
TI
G

ER
Chapter 6
Model checking and timed CTL

Ah! What did I tell you? 88 miles per hour! The temporal displacement oc-
curred at exactly 1:20am and *zero* seconds! [Dr Emmett Brown]

6.1 Timed CTL Page 86
Formal discussion of TCTL, syntax and semantics

6.2 Model checking TCTL Page 89
Algorithms for model checking TCTL, optimizations.

Concepts introduced: TCTL, model checking for TCTL.

A major difference between timed CTL and traditional CTL is that we have
clocks. The clocks are found both in the automaton (

�
, a finite set of clock

variables), and in the TCTL formula (� , a different finite set of clock vari-
ables). We have to take these clocks into account both in the definition of TCTL, and
also the model checking relation for TCTL: � ��� .
In addition, the Kripke structure (or model) used is different, as it corresponds to
an RTS (regional transition system) instead of a standard transition system. The
(composite) states of the RTS are a pair ��� �
	���
�������� , termed a region, where 	
corresponds to the original state of the transition system, and
������ is the regional
equivalence class for � as defined in Chapter 4.

85

TI
G

ER
86

We begin by formally defining an RTS, and its corresponding model, in terms of
the time abstract transition system ��������� . Recall that the (possibly infinite) states
in ���	�
��� are of the composite form �
	�� � � , where 	 corresponds to the states of the
original timed transition system, and � is a valuation of the clocks of that system.

Definition 33 Given ��������� � ��
 ��
�� ������� ��� � , then the RTS (regional transition
system) is a quotiented transition system ����� � � � � ��� ���	��� ��� � . In this quotiented
transition system,

� � � � 	���
 � � ��� � �
	�� � �! "
$# �% �
�� � ��&��('*),+
��� � � � 	���
 � � ��� � �
	�� � �! "
���# �-
 � � ��&��

and � 	 �
 � � � �/.� �
	10���
��20 � � � if and only if there is a transition �
	�� � � .� � 	30 � �20 � in
���	�
��� . The elements of the set � are called the regions of the RTS. The notation
for identifying a particular region will be �4 � , and a (transitory) state with a
particular clock valuation within that region will be denoted by � � �
	�� � � .
Note that since 5�6
728 is a stable equivalence relation of finite index, the RTS is a
finite structure. We do not need to differentiate between the RTS and the zone based
transition system here, instead considering that the zone based transition system is
just a more efficient version of the RTS.

The semantics for TCTL is again defined in terms of a Kripke structure or TCTL-
model. This model is derived from the RTS.

Definition 34 A TCTL model 9 over a set :�; of atomic propositions is a 4-tuple
� � ��< �=:�; ��> � , where

1. � is the finite set of regions derived from the ����� .

2. <@? �BA � is a transition relation derived from � in ����� . It must be total.

3. :�; is a finite set of atomic propositions.

4. >DC �E� FHG�I is a function which labels each region with the set of atomic
propositions true in that region.

6.1 TCTL (Timed CTL)

We define a fragment of TCTL, called TCTL-1, which we use to specify the for-
mulæ defining the properties to be checked against a TCTL-model. This fragment
is sufficient to encode any TCTL formula, and provides the means to specify time-
constrained properties.

1and pronounced as TCTL-minus.

TI
G

ER
6.1 TCTL (Timed CTL) 87

Definition 35 Given a proposition � @:�; (a finite set of atomic propositions),� �
(a finite set of clock variables in the model), �4 � (a finite set of clock

variables in the property formula) and � ���� ��� � � (a clock constraint over both
the clocks in the model, and the ones in the TCTL property formula), then � and �
are both TCTL- formulæ, and if �
	 and ��� are TCTL- formulæ, then

1.
���	 is a TCTL- formula

2. ��	 #���� is a TCTL- formula

3. ��	������ is a TCTL- formula

4. ���)���	 is a TCTL- formula

5. � ����	������ � is a TCTL- formula

6. � ����	������ � is a TCTL- formula

The only peculiar part of this definition is the FREEZE definition in line 4. The
meaning attached to “ ���)�� ” is that � holds when the property formula clock � is
reset to � . This corresponds to the clock reset performed during transitions of the
automata, and is useful for specifying properties that are bounded in time.

From the above definition it is not completely clear how to provide bounds on the
time for something to happen. To do this, temporal operators are subscripted with
time constraints. For example, the notation

� ����	 �"!$#%��� �
expresses the idea that �
	 holds until within & time units, ��� becomes true. This may
be defined in TCTL- using the FREEZE operator:

���) � � ����	 #'�)(*& � ����� �
Note also that in TCTL there is no ��+ or �,+ , as there is no (non-timed) next operator
for timed systems - we do not jump from one region to the next.

6.1.1 The definition of - .0/
The model checking relation � ��� for timed systems is defined for each atomic propo-
sition � , and any clock constraint � . In 9 �������21 � � ���3� we might say that � holds
or is satisfied at state � � � 	�� � � in the case of the (formula) clock valuation 1 . The
regions are of the form � � � 	���
 � � ��� , where �%
 � � � .

The model checking relation � ��� for each TCTL- formula ��	 , ��� is defined as:

TI
G

ER
88

9 ����� � 1 � � � ��� � � �� � � �
9 ����� � 1 � � � � � � � � 1 � � �
9 ����� � 1 � � � �
���	 � iff it is not the case that 9 � � ���21 � � � �,��	
9 ����� � 1 � � � �,��	 #0��� � iff 9 ��� ���21 � � � � ��	 and 9 ��� ���21 � � � � ���
9 ����� � 1 � � � �,��	��0��� � iff 9 ��� ���21 � � � � ��	 or 9 ����� � 1 � � � �,���
9 ����� � 1 � � � � ���)���	 � iff 9 ��� ��� ���),1 � � � �,��	
9 ����� � 1 � � � � � ����	������ � � iff for every path � � 	 � 	 	������ from � ,

where for some � , 9 � � �	� � � � �,��� ,
and
���
�� , 9 � � ��� � � � �,��	 � ���

9 ����� � 1 � � � ��� ����	������ � � iff there is a path � � 	 � 	 	������ from � ,
where for some � , 9 � � �	� � � � �,��� ,
and
���
�� , 9 � � ��� � � � �,��	 � ���

In this definition, the progression of time is defined in reference to the states of the
original �����
��� . In particular, a path from one state � is an infinite sequence of states
� � 	3��	 	������ such that 	 � � � and 	���� 	���� 	 . A particular � -th element of � is � ��� � .
The notation found in the definition for the FREEZE operator (9 ����� � ���),1 � � � �"��)
indicates that 9 �������21 � � � �,��	 if all occurences of � in 1 are reset to � .

An interesting element of the definition is found in the definitions for � ��� 	 ����� � and
� ����	 ����� � , where at some � , 9 � � ��� � � � �,��� , but for all ��
�� , 9 � � ��� � � � � ��	 � ��� .
If you compare this with the similar definition from CTL, you find in that case the
condition “for all ��
�� , 9 � � ��� � � � �
	 ” (i.e. ��	 instead of �
	 �0���).
We can see the need for the expression � 	 � ��� instead of just ��	 by considering the
big step from a particular valuation in �$	 to another in � � seen in Figure 6.1. For all
points in the two regions we want � ���
	������ � , but for the two points connected by
the line, ��	 is not true just before the new point.

y

x

} r2
ψ

2

r1
ψ

1

Figure 6.1: AU for timed CTL

TI
G

ER
6.2 Model checking algorithm for TCTL 89

6.2 Model checking algorithm for TCTL

In a similar manner to the strategy for CTL, we have another labelling algorithm
rsat (for regional satisfiability):

set_of_Regions rsat(Property �) =

if ������� then �	��

���������������
����
else case � of

true: �
false: ��
: ����

��������� �!�"� # � �
$ � : �&% rsat �'�(�
�*),+-�/. : rsat �'�*)0��1 rsat ���,.2�
�*),3-�/. : rsat �'�*)0��� rsat ���,.2�
4,576 �8) : ����

�������9��

� 4,576 ���(� rsat �'�*)0���
A ���*) U �,.2� : lfp ��:;�=<>�,# rsat �'�,.2�?�"� rsat ���*)2��1 ���'

�@�����2A;
�B?�C�'

�@���ED(1�<F�
�G�
E ���*) U �,.2� : lfp �IHJ�=<>�8# rsat �'�,.K�?�L� rsat �'�*)0�?1M���'

�@�����ON	

BP�L�'

�@���ED(1Q<F�
�G� ;

where � ���21 ��R represents the possible future states of � ���21 � .

6.2.1 Practical model checking for TCTL

In practice the model checking problem for TCTL is still hard, and real-time model
checkers such as Uppaal generally restrict themselves to analysis for reachability
only. This restriction turns out to not be all that limiting, and the resultant model
checkers can operate efficiently on region or zone representations.

In Uppaal, the clock constraints for the formula must be S , and the syntax of the
language accepted is restricted to only the following two temporal operators:

�UT ��� �
�WV ��� �

and � is of the form

� C C � X
� ��Y[ZU\
�
��
� ��	 #0���

TI
G

ER
90

where X is a location, and Y;Z is a simple comparison operator.

Even though this appears quite restrictive, it is possible to express any sort of reach-
ability query using this subset of TCTL. An algorithm to see if a particular starting
state �
	3� � �3� � can result in a particular final state 	�� given a particular clock assign-
ment � is shown below. This algorithm operates over the RTS:

set_of_regions checked = � , toCheck = ���������
��2��� ;
set_of_states final = ���	�9� ;
boolean reachable(clock_assignment

�
) =

while (toCheck
�) do

foreach (��� �G
O� � toCheck) do

if (��#��	� +-
 1 �
�) then return TRUE;

if (A/��� �G

B7��� checked,

�

B) then

checked = checked+ ��� �G
O� ;
foreach (��� B �G

B � , ��� �

��� ��� B �G

B �) do

toCheck = toCheck+ ��� B �
 B � ;
return FALSE;

6.2.2 Coffee machine example in Uppaal

The problem is to model the behaviour of a system with three components, a coffee
Machine, a Person and an Observer. The person repeatedly tries to insert a coin, tries
to extract coffee after which (s)he will make a publication. Between each action the
person requires a suitable time-delay before being ready to participate in the next
one. After receiving a coin the machine should take some time for brewing the
coffee. The machine should time-out if the brewed coffee has not been taken before
a certain upper time-limit. The observer should complain if at any time more than 8
time-units elapses between two consecutive publications.

The automata are shown in Figure 8.3, and (partially) model the specified system.
Why partially? In the specification there is a worrying phrase: “The Machine should
time-out if the brewed coffee has not been taken before a certain upper time-limit”.
This phrase is worrying because it is an under-specification of the system. For exam-
ple: “What does the machine do if it times out?”. If it times out and then dumps the
coffee, the system will deadlock, as the Person automata must pay and then drink.
So - rather than modifying the specified Person automaton, the machine specified
here times out and then synchronizes on the dispensing of coffee.

TI
G

ER
6.2 Model checking algorithm for TCTL 91

z<=6

z:=0

coin?

m:=0

cof!

m>2

cof!

(a) Machine

Wait1
y<=3

Ready

Wait2
y<=2

Go

coin!
y:=0

y==3

cof?
y:=0

y==2

pub!

(b) Person

Complain

pub?

x:=0

pub?

x:=0

x>8

(c) Observer

Figure 6.2: The three automata

❖ Machine: The coffee machine accepts a coin and then delays for some time
(above it is 6 time units). It then sets a timeout timer, and either (to the
right) dispenses coffee, or (to the left) times out and then dispenses coffee.
The extra state on the left is because Uppaal does not allow both guards and
synchronizing elements to appear on the same transition.

❖ Observer: The observer has an 8 time unit timeout. If the publications keep
coming in more often than 8 time units, then the system stays in the middle
state. However, if the timer times out, we visit (briefly) the Complain state.

❖ Person: The person was already specified, and it just puts in a coin and then
drinks coffee before publishing.

In UPPAAL, the path operators � and � are written as <> and [], so to test the
model, the temporal query E<> Observer.Complain is used, which corre-
sponds to the CTL formula EF Observer.Complain, specifying that:

❖ for at least one computation path, at some time state Ob-
server.Complain is reached.

TI
G

ER
92

In addition the system is tested with A[] not deadlock. The results of the
testing are as follows:

❖ System is deadlock free

❖ Observer.Complain is reached if the coffee timeout is 7 or more

❖ Observer.Complain is never reached if the coffee timeout is 6 or less

The last two tests were done by trial and error - setting the value in the coffee ma-
chine model to different values, and rerunning the model checker.

6.2.3 A simple protocol example in Uppaal

The problem is to model a simple protocol, with a communication Medium, a Sender,
and a Receiver. The sender sends messages of a fixed length length, which is the
time between the beginning and the end of a message. The medium has a transmis-
sion delay delay.

b!

t:=0,
g:=0,
timevalid:=0

t>=length

e!

(a) Sender

b?

bl:=0

e?

el:=0

bl>=delay

br!

el>=delay

er!

(b) Medium

FIN

br?

er?

timevalid:=1

(c) Receiver

Figure 6.3: The three automata

TI
G

ER
6.2 Model checking algorithm for TCTL 93

❖ Sender: The sender just synchronizes on the beginning and end of the mes-
sage, ensuring a time of length between the two synchronizations. The
timevalid and g variables are global variables used to time the total tran-
sit time of the message.

❖ Receiver: The receiver just synchronizes on the beginning and end of the
message after it arrives from the medium, setting timevalid as the FIN
state is entered.

❖ Medium: The medium uses two local clocks, bl and el, to delay a message
enroute to the receiver.

The first step is to model the system, assuming length<delay. The model in
Figure 6.3 shows this model.

A quick test with A[] not deadlock shows that it is deadlock free. To find out
the total time between begin send and end receive, a global clock variable g is reset
by the sender at the beginning of a message, and its value in state Receiver.FIN
tells us the total time between the beginning of sending the message and the end of
receiving the message. To test this a global variable timevalid was added to the
system, and if the receiver is in the Receiver.FIN state, and the time is valid,
then we can run various tests - for example the query

E<> (Receiver.FIN and timevalid==1 and g<maxtime)

(where maxtime is length+delay) is always unsatisfied, which tells us there is
no time sequence shorter than length+delay. The query

A[] (Receiver.FIN and timevalid==1 imply g>=maxtime)

is satisfied, which tells us that the time will always be greater than or equal to
length+delay.

The preceding model could only handle systems in which the length of the message
was less than the medium delay time. We can extend the medium to also handle

TI
G

ER
94

b?

bl:=0

e?

el:=0

bl>=delay

br!

el>=delay

er!

bl>=delay

br!

e?

el:=0

Figure 6.4: The new specification of the medium

messages with length>=delay. The only thing that needs changing is the defi-
nition of medium, given in Figure 6.4. The two queries before both still produce the
expected results, no matter what the relationship between length and delay:

E<> (Receiver.FIN and timevalid==1 and g<maxtime)
A[] (Receiver.FIN and timevalid==1 imply g>=maxtime)

6.3 Summary of topics

In this section, we introduced the following topics:

Theoretical foundations. Formal foundations for TCTL, syntax and semantics.
Model checking algorithms. Algorithms for checking timed CTL systems.
Examples. Two worked Uppaal examples.

