
TI
G

ER
Chapter 5
Model checking, verification of CTL

One must verify or expel ... doubts, and convert them into the certainty of YES
or NO. [Thomas Carlyle]

5.1 The verification setting Page 66
We introduce linear and branching time, temporal logics and the basic idea
of model checking.

5.2 Theoretical foundations Page 72
Formal presentation of CTL, Kripke structures and model checking.

5.3 Model checking CTL Page 77
The analysis for CTL, example and optimization.

Concepts introduced: LTL, CTL, linear and branching time, Kripke models, con-
trol state reachability, liveness analysis, model checking, ROBDDs.

T HE BEHAVIOUR of a transition system is its set of runs, or its set of com-
putations. To verify behaviours, we can consider questions like: “Does every
computation (run) of the transition system have a desired property X ?” or “Is

it true that in no computation, C is immediately followed by on-ac?”.

65



TI
G

ER
66

5.1 The verification setting

Properties may involve reachability of states. For example, is there a run leading to
deadlock? A deadlocked system can do no more computation, more formally:

Definition 29 The run ��� ���� ��� with ���
	���
�� is in deadlock if no action is enabled
at ��� .
We would like to pose more sophisticated questions (other than reachability ques-
tions). For example, we may have qualitative questions like:

❖ Every request is eventually served.

❖ The sensor signal x11 is sensed infinitely often.

❖ From any stage of the computation the all clear state can be reached within 3 steps

We may also be interested in quantitative questions like:

❖ Every request is served within 3 microseconds.

❖ The sensor signal x11 is sensed every 10 milliseconds for ever.

❖ From any stage of the computation the all clear state can be reached within 1 second.

An extensional logic is one in which the truth value of a complex formula can be
determined by the truth values of its components. By contrast, modal or intensional
logics deal with sentences qualified by modal operators such as could or eventually
or must and so on. If the modal operators refer to time, then we call these logics
temporal logics.

Consider an assertion like “The engine is too hot." The meaning is clear, it does not
vary with time, but the truth value of the assertion can vary in time. Sometimes it
is true, and sometimes it is false, and it is never true and false simultaneously. Tem-
poral logics are a good mechanism for expressing qualitative temporal properties of
reactive systems. The basic modal operators are � which represents necessity and
its dual � which represents possibility ( ��� ��� � � � ). The language of modal logic
consists of propositional variables, a set of Boolean connectives such as ��������� ��� ,
and the modal operators.



TI
G

ER
5.1 The verification setting 67

0

2

3

1

(a) Transition system

0

3

2

21

0

0

3

21

(b) Branching time view

Figure 5.1: Notions of computation

Consider the transition system in Figure 5.1(a). A linear time view of the computa-
tions induced by this system is just the set of all runs:

�������������������	�	� �
��������
���
����	��� ���	��� �

A branching time view of the same system is shown in Figure 5.1(b), where the
temporal order forms a tree which branches into the future. LTL (Linear Tempo-
ral Logic) is a modal linear-time temporal logic, built up from a set of proposition
variables �������������	�	� , logic connectives � ����������� and the temporal operators:

❖ ��� indicating that � must hold in the next state.

❖ ��� (or  �� ) indicating that � must hold in all the following states.

❖ !"� (or #$� ) indicating that eventually (finally) � must hold somewhere.

❖ ��%'& indicating that � has to hold until & holds at the current or a future position.

❖ ��()& The dual of %+*	& holds until the first state where � holds.

In LTL, one can encode formulæ about events along a single computation path. By
contrast, CTL (Computation Tree Logic) is a modal branching-time temporal logic.
The operators quantify over all possible future paths from a given state.

CTL and LTL are both subsets of a more general temporal logic CTL*. There are
expressions in CTL that cannot be expressed in LTL and vice versa.

As an example, consider ,.-0/�1��32 , which is an LTL formula representing the idea
that: for all paths, eventually � holds globally (i.e. from then on). ,4/�-5,+16�32 is a



TI
G

ER
68

CTL formula representing the idea that: for all paths, eventually you get to a state
where for all paths � holds globally (i.e. from then on). This CTL formula does not
represent the same thing as the original LTL formula, even though at first sight it
seems to be similar.

A counter-example is given below in Figure 5.2.

p p

uts

Figure 5.2: Counter example

It is fairly easy to see that in the LTL linear time view, all runs that start in state �
have � eventually holding globally. In a linear time view, the possible (infinite) runs
from � are:

��������� ������� �	����� � ��� � ����	� � � � ��

����������� �	�	�����

��������� �	�	�������

������� �	�	�
���	�

�����
��� � ��� � ��� � 

���

where ��� means an infinite run of state � , and � � means a finite run of � .

In both state � and state � , the property � holds, so in the linear time view, for state� , ,.-0/�1��32 .

However, let us now consider the branching time view, and the CTL formula ,4/�-5,+1��32 .
Figure 5.3 has the unfolded branching time view.



TI
G

ER
5.1 The verification setting 69

p

p

p

p

p

p

p

p

p

p

p

p

p

p

Figure 5.3: Unfolded counter example

The CTL formula ,4/ -0,+16�32 represents the idea that: for all paths, eventually you
get to a state where for all paths � holds globally (i.e. from then on). If you traverse
down the left hand sequence in the figure, it does not matter how far you go, you will
never get to a state where for all paths � holds globally.

In other words, this does not represent the same assertion as the LTL one.

CTL formulæ are differentiated from LTL formulæ, because each of the temporal
operators must be preceded by a path quantifier: , (for all paths), and � (there exists
a path). Since CTL expressions require every temporal operator to be preceded by a
quantifier, and since there are five temporal operators, and two quantifiers, we have
ten base expression types.



TI
G

ER
70

The ten base expression types may be expressed in terms of just three expressions:

❖ � ��� : For one computation path, property � holds in the next state;

❖ ������%��
	 : For all computation paths, property � holds until � holds.

❖ ������%��
	 : For one computation path, property � holds until � holds.

We focus here on CTL specifications. The model-checking verification setting may
be visualized as in Figure 5.4, where we extract a (state transition) model ��
 from a
system.

Property (Temporal logic
formula    )

Model
checker:

NO!YES!

Semantics

Model extraction TS

U

Actuate

Computer system

Plant

Sense
on−heat

off−heat

C H

off−ac

on−ac

okok

S

S

S

SS

S

S

0

1

2

3

4

5

6

Models of 

φ

Behaviour of TS φ

Figure 5.4: Verification setting

The meaning that we attach to ��
 is that it correctly represents the behaviour of the
system, expressed as the allowable set of runs (or computations) of the system. A
model-checker checks if this behaviour of the system is a subset of the set of runs
(or computations) induced by an arbitrary property � , returning YES or NO.



TI
G

ER
5.1 The verification setting 71

Arbiter

P1

P2

Rsrc

req1,ret1

grt1

req2,ret2

grt2

(a) Resource arbiter

S0

S1

S2

S3

S4 S5

S6 S7

Req1 Req2 Ret2Ret1

Req2Grt1 Req1 Grt2

Ret1 Ret2

Req2 Grt1 Grt2 Req1

(b) Arbiter transition system

Figure 5.5: Arbiter for an operating system

Consider the following scenario: We have an arbiter in an operating system, which
is controlling access by two processes to a single resource, only allowing one at a
time to gain access to the resource. Each process can request access to the resource,
by (perhaps) making a req() call. When the resource is free, the arbiter can grant
access by signalling the process using the grt() signal. When a process no longer
needs the resource, it signals the arbiter using the ret() signal. In Figure 5.5(a)
we see the arbiter, with Figure 5.5(b) showing a transition system for its correct
operation.

When modelling this system, it is important to identify suitable atomic propositions
relevant to the system. Suitable propositions might be:

❖ � � *�� � : Processes 1 and 2 are idle. In the starting state both processes are idle.

❖ � � *�� � : Processes 1 and 2 are waiting for the resource.

❖ � � *�� � : Processes 1 and 2 are using the resource.



TI
G

ER
72

5.2 Foundations for CTL model checking

The � operator cannot be formalized with an extensional semantics. The Kripke
semantics is a formal semantics for modal logic systems.

Definition 30 A Kripke structure � over a set ��� of atomic propositions is a 4-
tuple - � ��� � ��� ����2 , where

1. � is a finite set of states

2. �	� ��
�� is a transition relation that must be total

3. ��� is a finite set of atomic propositions

4. �
� � � ����� is a function which labels each state with the set of atomic
propositions true in that state

Consider the transition system shown in Figure 5.5(b). The atomic propositions
represent the system’s view of the state of the two tasks. They are idle, waiting or
using the resource, and we have the following set of atomic propositions:

��� � � � � ��� ��� � ��� � � ����� � � � �
We can convert the transition system into a Kripke structure, by writing out �$- � 2 for
each state � . The labelling function ��� � � ����� for each state returns the atomic
propositions that are valid in each state. A suitable function is:

� � � - � � � � � ��� � � � 2��
- � � � � � ������� � 2 �
- � ��� � � ��� � � � 2 �
- ��� � ��� � � � � � 2 �
- ��� � � � � � � � � 2 �
- ��� � ��� � ����� � 2 �
- ��� � � � � ����� � 2��
- �! � ��� � � � � � 2 �

5.2.1 The unfolding of "

When investigating a Kripke structure � , it is often easier to visualize the unfolded
version # / -$� 2 of the structure.



TI
G

ER
5.2 Foundations for CTL model checking 73

UF(K)
TS (K if you ignore the actions)

���������������������
���������������������

���������������
���������������

���������������
���������������

���������������
���������������

	�	�		�	�		�	�	

�
�

�
�

�
�


���������������
���������������

off

off

on on off

ch

ch

Figure 5.6: Unfolding of the TV Kripke structure

In Figure 5.6 the Kripke structure � represents a transition system for the irritable
TV viewer. The viewer can switch the TV on and off, and also change channels. As
soon as the irritable TV viewer switches to a TV channel that is not worth watching,
the TV must be switched off.

# / -$� 2 is another Kripke structure, equivalent in terms of the path structure of � ,
but much easier to visualize possible runs, and to see when a run repeats.

Definition 31 The unfolding of a Kripke structure � , from an identified starting
state ��� , is # / -$� 2 � - � ��� � ��� ����2 , where

1. � � � - � ��
 2���
�������������� � � �"! ��� � � � �$# �
2. �6- - � ��
�2�� - �&% �'
 % 2 2(��) �6- � � �&% 2(�$# �*�+#(,-
 % � 
 �&% .
3. �"- � ��
�2 � �$- � 2

5.2.2 CTL and CTL-

We define a fragment of CTL, called CTL-, which we use to specify the formulæ
defining the properties to be checked against the Kripke structure. When used in this
context, such a Kripke structure is often called a CTL-model (or just a model), and
we will refer to such models as . . The CTL- fragment is sufficient to encode any
(traditional) CTL formula.



TI
G

ER
74

Definition 32 Given a proposition � 	 ��� (a finite set of atomic propositions), then
� is a CTL- formula, and if ��� and ��� are CTL- formulæ, then

1. � ��� is a CTL- formula

2. � � ����� is a CTL- formula

3. � � ����� is a CTL- formula

4. ���.-���� 2 is a CTL- formula

5. , -�����#���� 2 is a CTL- formula

6. �+-���� #�����2 is a CTL- formula

Formulæ with this syntax can be viewed as a tree. For example, the formula

���)- � � ���)- �+- ��#�� 2 2 2
could be represented by the tree in Figure 5.7.

rp

EX

p

EU

EX

Figure 5.7: A CTL- formula shown as a tree

5.2.3 Model checking

Model checking is commonly expressed as a ternary relation - � � 2 :
. � � � � �

The relation is true when the property � holds in state � for a given model . . It is
normally defined inductively, with a set of interlocking rules. A labelling algorithm
may then be used to establish the set of states satisfying the relation.

There are two kinds of properties that are of interest:



TI
G

ER
5.2 Foundations for CTL model checking 75

1. safety: nothing bad will ever happen

2. liveness: eventually something good will happen

(One is like “there exists” and the other like “for all”). The techniques for assessing
safety and liveness are different. For example, in model checking we use Büchi-
automata to express and check liveness, and state-space enumeration for safety.
Safety is about reachability, but with liveness we must consider infinite non-terminating
execution, checking for the reachability of certain (control) states, and so an overall
goal is to solve a control state reachability problem.

Let us return to the arbiter example in Figure 5.5(b), and let . be the resulting
CTL-model. We can determine whether or not . � � � � � � for the following example
properties: ��� � EF - � ��� � ��2 , ��� � AF - � ��� � ��2 and � � � AG - � ��� � ��2 .
Given the Kripke structure, it is fairly easy to see that:

1. � *�� ���� � EF � � ��� � � 	 as there is no path from � � leading to a state in which both � �
and � � are true. (In fact there is no state in which both � � and � � are true).

2. � *�� � � �
AF � � �
	 � � 	 as every path from � � must lead to one of � � , � � , � � or �  ,

and each of these has either � � or � � true.

3. � *�� ���� � AG � � ��	 � � 	 as � *�� ���� � � � and � *�� ���� � � � .

5.2.4 The definition of � 


The model checking relation � � (In LATEX, \models) can be read various ways. In
. � � � � � we might say that � holds or is satisfied at state � .
A path from one state � is a sequence of states 
 � � � � � �	�	� such that � � ��� and
�6- ��� � ����� � 2 for every � . The � -th element of 
 is 
�- � 2 . The model checking relation
is defined for each atomic proposition � and each CTL- formula � � , ��� as:



TI
G

ER
76

. � � � � � � � 	 �$- � 2
. � � � ��� ��� � iff it is not the case that . � � � � ���
. � � � � � � � ��� � iff . � � � � � � and . � � � � ���
. � � � � � � � ��� � iff . � � � � � � or . � � � � ���
. � � � � ���)-�� � 2 � iff � - � � � % 2 and . � � % � � ���

(i.e. � has a successor state at which ��� holds)
. � � � � ,.-���� #�����2 � iff for every path 
 � ��� � � �	�	� from � , for

some � , . ��
 -�� 2�� � ��� , and � ��� ��. ��
�- � 2 � � ���
. � � � � �+-���� #���� 2 � iff there is a path 
 � ��� � �
�	�	� from � , where for

some � , . ��
 -�� 2�� � ��� , and � ��� ��. ��
�- � 2 � � ���

Figure 5.8 shows each of the temporal CTL- operators in an unfolded Kripke struc-
ture # /�- . 2 .

UF(M) s

p

(a) ���
	�� ��
��������

UF(M) s
p

p

q q

q

(b) ����	�� ����������� �

UF(M) s
p

q

p

(c) ���
	�� ��
!�����"� �

Figure 5.8: EX, AU and EU in the unfolded Kripke structure

The table clearly defines the model checking relation for ��� , , # and � # in CTL-,
but not for the other CTL operators , � , ,+1 and so on. The following list shows
some of the other operators that can be derived in terms of the three just given.

1. ��� � & 	 �$# � � � # & 	 For every next state & holds. It is not the case that there exists
a next state at which & does not hold.

2. ��� � & 	 �%# � �'&)(+*-, % # & 	 There exists a path . from � such that for every /10$2 :� *3. �4/ 	 � � & . It is not the case that ...



TI
G

ER
5.3 Model checking algorithm for CTL 77

5.3 Model checking algorithm for CTL

The label field in the Kripke structure gives us a mechanism for calculating when a
formula � satisfies the associated model . in a particular state � : . � � � � � . The
model checking process has two steps, visualized in Figure 5.9.

Property (Temporal logic
formula    )

Model extraction TS

YES! NO!

Model
checker:

Actuate

Computer system

Plant

Sense
on−heat

off−heat

C H

off−ac

on−ac

okok

S

S

S

SS

S

S

0

1

2

3

4

5

6

ψ

ψ

Labelled CTL Model
Step 1:

Step 2:
Check state s in Sat(  )

Figure 5.9: Model checking CTL models

Firstly, we label each state with the atomic propositions that are true in each state.

Secondly, we calculate the sets of states that satisfy the property, and if our state � is
in this set, we can return YES, otherwise NO. We show an algorithm for calculating
the satisfaction set for a model, given a formula. This can be calculated using a
recursive function (corresponding to a recursive traversal of the structure), which
returns the set of states that satisfy a given formula:



TI
G

ER
78

set_of_States sat(Property � ) =

if ������� then � 	����	��
!��	 �
�
else case � of

true: �
false: �
� � : ��� sat ��� �
��������� : sat �����+��� sat ����� �
��������� : sat �����+��� sat ����� �
EX ��� � � : � 	!�"�1� 	$#%��	'&(� 	$#%� sat ��� �+�)�
A ��� � U ��� � : lfp �+*-�-,!� � sat ����� �%� � sat �����3�.�/� 	0�/�1�'1-	 # ��	 & ��,0� � �
E ��� � U ��� � : lfp �32 �-,!� � sat ����� �4�"� sat ����� �%�/� 	5���1�76 	 # ��	 & ��,0� � � ;

where �98 represents the set of successor states of � .
The last two lines in the function express the idea that we can calculate the sets of
states for ,.-���� #���� 2 and �+-���� #���� 2 , by taking the least fix-point (and hence the
function name lfp) of functions : and ; (sometimes expressed as the algorithms
��� � �.< and ������= < ). What are the functions : and ; ? Some investigation will show
that

,.-�� � #�����2 � ��� � -������ , �.-0, -���� #���� 2 2 2����+# ,
�+-�� � #�����2 � ��� � -������ ���)- �+-�����#���� 2 2 2

and it seems appropriate to express these as fix-points of the corresponding functions

:�-?> 2 � ��� � -�� ��� , �.-?>42 2 ���+# ,
; -@>42 � ��� � -�� ��� ���)-?>42 2

We can view this as a labelling procedure for . � � � � � where we build up extra
labels for each state in the model, progressively uncovering the subformulas of � .



TI
G

ER
5.3 Model checking algorithm for CTL 79

In Figure 5.10, we see the labelled arbiter model, and the states that satisfy ���)-$��� 2
and �+- � � # ����2 .

S4

S6

S0

S3 S1

S5 S2

S7

1i 2i

1 2iw

w1 w2u1 i2

i1 w2

i1 u2

w1 u2w2u1

(a) 
�������� �

S0

S3

S4 S2

S7

S1

S5

S6

1i 2i

1 2iw

w1 w2u1 i2

i1 w2

i1 u2

w1 u2w2u1

(b) 
!� � �-����� �

Figure 5.10: Arbiter model checking

5.3.1 Example and optimizations

The model checking approach to verification [CGP99] is to abstract out key elements
of the software and to verify just these elements. For efficiency, various optimiza-
tions can be made if the elements reduce to binary values. Given the underlying
reliance on binary abstractions, it is no surprise that model checking is being used in
the analysis of digital electronic circuits, but it has also proved effective in the soft-
ware domain, in the areas of protocol analysis, the behaviour of reactive systems,
and for checking concurrent systems.

It is difficult to find examples convincing enough to demonstrate a technique, but
which are small enough to fully describe in a short chapter. We choose to use as
an example a simple mutual exclusion protocol in which two processes, � � and ���
share six (boolean) variables, and co-operate to ensure mutually exclusive access to
a critical section of code. A third process ��� monitors the variables and changes a
turn variable. The entire system is the parallel composition of these three processes,
and is continuous (indicated by the trailing recursive call). Each line of code is
considered to be atomic, and we use � to represent � ����� , � to represent � �
	�� � .



TI
G

ER
80

��� = if

������

� then �	��
 
 � ��
 � ��� 
������ ��
 � ��� else
if ��
 
 � ��� 
�������� then ��
�� � 
 ��� � 
 � ��� ��
 
 � � 
 � ��� else
if ��
 
 � � � ��
 
 � � ���

�! �" �
then ��
�� � 
 ��� �#
 � ��� ��
 
 � ��
 � ��� ;

if 
�� � 
 ��� � then �%$ " 
 �'&(� � � � 
������ ��
 � ��� 
�� � 
 ��� ��
 � ��� ;� � = if

������ �

then �	��
 
 � � 
 � ���

������ �


 �
���

else
if ��
 
 � � � 
������ � then ��
�� � 
 ��� � 
 � ��� ��
 
 � � 
 � ��� else
if ��
 
 � � � ��
 
 � � � �) *" �

then ��
�� � 
 ��� � 
 � ��� ��
 
 � � 
 �
���
;

if 
�� � 
 ��� � then �%$ " 
 �'&(� � � � 
������ � 
 � ��� 
�� � 
 ��� � 
 � ��� ;+
� = if


��*���
� � ��
 
 � � then

�) *" �

 � � else

if

������ �

� ��
 
 � � then
�! �" �


 �
�
;&-,(.!�!�0/

= � � � 1 �
� 1 +

�
�
;

&-,(.!�!�0/
;

The specific protocol is chosen because it only uses boolean variables, simplifying
and shortening this presentation. We can represent a state � � of this system as a
valuation of the relevant variables. The states for this system are listed in Table 5.1.

State 2 � � vars � � vars 3 � vars Next state(s)46587:9 � ;=< 4:> � <@? >A4�B@9 � 46587�9 � ;=< 4:> � <@? >A4�B@9 � >DCFEAG

	(H I J J I J J J 	 � ��	$�
	 � J I J I J J J 	*K ��	*L
	$� I J J J I J J 	(M ��	 L ��	*N
	 K J J I I J J J 	(H ��	*O
	(M I J J J J I J 	(H ��	*P
	*L J I J J I J J 	 O
	*N I J J J I J I 	*Q ��	 �0H
	*O J J I J I J J 	$�
	*P J I J J J I J 	 �
	 Q J I J J I J I 	 �@�
	 �'H I J J J J I I 	 �@� ��	 � L
	 �@� J I J J J I I 	 � �
	 � � J I J I J J I 	 � ��	*Q ��	 � K
	 � K J J I I J J I 	 �'M ��	 � L
	 �'M J J I J I J I 	*N
	 � L I J J I J J I 	*N ��	 � �

Table 5.1: States for the complete system

We may also characterize this system using a transition diagram as in Figure 5.11,
where the labels on the transitions relate to the line-numbers of the program.



TI
G

ER
5.3 Model checking algorithm for CTL 81

S S1 2

S4

6

8

S5

5

1

S3

2

S7

5 3

S6

1

4

9

S S10 9

6 1

4

10

S11 S12
7 8

S

S

S

13

14 15

2

5 4

1

5

2

4

8

5

51

8

S0

S8

Figure 5.11: State transition diagram

The transition relation may be compactly expressed (using short names for the vari-
ables) as the following predicate 
 � :
� � � � � � � ��� � � � � � ��� � � ���

� �
� ��� � � ��� �

��� � � ��� �
�
� � � ��� � � ��� �

��� � � � �
� � � � ��� � �� � � � � � �� � � � � ��� � � � �

�
� � � �

�
� � �

� ��� � � � � � � �
� � � �

�
� � �

� ��� � � � �
� � � � � � � �� � � � � � � � � � �	� � � � � � ��� � � �

Note that the predicate has been ordered to clearly show a correlation with the pro-
gram. The first line corresponds to ��� , the second to ��� and the third to ��� .

5.3.2 BDD representation of transition relation

A predicate such as just seen may also be encoded as an ordered binary decision tree
(OBDT), in which the levels denote the different variables, and paths through the
tree represent valuations of the transition relation. In Figure 5.12 we have an OBDT
for the expression - � � � � ��2 � - � � � � � 2 .



TI
G

ER
82

ii

i i

ii

i1i1i1i1i1i1i1i1

i

2 2

33

4

2 2

1 1 11

1 1

10

0

0 0 0 0

0

T T TTTTT
F F F F F F F F F

Figure 5.12: OBDT for - � � � � � 2 ��- � � � � � 2
Note that if we reorder the variables, we get a different decision tree, but this new
tree still represents the predicate. In other words, it is independent of the order of
the variables. The OBDT does not scale well, but there are optimizations that may
be done. An optimization to exploit repetition on OBDTs leads to reduced ordered
binary decision diagrams (ROBDDs).

ii

i i

ii

i1i1i1i1i1i1i1i1

i

2 2

33

4

2 2

1 1 11

1 1

10

0

0 0 0 0

0

T T TTTTT
F F F F F F F F F

i

i

i

i1i1i1i1

i

2

3

4

2

11

0

0

0 0

T TT
F F F F F F

1

1

i

i1i1

i4

2

10

T
F F F

1

0
i3

0

T

1

i

i1

i4

2

10

T
F

1

0
i3

0

T

1

F

i

i4

2

1

0
i3

0

T

1

F

i1

1 0

Figure 5.13: ROBDD reduction for - � � � � � 2 � - � � � � � 2
ROBDDs provide a canonical form for the OBDTs, but more significantly, similar
sub-trees of a OBDT result in the ROBDD merging the two subtrees.

Bryant [Bry86] introduced these data structures, showing how such representations
of functions may be manipulated efficiently. In the paper, fast algorithms for com-
mon boolean operations are described, with complexities proportional to the sizes of
the graphs.

The ROBDD optimization for the purpose of model checking was first identified
by McMillan [McM93], and resulted in significant improvements in the number of
states that could be model-checked. In problems which exhibit a pattern regularity,



TI
G

ER
5.4 Summary of topics 83

the ROBDD representation can be many orders of magnitude smaller than an equiva-
lent (OBDT or enumerated) representation. Modern branching time model checkers
all use the ROBDD optimization.

5.4 Summary of topics

In this section, we introduced the following topics:

Verification setting. Basic setting for the verification problem.
Theoretical foundations. Formal foundations for CTL.
Model checking algorithms. Algorithms for checking systems.
Example and optimizations. Using BDDs for CTL model checking.


