TTS

In Figure 4.4 we see a diagram of a simple timed transition system. The actions
in this figure are drawn from the set ����� �) �+*,* � * � � � � ���.- � ��*/* � ���.- �0* � � �21 , and
the clock variables from

� �)3� ��4 1 . When a clock variable is attached to the
transition (as in ��*,*"5 � , where the clock variable � is to be associated with this
transition), we mean that the clock variable � is to be reset to " . In this system,
� � � � ��*,* �)3� 1 � � �76 � � � � � and � ��� � ���.- �0* � � � �.8,��4 ��9 � � � � are valid transitions.

The system can stay in a particular state as long as the state invariant is not violated.
For time points which violate the invariant, we expect an output to be enabled, or
otherwise we have a time deadlock. If more than one output transition is enabled,
the choice between the transitions is made non-deterministically.

1The notation reflects the size of the powerset.

TI
G

ER
50

a;x b
x<2

(a) State invariant

a;x b

x>2

(b) Transition guard

Figure 4.5: Guards and state invariants

The state invariants are related to the transition guards. In Figure 4.5(a) we have a
state invariant asserting that � should be less than or equal to 2 time units in this state.
In Figure 4.5(b) we have a different guard asserting that the transition is enabled if �
is more than 2 time units.

a

b
x<1

Figure 4.6: A Zeno computation

In Figure 4.6, consider the computation ��� � �� � � � � �� � ��� � �� � � � � �� � ��� � � � � � ����� This could
go on forever, and we see that we must model our systems carefully.

4.2.1 Parallel composition of TTS

To compute the parallel composition of timed transition systems, we use the follow-
ing principles:

1. Do common actions together.

2. Take union of all the clock variables.

3. Take conjunction of all the guards (state invariants).

In Figure 4.7, we show the composition of two timed transition systems into a new
timed transition system using this approach.

TI
G

ER
4.2 Timed transition systems 51

TTS2

t t’
y<2

b;y

c
y>1

(s’,t)

(s,t’)(s’,t’)

s x<2
s’

x>1
b

a;xTTS1

a;x

a;x

b;y

x<2

y<2x<2 y<2

cc

y>1 y>1

(s,t)

x>1

TTS = TTS1 TTS2

Figure 4.7: Parallel composition of timed transition systems

Given � ��� � � � � � � � ��� � � � ����� ��� � ��� � ��
 � � , � ��� � � � � � � � ��� � � � ��� � ��� � ��� � ��
 � �
the product construction � ��� � � ��� � � � ��� � � � ��� � � � ����� �������	��
�

can be for-
malized by using the following construction:

❖
����� ��� � � , � � ��� ��� ��� � ��� � , 	�
� � 	�
� ��� 	�
� � , � � � ��� � �

❖ ���
 ���
 ��� � � � �
 ����� � � �
 ���
❖ Finally, � is the least subset of

� � 	�
� ��� ��� � �"! ' � � (given
�
 � �$#���% � �$& � �
�' � �)(� � and �
 � �+*,��% � �$& � �
�' � �-(� �) that satisfies:

– Case 1: # � *�(�
� ��. 	�
� �
/ then �0�
 �1�
 �1���$#���% �2�3% �4�$& ���5& �4� �
1' � �
�' � �0�-(�

– Case 2: #6(�
� �87 	�
� �
/ then �0�
 � �090���$#���% � �$& � � �
�' � �090�0��(� for every 9-(� �

– Case 3: *�(�
� �-7 	�
� �
/ then �0� 9��
 � ���+*,��% � �$& � � � 9��
�' � �0�)(� for every 9:(� �

TI
G

ER
52

4.3 Reduction of timed transition systems

RTS

TTS

TTS

TS

TA

Regional TS (Whole system finite)

Time Abstract (Actions are finite)

TTS
Semantics

(States and actions infinite)
Behaviour of TTS

Figure 4.8: Reduction of � ��� to a regional automata

The steps we follow to reduce the problem are to show that the � ��� can be translated
into a finite regional transition system, through intermediate transition systems as
seen in Figure 4.8.

4.3.1 From ����� to ���������
The first step is to see how the behaviour of a � ��� can be represented by the transi-
tion system ��� � �
	 . The behaviour of timed transition systems is inextricably linked
with time, and the values of clock variables at specific times. The transition system
��� � �
	 works on (possibly infinite) sets of states � of the form

� 	�� , where � is a
valuation (the current values of each clock variable). In Figure 4.4, � � � � � � � 9 �7� is an
example of a state in � .

Given a timed transition system � ��� � � ��� ���	��� � ��� �������	��
�
, we can derive the

associated transition system ��� � �	 � � � � � � � � ������� � ��� �
where � is a (possibly

infinite) set of pairs
� 	�� , � � is

� �) � � 1 , � are the valuations of the clock variables
(� � �
 �), and finally ��� � � 	 � ��������� � 	 � .

The timed behaviour of � ��� is defined as the behaviour of ��� � �
	 (either as runs
or computations, inheriting the same concept from the ���). For example, a possible
trace of the timed transition system in Figure 4.4 might be

� � � � � " � " ����� ��� � � � � � � ��� ��� ��� ��� ��*/* � � � � � " ��� ��� ��� � � ��� � � � � # ��� ��� * � � � ��� �
We have two types of transitions:

1. Time passing move: �
 ��� ������ �
 ��� �"!4� , with !$#�%
2. Action move: �
 ��� � ���� �
 ' ��� ' �

TI
G

ER
4.3 Reduction of timed transition systems 53

Two consecutive time passing moves can be amalgamated into one time passing
move. For example � � � � � " � " �7� " ��� � � � � � " ��� � " ��� ��� " ��� � � � � � � � � � � � � ��� can be amalga-
mated into � � � � � " � " ����� � � � � � � � � � � ��� � � �7� .
The transition system ����� �
	 � � � � � � � � ��� ��� � ��� �

represents the behaviour of
a timed transition system � ��� � � ��� ���	��� � ��� �������	��
�

in terms of the reachability

of states, for both time-passing � � � � � ���� � � � � ��� � and action � � � � � ���� � � ' � � ' �
transitions, provided there is a transition

� ��� ��
� � '

such that the following conditions are true:

� ' � � � �
	

" "�
 � # �
� � � � '��� � ��� "��*�

����� ��"���� ��� � � ��� ��� 6 ���7*�
 ')� �� ���*����#��*" �*"�')# �
In the transition system ��� � �
	 we can record runs as for transition systems:

� � � � � � � ������ � � � � � '� � ���� � � � � ��� � ������ � � � � � '� � � ���� � ��� � � � �

and � # �
is reachable if and only if there is a computation � � � � � � � ���� � ��� � � � � in

��� � �
	 such that ��� � � .

Definition 21 ��# �
is reachable in a � ��� if and only if there exists an � � � � � # �

such that � � � � � is reachable in ��� � �	 .

4.3.2 From ��� ����� to � �������
We have already seen how the behaviour of � ��� can be represented by the tran-
sition system ��� � �
	 , so the next step is to look at the reduction from ��� � �
	 to
the time-abstract transition system � � � �
	 , which has only action moves, and not
time-passing moves.

We can derive a time-abstract transition system � � � �	 � � � � � � � � ��� �"! �
from

��� � �
	 � � � � � � � � ��� � � � ��� �
where � � � � � �! � � ' � � ' � if and only if there ex-

ists a
� # � such that � � � � � ���� � � � � ��� � ���� � � ' � � ' � .

TI
G

ER
54

(s,v’)

(s’,v’)(s,v)

a

δ a

Figure 4.9: The transitions
!

and ���

This can be visualized as in Figure 4.9, and the resultant system � � � �
	 has a finite
number of actions.

4.3.3 Quotienting

Quotienting, (or partitioning by an equivalence relation2) is commonly used to group
together objects that are similar in some sense, and hence reduce the complexity of
systems. In our domain, we can use quotienting to quotient a big (infinite) transition
system into a small (finite) one.

Definition 22 Given a transition system ��� � � ��� � � � ����� � ��� �
, with �

� � 	 �
an equivalence relation, then � is a stable equivalence relation (a bisimulation) if
and only if ��� � and � ���� � ' implies that there exists � ' such that � ���� � ' and
� ' � � ' .

a a

s t

s’ t’

Figure 4.10: Diagram for a stable equivalence relation �

A category theory diagram shows this construction in Figure 4.10. Since we wish
to quotient infinite transition systems into finite ones, we are interested in stable
equivalence relations that are finite in some sense.

2An equivalence relation on a set
�

is a binary relation on
�

that is reflexive, symmetric and
transitive.

TI
G

ER
4.3 Reduction of timed transition systems 55

Definition 23 Given ��� � � ��� � � � � ��� � ��� �
, with � a stable equivalence relation,� ����� the equivalence class containing � # �
(i.e.) � ' � � � � ' 1), then � is a stable

equivalence relation of finite index if and only if) � ����� � ��# � 1 is a finite set.

So, given a stable equivalence relation of finite index, the process of quotienting
(converting a transition system with perhaps an infinite number of states into a fi-
nite equivalent one), is relatively easy. Given ��� � � ��� � � � ����� � ��� �

, with � a
stable equivalence relation of finite index, then a new quotiented transition system is� ��� � � �	� ��� � � � � � ��� � ��� �

. In this quotiented transition system, � � �) � ����� �
��# � 1 and � � � �) � � � ��� ��� � # � � 1 , and we construct

� ���
� ���� � � ' ��� if and only if
there exists ��� # � ����� and � ' � # � � ' �
� such that ��� ���� � ' � in the transition system ��� .

1 2 3 4 5 6
a b a b a b

...

Quotient

a

b
[1] [2]

Figure 4.11: Quotienting an infinite transition system

For example, consider the two systems in Figure 4.11. A suitable stable equivalence
relation of finite index is odd and even. More formally, � �� if and only if both �
and � are odd, or if both � and � are even:

) ��� # � 9 � ����� 1 � � � ��� � � �
#��
� � � 9 ��� � �

���
� ����� �) � ���,� � � ����� 1 � �
����� � � � � �
� � � ����� � � ���
� ����� �

4.3.4 Quotienting and regions

In the previous discussion on quotienting, it is not immediately clear how we can
quotient timed transition systems. To understand this we have to return to the original
definition of a timed transition system (Definition 20 on page 49). Note the definition
of the clock invariant

� � � � , a set of clock constraints over the set of clocks, is limited
to constraints of the form

� � � � ����� ��� ��� ��� ��� ��� ��� ���+� �"!�� �

TI
G

ER
56

where ��# % , the set of non-negative rational numbers. There are only a finite
number of rationals in any finite timed transition system. We can compute the least
common multiple (LCM) � of all the denominators of all the (rational) constants in
the original � ��� , and then transform our system into a new one � ��� ' where every
term like � � � is changed to � � ��� � . We can now assume that all constants are
integers, with a new valuation function ��� � � � � � � � � ��� .

In this new transition system � ��� ' , � is reachable if and only if it was reachable in
the original � ��� , and we have � � � � � � � � ' � � ' � if and only if � � � ' and ���	��
�� � '
(� is regionally equivalent to � ' , or � belongs to the same region as � ').
For any clock variable � , let �� be the largest integer appearing in constraints in-
volving � . We now construct a stable equivalence relation of finite index ����
 � :

Definition 24 ������
 � � ' if and only if the following three conditions are met for
all clock variables, � and

4
:

1. � � � � ��� � � � ' � � ��� , or � � � � � �� and � ' � � � � �� .
2. if � � � � � �� and � � 4,� � � � then
 ��� � � � � � ��� �
 �*��� � � � 4/��� if and only if
 �*��� � � ' � � ��� �
 ������� � ' � 4/��� .
3. if � � � � � �� , then
 ��� � � � � � �7� � " if and only if
 �*��� � � ' � � ��� � " .

For each clock � , we can specify one formula of the form: � � � � � � � where �
is in) " ��� � ����� � �� � � 1 or � � �� or � � �� . For each clock pair we can specify a
constraint of the form � � 4 � " or � � 4 � � or

4 � ��� � for a suitable � in case��� �� and
4 � � � .

Finally, given a timed transition system, its (finite) regional transition system can be
computed effectively, and hence one can effectively solve verification problems con-
cerning timed transition systems. This is the mathematical basis for the verification
tools for timed transition systems and timed automata. As an example, consider a
� ��� ' system of two clocks)3� ��4 1 with �� � � and � � � � .

y

x

Figure 4.12: Regions for Problem 2

TI
G

ER
4.3 Reduction of timed transition systems 57

Since we have two variables in the system, the regions can be of dimension " ,
�

or
� , i.e. they can be points, lines or areas.

We can visualize the regions by looking at the diagram in Figure 4.12 where the
points are marked with small shaded boxes, the lines are given as lines, and the areas
are shaded.

Alternatively, we can enumerate the points, lines, and areas using set enumeration.
First the 9 points:

�����������	�
�����
��	�������������
��������	������
����
��������	�
���������	������������
�����������

There are 22 lines:

������������� �"!#�%$&�(')�*'+,� �-�.��������� �(!/�%$*0'1�2'3��� ���.�4������� �"!#�%$5�263���
������������� �"!78$&�(')�*'+,� �-�.��������� �(!98$*0'1�2'3��� ���.�4������� �"!78$5�263���
������������� �"!/��$&�(')�*'+,� �-�.��������� �(!+��$*0'1�2'3��� ���.�4������� �"!/��$5�263���
������������� �5!+�%$&�:'1�5'+,� �-�.��������� �5!/�%$;<'3�='3��� ���.�4������� �5!+�%$5�=63���
������������� �5!>8$&�:'1�5'+,� �-�.��������� �5!98$;<'3�='3��� ���.�4������� �5!>8$5�=63���
������������� �5!?��$&�:'1�5'+,� �-�.��������� �5!+��$;<'3�='3��� ���.�4������� �5!?��$5�=63���
�������������@�:'3�&!A�5'?�� �-�.���������-<'1�&!#�='#�-�
�������������@�:'3�&!A�0B#0'C,�D�-�.���������@�:'1�:B/E!A�5'?��

And finally the following 13 areas:

�-�.�������%�@�:'1�F'3�='?,� ���.�4�����%�@�:'3�='1�2'+��
�-�.�������%�-<'1�F'3�='A�-� ���.�4�����%�-<'3�='1�2'3���
�-�.�������%�@�:'1�F'3�HG30'+��D���.�4�����%�@�:'3�='1�IG10'?,�
�-�.�������%�@�:'1�=G1<'3�='+��D���.�4�����%�@�:'3�HG30')�2'?,�
�-�.�������%� �I6#��$&�J'3�2'?,� ���.�4�����%� �=6A��$;<'1�*'3�-�
�-�.�������%� �F6#��$5�:'3�='?,� ���.�4�����%� �F6#��$;<'1�5'3�-�
�-�.�������%� �F6#��$=�=6A���

Another example is the tiny timed transition system shown in Figure 4.13(a).

In this example, �� � � and � � � � , and the corresponding regions look like that
shown in Figure 4.13(b). The timed transition system � ����� �	��K may be turned into a

TI
G

ER
58

S

y>2

S S S0 1 2 3
x<1 x<1

d

a;x b;y c

(a) Transition system

y

x

(b) Regions

Figure 4.13: Tiny timed transition system

regional transition system ����� � �	��K by constructing new states for each of the regions.
A regional transition system corresponding to the tiny timed transition system is
shown in Figure 4.14

s1 s1 s1 s1
x=0,y=1x=0,y=0

s1 s1
x=0,y=2

aaaa

s0
x=0,y=0

a a

x=0,y=0 y=0<x<1
s2 s2

b b b b b b bb b b bb

x=0<y<1 x=0<y−1<1 x=0,y>2

s3 s3s3 s3
x=0,y=0 0<x=y<1 0<y<x<1 y=0<x<1

ccc c

s0
x>1,y>2

a

d d d

d

Figure 4.14: Regional transition system

TI
G

ER
4.3 Reduction of timed transition systems 59

4.3.5 From regions to zones

The region based systems so far are unwieldy to use because the number of regions
can be very large. It is exponential in the number of clocks, and in the size of the
maximal constraints appearing in the clock constraints. As a result, practical verifi-
cation of transition systems based on regional transition systems becomes infeasible.

Zones provide a more compact representation, by using equivalence classes of the
valuations. The zones can be represented efficiently by DBMs (Difference Bound
Matrices), encoding edge-weighted directed graphs. The DBMs admit a canonical
representation, and can be manipulated efficiently.

Definition 25 A zone � is a clock constraint of the “two-variable difference” form

� � � ��� '�� ��� � � 4 '�� ����� � !����
where '�� #) � � � � � � � 1 , and � #�� .

x

y

Figure 4.15: Zones and regions

Every region can be encoded as a zone. In Figure 4.15, we see a total of
� � regions

(count them) encoded as the single zone

� � ������9 � ! � � � 4 � � �
It is easy to see that a zone � is a convex union (or hull) of all the regions 	 :
� �
�� 	 � . To encode zones in a DBM, we construct a new clock variable � �
which will always have the value " , and then encode all constraints as � � � ������

TI
G

ER
60

or � � � ���� � where � # �
. For example the following terms on the left are

translated to those on the right:

� � � # ��� � � � � � � #� � � ��� � � � � � � �� � � � � � ��� � � � � � � �
For � � � clock variables, we then write out an � 	�� matrix � , with elements drawn
from � �) � � � 1 � ��� according to the following rules:

❖ For constraints like � � 7 �
	�� , set � � � � � � 	 �
❖ For constraints like � � 7 �
��� , set � � � � � � � �
❖ Otherwise set � � ���

If we wished to construct the DBM of the clock zone:

� " ��� � � � � ! � " � � � � # � ! � � � � � � � � �

then the DBM is

� � � � � �
� � � % � � � � % � � � � % � 	 �
� � ��� � 	 � � % � � � � 7 � � � �
� � ��� � 	 � � � % � � �

The canonical DBM for the above zone may be obtained by strengthening all the
constraints:

� � � � � �
� � � % � � � � % � � � � 7 � � � �
� � ��� � 	 � � % � � � � 7 � � � �
� � ��� � 	 � ��� � 	 � � % � � �

Zones are relatively easily manipulated, and the following three operations are needed
for use in evaluating zone transitions:

TI
G

ER
4.3 Reduction of timed transition systems 61

1. If � � and � � are two clock zones, then the intersection of the zones is a new clock
zone � ��� � � .

2. ��� is the time-elapsed zone defined by ��� ��� � �"!�� � (��� with ! (
	�� � .

3. The clock-reset zone ' � is defined by ' � ��� ' � � ��� � (��� where
 ' � � � ��� � � % if � (� or ' � � � ��� � � � ��� � otherwise.

x

y

D

D

D

1

2

(a) Intersection

x

y

D

D

(b) Time-elapsed

x

y

R Dy

(c) Reset �������

Figure 4.16: Operations on zones

In Figure 4.16 we see progressive operations, starting by calculating zone � � � �2!
� � , and then a corresponding time elapsed zone ��� extending out in time at an
angle of

� 9�� , before finally doing the reset operation for the
4

variable.

The zones can also be optimized, and it is useful if we use a representation of zones
that is canonical. We do not want two different zones to represent the same set of
valuations (i.e. � 4 � ��� # � � � � ��4 � � �

the same as � 4 � � � � � � � � ��4 � � �
.

Definition 26 A zone is closed if no constraint can be strengthened without reducing
the set of associated valuations.

Two closed zones are equivalent if and only if they are identical. A graph represen-
tation of a zone can be used to find the closed zone version of a zone.

TI
G

ER
62

x x

x x0

1 2

3

10

−4

2

5

3 2

(a) Non optimal zone

x x

x x0

1 2

3

2 2

−4

3

3

(b) Reduced zone

Figure 4.17: Graph representation of zones

In Figure 4.17(a), we see a graph representation for a zone, in which the nodes
represent the clock variables, and the arcs represent the differences. For example the

arc � � � ��
 � � corresponds to the constraint � � � � � � � " . A shortest path reduction is
performed on the graph, giving Figure 4.17(b), where redundant edges are removed

when they can be. For example � � � ��
 � � is replaced by � � ��
 � � ��
 � � .

4.3.6 Reachability, safety and automata

An automata is a state transition system with some set of accepting states, which may
be used to distinguish between good and bad computations. We can use automata
matching a particular transition system to specify desired behaviour of the system.

Definition 27 A finite automaton is a 5-tuple � � ���$��� ��� � �����
, where

1. � is a finite set called the states

2.
�

is a finite set called the alphabet

3.
� � � 	 �
 � is the transition function

4.
� � is the start state

5.
� � � is the set of accepting states

In [Lam77], the ideas of safety and liveness were introduced, identifying two types of
behaviours that require different analysis methods. A safety property is like “some-
thing bad doesn’t happen”, whereas liveness is like “something bad (or good) must

TI
G

ER
4.4 Summary of topics 63

eventually happen". We can often formulate safety properties in terms of the reach-
ability of a state.

We can use automata to formalize these questions, in a form like “Is there a run of
the automaton that leads to the (desired) accepting state?”, or “Is there a run of the
automaton that leads to an accepting state in which property � holds?”. These are
examples of the reachability problem.

It is easy to see from this that reachability problems have clear links to automata
theory, and we could easily cast a lot of this discussion in terms of the languages
accepted by (finite) automata. However to reason about liveness properties, we need
to consider infinite sequences.

A Büchi automaton is an extension of a finite state automaton to one which accepts
an infinite input sequence if, and only if, there is a run of the automaton which has
infinitely many states in the set of final states.

Definition 28 A Büchi automaton is a 5-tuple � � � �$��� � � � �����
, as for a regular au-

tomaton, but with
�

interpreted differently. In particular � � ��� � � � � ��� ����� is an ac-
cepting infinite trace if

1. � � # �
2. � � � � � � � � ��� � � # �

for all �
3. For infinitely many � , the state � is in

�

They are useful for specifying behavior of nonterminating systems, such as hardware
(electronic circuits) or operating systems. For example, you may want to specify a
property like “for every measurement, a recording eventually follows”, or the reverse
“there is a measurement which is not followed by a recording". For the second
example, an argument limited to finite sequences cannot satisfy this property.

Later, in Chapter 5, we will consider the analysis of liveness properties.

4.4 Summary of topics

In this section, we introduced the following topics:

State transition systems. Basic properties of state transition systems, Parallel com-
position, runs and computations.
Timed transition systems. Basic properties of timed transition systems, Parallel com-
position.
Reduction of timed transition systems. Reducing infinite systems to finite (regional)
transition systems, regions and zones.

