# Verification of Real Time Systems - CS5270 lecture 10

Hugh Anderson

National University of Singapore School of Computing

March, 2007



1

Hugh Anderson Verification of Real Time Systems - CS5270 lecture 10



# Outline



- Assignment 3
- The road map...
- Model checking
  - CTL example (smv/nusmv)
  - LTL model checker spin
- 3 Timed CTL model checking
  - Regional transition systems...
  - Timed CTL-
  - The modelling relation  $\models_{\tau}$  for timed CTL-



Assignment 3 The road map...

# Assignment 3

### A reminder... Assignment number 3:

- On the web site
- Due 9th April! ...



Assignment 3 The road map...

# The immediate road map

### The topics:

- Preliminaries for Model Checking
  - Temporal logic..., Kripke semantics
- OCTL Model Checking
  - The CTL model checking relation
  - The CTL model checking algorithm, with optimizations
  - Example smv/spin CTL/LTL model checkers

### • TCTL Model Checking

- The TCTL model checking relation
- The TCTL model checking algorithm, with optimizations
- Example Uupaal TCTL model checker



5

CTL example (smv/nusmv) LTL model checker - spin

### The smv model checker

CTL model checker:

- McMillan (1992) wrote smv a CTL model checker, making sources public
- More recently, NuSMV is being developed further, and now includes LTL, and other extensions including SAT solvers, BMC...
- Now has an extensive history



CTL example (smv/nusmv) LTL model checker - spin

### The smv model checker

### 10<sup>2</sup>00 states and beyond!

- The tool smv has been particularly useful for hardware design checking, although it is similar to all the other style systems we have seen
- specifying a model in an automata style
- useful for any responsive software system (protocols)
- For a change give a hardware verification example
  - electronic circuit to detect the START condition for I2C signalling.



CTL example (smv/nusmv) LTL model checker - spin

### Example: smv model checker

If SDA goes low while SCL is high...





CTL example (smv/nusmv) LTL model checker - spin

### Example: smv model checker

#### SMV code for the circuit:





CTL example (smv/nusmv) LTL model checker - spin

### Example: smv model checker

#### When we try it out:



 Verifies that it is always true that if SDA and SCL were both HIGH, and that if the next state had SDA LOW, then eventually and3gate=START will be HIGH?



CTL example (smv/nusmv) LTL model checker - spin

# Example: smv model checker

ROBDD representation of model:

• Generated automatically from within smv...



CTL example (smv/nusmv) LTL model checker - spin

### The spin model checker

### LTL style:

- spin is the name of an LTL model checker
- xspin is a graphical interface for it
- PROMELA is the model checking language it uses.
- Developed by Gerard Holzmann at Bell Labs at

http://www.spinroot.com/



CTL example (smv/nusmv) LTL model checker - spin

### Modelling protocols

#### Modelling the whole system:





CTL example (smv/nusmv) LTL model checker - spin

### Modelling protocols

PROMELA code to connect whole system:



CTL example (smv/nusmv) LTL model checker - spin

### Modelling protocols

#### System with a noisy channel:





Hugh Anderson Verification of Real Time Systems - CS5270 lecture 10

CTL example (smv/nusmv) LTL model checker - spin

### Modelling protocols

#### A noisy channel transition system:





CTL example (smv/nusmv) LTL model checker - spin

### Modelling protocols

#### PROMELA code for noisy channel transition system:





CTL example (smv/nusmv) LTL model checker - spin

### Modelling protocols

Protocol lies between the application and the media:





CTL example (smv/nusmv) LTL model checker - spin

### Modelling protocols

#### Protocol transition system:





CTL example (smv/nusmv) LTL model checker - spin

### Modelling protocols

Simplified protocol transition system:





CTL example (smv/nusmv) LTL model checker - spin

### Modelling protocols

#### PROMELA code for protocol:





CTL example (smv/nusmv) LTL model checker - spin

### Specifying properties?

For reachability and temporal claims:

 Add assertions in the PROMELA code for reachability claims:

assert(maxbuffered=3);

 Convert LTL formula into Buchi automata for (negative) temporal claims?



CTL example (smv/nusmv) LTL model checker - spin

### The big picture again.....

#### Models, properties, LANGUAGE of a model, property:



CTL example (smv/nusmv) LTL model checker - spin

# The big picture

Model theoretic view:

- To assert an LTL temporal formula/claim on a model, we have to show that the language of the model (all executions) is included in the language of the claim.
- It is easier to claim the negative ...
  - It is easier to prove that the intersection of the language of the model and the claim is empty.
  - Hence NEVER claims in PROMELA.



CTL example (smv/nusmv) LTL model checker - spin

# Modelling claims: A(FG p) ... spin -f "<>[]p"

#### PROMELA code for NEVER claim:





Regional transition systems... Timed CTL-The modelling relation  $\models_{\tau}$  for timed CTL-

# Regional transition system

Timed CTL versus traditional CTL:

- Major difference is that we have clocks:
  - in the automaton (X, a finite set of clock variables), and
  - in the TCTL formula (*Z*, a different finite set of clock variables).

We have to take these clocks into account both in the definition of TCTL, and also the model checking relation for TCTL:  $\models_{\tau}$ . The Kripke structure is different, as it corresponds to an RTS (regional transition system) instead of a standard transition system.



Regional transition systems... Timed CTL-The modelling relation  $\models_{\tau}$  for timed CTL-

### Regional transition system

The Kripke structure for RTS:

The (composite) states of the RTS are a pair r
 = (s, [v]<sub>≈</sub>), termed a region, where s corresponds to the original state of the transition system, and [v]<sub>≈</sub> is the regional equivalence class for v as defined in Chapter 4.

We begin by formally defining an RTS, and its corresponding model, in terms of the time abstract transition system  $TA_{TTS}$ . Recall that the (possibly infinite) states in  $TA_{TTS}$  are of the *composite* form (*s*, *v*), where *s* corresponds to the states of the original timed transition system, and *v* is a valuation of the clocks of that syste.



Regional transition systems... Timed CTL-The modelling relation  $\models_{\tau}$  for timed CTL-

### Regional transition system

Formal definition of RTS:

Given  $TA_{TTS} = (S, S_0, Act, \rightsquigarrow)$ , then the RTS is a quotiented transition system  $RTS = (\overline{R}, \overline{R}_0, Act, \rightarrow)$  where

$$\overline{R} = \{ (s, [v]_{\approx}) \mid (s, v) \in S \land v \in [v]_{\approx} \}, \text{ and} \\ \overline{R}_0 = \{ (s, [v]_{\approx}) \mid (s, v) \in S_0 \land v \in [v]_{\approx} \},$$

and  $(s, [v]_{\approx}) \xrightarrow{a} (s', [v']_{\approx})$  if and only if there is a transition  $(s, v) \xrightarrow{a} (s', v')$  in TA<sub>TTS</sub>.



Regional transition systems... Timed CTL-The modelling relation  $\models_{\tau}$  for timed CTL-

### Regional transition system

Notations when discussing RTS:

There are three levels:

- ① The elements of the set  $\overline{R}$  are called the *regions* of the RTS.
- 2 The notation for identifying a particular region will be  $\overline{r} \in \overline{R}$ , and
- 3 a (transitory) state with a particular clock valuation within that region will be denoted by r = (s, v).



Regional transition systems... Timed CTL-The modelling relation  $\models_{\tau}$  for timed CTL-

### Regional transition system

#### From TTS to RTS:





30

Regional transition systems... Timed CTL-The modelling relation  $\models_{\tau}$  for timed CTL-

# Regional transition system

RTS is finite (reminder):

- Note that since ≡<sub>REG</sub> is a stable equivalence relation of finite index, the RTS is a finite structure.
- We do not need to differentiate between the RTS and the zone based transition system here, instead considering that the zone based transition system is just a more efficient version of the RTS.

The semantics for TCTL is again defined in terms of a Kripke structure or TCTL-model. This model is derived from the RTS.



Regional transition systems... Timed CTL-The modelling relation  $\models_{\tau}$  for timed CTL-

# Regional transition system

Definition for the model:

A TCTL model  $\overline{M}$  over a set AP of atomic propositions is a 4-tuple ( $\overline{R}, \Delta, AP, \mathcal{L}$ ), where

- $\overline{R}$  is the finite set of **regions** derived from the RTS.
- $\Delta \subseteq \overline{R} \times \overline{R}$  is a **transition relation** derived from  $\rightarrow$  in RTS. It must be *total.*
- AP is a finite set of atomic propositions.
- $\mathcal{L}: \overline{R} \to 2^{AP}$  is a function which **labels** each region with the set of atomic propositions true in that region.



Regional transition systems... Timed CTL-The modelling relation  $\models_{\tau}$  for timed CTL-

# Timed CTL-

### Definition:

Given a proposition  $p \in AP$  (atomic propositions),  $x \in X$  (clock variables),  $z \in Z$  (clock variables in the property formula) and  $\phi \in \Phi(X \cup Z)$  (clock constraints), then p and  $\phi$  are both TCTL-formulæ, and if  $\psi_1$  and  $\psi_2$  are TCTL- formulæ, then

- $\neg \psi_1$  is a TCTL- formula
- $\psi_1 \wedge \psi_2$  is a TCTL- formula
- $\psi_1 \lor \psi_2$  is a TCTL- formula
- $z in \psi_1$  is a TCTL- formula
- $A(\psi_1 U \psi_2)$  is a TCTL- formula
- $E(\psi_1 U \psi_2)$  is a TCTL- formula



Regional transition systems... Timed CTL-The modelling relation  $\models_{\tau}$  for timed CTL-

# Timed CTL-

How time is handled in timed CTL-:

- The FREEZE definition in line 4. The meaning of "z in ψ" is that ψ holds when the property formula clock z is reset to 0. Corresponds to the clock reset.
- Temporal operators are subscripted with time constraints:

### $\mathrm{A}(\psi_{1}\,\mathrm{U}_{\leq 5}\,\psi_{2})$

expresses the idea that  $\psi_1$  holds until within 5 time units,  $\psi_2$  becomes true. This may be defined in TCTL- using the FREEZE operator:

### z in A(( $\psi_1 \wedge z \leq 5$ ) U $\psi_2$ )



Regional transition systems... Timed CTL-The modelling relation  $\models_{\tau}$  for timed CTL-

# Timed CTL-

How time is handled in timed CTL-:

• Example 1:

A(alarm  $U_{<7}$  boileroff)

expresses the idea that the alarm is on until (within 7 time units) the boileroff is signaled.

• Example 2:

### EF<7(alarm)

expresses the idea that the alarm will be on within 7 time units.



Regional transition systems... Timed CTL- The modelling relation  $\models_{\tau}$  for timed CTL-

# Timed CTL- $\models_{\tau}$ relation

### Definition:

| $\overline{M},(r,f)\models_{	au} p$                                                    | $\Leftrightarrow$ | $p \in L(\overline{r})$                                                                                 |
|----------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------|
| $\overline{\textit{M}},(\textit{r},\textit{f})\models_{\tau}\phi$                      | $\Leftrightarrow$ | $v \cup f \models \phi$                                                                                 |
| $\overline{M}, (r, f) \models_{\tau} \neg \psi_1$                                      | $\Leftrightarrow$ | iff it is not the case that $\overline{M}$ , $(r, f) \models_{\tau} \psi_1$                             |
| $\overline{\textit{M}}, (\textit{r},\textit{f}) \models_{\tau} \psi_1 \land \psi_2$    | $\Leftrightarrow$ | iff $\overline{M}$ , $(r, f) \models_{\tau} \psi_1$ and $\overline{M}$ , $(r, f) \models_{\tau} \psi_2$ |
| $\overline{M}, (r, f) \models_{\tau} \psi_1 \lor \psi_2$                               | $\Leftrightarrow$ | iff $\overline{M}$ , $(r, f) \models_{\tau} \psi_1$ or $\overline{M}$ , $(r, f) \models_{\tau} \psi_2$  |
| $\overline{M}, (r, f) \models_{\tau} z \operatorname{in} \psi_1$                       | $\Leftrightarrow$ | $\inf \overline{M}, (r, z \inf f) \models_{\tau} \psi_1$                                                |
| $\overline{M}, (r, f) \models_{\tau} \operatorname{A}(\psi_1 \operatorname{U} \psi_2)$ | $\Leftrightarrow$ | iff for every path $\overline{\pi} = s_0 s_1 \dots$ from <i>r</i> ,                                     |
|                                                                                        |                   | where for some $j, \overline{M}, \overline{\pi}(j) \models_{\tau} \psi_2$ ,                             |
|                                                                                        |                   | and $\forall i < j, \overline{M}, \overline{\pi}(i) \models_{\tau} \psi_1 \lor \psi_2$                  |
| $\overline{M}, (r, f) \models_{\tau} \mathrm{E}(\psi_1 \mathrm{U} \psi_2)$             | $\Leftrightarrow$ | iff there is a path $\overline{\pi} = s_0 s_1 \dots$ from <i>r</i> ,                                    |
|                                                                                        |                   | where for some $j, \overline{M}, \overline{\pi}(j) \models_{\tau} \psi_2$ ,                             |
|                                                                                        |                   | and $\forall i < j, \overline{M}, \overline{\pi}(i) \models_{\tau} \psi_1 \lor \psi_2$                  |



Regional transition systems... Timed CTL-The modelling relation  $\models_{\tau}$  for timed CTL-

### The modelling relation $\models_{\tau}$

Comments on the relation:

- In this definition, the progression of time is defined in reference to the states of the original TS<sub>TTS</sub>. In particular, a path from one state *r* is an infinite sequence of states *π* = s<sub>0</sub> s<sub>1</sub> ... such that s<sub>0</sub> = *r* and s<sub>i</sub> → s<sub>i+1</sub>. A particular *i*-th element of *π* is *π*(*i*).
- The notation found in the definition for the **FREEZE** operator  $(\overline{M}, (r, z \text{ in } f) \models_{\tau} \psi_1)$  indicates that  $\overline{M}, (r, f) \models_{\tau} \psi_1$  if all occurences of *z* in *f* are reset to 0.



Regional transition systems... Timed CTL-The modelling relation  $\models_{\tau}$  for timed CTL-

# The modelling relation $\models_{\tau}$

Comments on the relation:

- An interesting element of the definition is found in the definitions for E(ψ<sub>1</sub> U ψ<sub>2</sub>) and A(ψ<sub>1</sub> U ψ<sub>2</sub>), where at some *j*, *M*, π(*j*) ⊨<sub>τ</sub> ψ<sub>2</sub>, but for all *i* < *j*, *M*, π(*i*) ⊨<sub>τ</sub> ψ<sub>1</sub> ∨ ψ<sub>2</sub>.
- If you compare this with the similar definition from CTL, you find in that case the condition "for all *i* < *j*, *M*, π(*i*) ⊨ ψ<sub>1</sub>" (i.e. ψ<sub>1</sub> instead of ψ<sub>1</sub> ∨ ψ<sub>2</sub>).



Regional transition systems... Timed CTL- The modelling relation  $\models_{\tau}$  for timed CTL-

# The modelling relation $\models_{\tau}$

Explanation:

We can see the need for the expression  $\psi_1 \vee \psi_2$  instead of just  $\psi_1$  by considering the *big* step from a particular valuation in  $\overline{r}_1$  to another in  $\overline{r}_2$  seen below. For all points in the two regions we want  $A(\psi_1 U \psi_2)$ , but for the two points connected by the line,  $\psi_1$  is not true just before the new point



