Verification of Real Time Systems - CS5270
lecture 10

Hugh Anderson

National University of Singapore
School of Computing

March, 2007
Delorean...
Outline

1. Administration
 - Assignment 3
 - The road map...

2. Model checking
 - CTL example (smv/nusmv)
 - LTL model checker - spin

3. Timed CTL model checking
 - Regional transition systems...
 - Timed CTL-
 - The modelling relation $|=_{\tau}$ for timed CTL-
A reminder... Assignment number 3:
- On the web site
- Due 9th April! ...
The immediate road map

The topics:

- **Preliminaries for Model Checking**
 - Temporal logic..., Kripke semantics

- **CTL Model Checking**
 - The CTL model checking relation
 - The CTL model checking algorithm, with optimizations
 - Example `smv/spin` - CTL/LTL model checkers

- **TCTL Model Checking**
 - The TCTL model checking relation
 - The TCTL model checking algorithm, with optimizations
 - Example `Uupaal` - TCTL model checker
The smv model checker

CTL model checker:

- McMillan (1992) wrote smv a CTL model checker, making sources public
- More recently, NuSMV is being developed further, and now includes LTL, and other extensions including SAT solvers, BMC...
- Now has an extensive history
The smv model checker

10^200 states and beyond!

- The tool smv has been particularly useful for hardware design checking, although it is similar to all the other style systems we have seen
- specifying a model in an automata style
- useful for any responsive software system (protocols)
- For a change give a hardware verification example
 - electronic circuit to detect the START condition for I2C signalling.
Example: smv model checker

If SDA goes low while SCL is high...

Hugh Anderson
Verification of Real Time Systems - CS5270 lecture 10
Example: smv model checker

SMV code for the circuit:

```
MODULE mainVAR
  inv1  : boolean;
  inv2  : boolean;
  inv3  : boolean;
  or2gate1  : boolean;
  and2gate1  : boolean;
  and3gate1  : boolean;
  SCLIN  : boolean;
  SDAIN  : boolean;
ASSIGN
  inv1 := !SCLIN;
  inv2 := !SDAIN;
  inv3 := !or2gate1;
  next( or2gate1 ) := inv1 | and2gate1;
  and2gate1 := inv2 & or2gate1;
  and3gate1 := inv3 & SCLIN & inv2;
SPEC
  (AG((SDAIN=1)&(SCLIN=1)&(AX SDAIN=0)) -> AF and3gate1)
```
Example: smv model checker

When we try it out:

```
[hugh@pnp176-44 FormalVerification]$ NuSMV I2C
*** This is NuSMV 2.3.1 (compiled on Mon Apr 3 10:11:22 UTC 2006)
*** For more information on NuSMV see <http://nusmv.irst.itc.it>.
*** or email to <nusmv-users@irst.itc.it>.
*** Please report bugs to <nusmv@irst.itc.it>.
-- specification
   (AG ((SDAIN = 1 & SCLIN = 1) & AX SDAIN = 0) -> AF and3gate1)
   is true
[hugh@pnp176-44 FormalVerification]$
```

- Verifies that it is always true that if **SDA** and **SCL** were both **HIGH**, and that if the next state had **SDA LOW**, then eventually **and3gate=START** will be **HIGH**?
Example: smv model checker

ROBDD representation of model:
 - Generated automatically from within smv...
The spin model checker

LTL style:

- **spin** is the name of an LTL model checker
- **xspin** is a graphical interface for it
- **PROMELA** is the model checking language it uses.
- Developed by Gerard Holzmann at Bell Labs at

 http://www.spinroot.com/
Modelling protocols

Modelling the whole system:

- A
 - Ain
 - Aout
- B
 - Bin
 - Bout

AtoB
BtoA
Modelling protocols

PROMELA code to connect whole system:

```plaintext
chan Ain = [2] of { byte };
...
atomic {
    run protocol( Ain, Aout, MedtoA, AtoMed );
    run protocol( Bin, Bout, MedtoB, BtoMed );
    run medium( AtoMed, MedtoB );
    run medium( BtoMed, MedtoA );
    run application( Aout, Ain );
    run application( Bout, Bin )
};
```

Hugh Anderson
Verification of Real Time Systems - CS5270 lecture 10
Modelling protocols

System with a noisy channel:

\[
\begin{align*}
A & \quad \text{Ain} \quad \text{Aout} \\
B & \quad \text{Bin} \quad \text{Bout} \\
\text{MedtoA} & \quad \text{AtoMed} \\
\text{MedtoB} & \quad \text{BtoMed}
\end{align*}
\]
Modelling protocols

A noisy channel transition system:

\[
\text{in}\?\text{typ, data} \rightarrow \text{out}\!\text{err}
\]

\[
\text{in}\?\text{typ, data} \rightarrow \text{out}\!\text{typ, data}
\]
Modelling protocols

PROMELA code for noisy channel transition system:

```promela
proctype medium( chan in, out ) {
    byte typ;
    int data;
    do
        :: in?typ,data ->
        if
            :: out!typ,data
            :: out!typ,data
            :: out!err,0
        fi
    od
};
```
Modelling protocols

Protocol lies between the application and the media:
Modelling protocols

Protocol transition system:
Modelling protocols

Simplified protocol transition system:

\begin{figure}
\centering
\begin{tikzpicture}
 \node [state] (s1) [initial] {s_1};
 \path[->]
 (s1) edge node {chin?ack \rightarrow out!accept in?next chout!ack} (s1)
 (s1) edge [loop above] node {chin?nak \rightarrow out!accept chout!ack} (s1)
 (s1) edge [loop below] node {chin?err \rightarrow chout!nak} (s1);
\end{tikzpicture}
\end{figure}
Modelling protocols

PROMELA code for protocol:

```pseudocode
proctype protocol( chan in, out, chin, chout ) {
    byte o, i;
    in?next(o);
    do
        :: chin?ack(i) -> out!accept(i); in?next(o); chout!ack(o)
        :: chin?nak(i) -> out!accept(chout!ack)
        :: chin?err(i) -> chout!nak(o)
    od
}
```
Specifying properties?

For reachability and temporal claims:

- Add **assertions** in the PROMELA code for **reachability** claims:

  ```
  assert (maxbuffered=3);
  ```

- Convert LTL formula into **Buchi automata** for (negative) **temporal** claims?
The big picture again......

Models, properties, LANGUAGE of a model, property:

Model extraction → TS → Semantics

Property (Temporal logic formula φ)

Model checker:

Behaviour of TS ≤ Models of φ

YES! → NO!
Model theoretic view:

- To assert an LTL temporal formula/claim on a model, we have to show that the language of the model (all executions) is included in the language of the claim.
- It is easier to claim the negative ...
 - It is easier to prove that the intersection of the language of the model and the claim is empty.
 - Hence NEVER claims in PROMELA.
Modelling claims: $A(FG \ p)$...

```
never { /* <>[]p */
    T0_init: if
        :: ((p)) -> goto accept_S4
        :: (1) -> goto T0_init
    fi;
    accept_S4: if
        :: ((p)) -> goto accept_S4
    fi;
}
```

If the **product** of the model and the negation of this automaton is empty (i.e. no acceptance), then $A(FG \ p)$.
Regional transition system

Timed CTL versus traditional CTL:

- Major difference is that we have clocks:
 - in the automaton (\mathbf{X}, a finite set of clock variables), and
 - in the TCTL formula (\mathbf{Z}, a different finite set of clock variables).

We have to take these clocks into account both in the definition of TCTL, and also the model checking relation for TCTL: \models_τ. The Kripke structure is different, as it corresponds to a RTS (regional transition system) instead of a standard transition system.
Regional transition system

The Kripke structure for RTS:

- The (composite) states of the RTS are a pair $\bar{r} = (s, [v]_\approx)$, termed a *region*, where s corresponds to the original state of the transition system, and $[v]_\approx$ is the regional equivalence class for v as defined in Chapter 4.

We begin by formally defining an RTS, and its corresponding model, in terms of the time abstract transition system $T\text{A}_{\text{TTS}}$. Recall that the (possibly infinite) states in $T\text{A}_{\text{TTS}}$ are of the *composite* form (s, v), where s corresponds to the states of the original timed transition system, and v is a valuation of the clocks of that system.
Regional transition system

Formal definition of RTS:

Given $TA_{TTS} = (S, S_0, \text{Act}, \leadsto)$, then the RTS is a quotiented transition system $RTS = (\overline{R}, \overline{R}_0, \text{Act}, \rightarrow)$ where

\[
\begin{align*}
\overline{R} &= \{ (s, [v]_{\sim}) \mid (s, v) \in S \land v \in [v]_{\sim} \}, \text{ and} \\
\overline{R}_0 &= \{ (s, [v]_{\sim}) \mid (s, v) \in S_0 \land v \in [v]_{\sim} \},
\end{align*}
\]

and $(s, [v]_{\sim}) \xrightarrow{a} (s', [v']_{\sim})$ if and only if there is a transition $(s, v) \xrightarrow{a} (s', v')$ in TA_{TTS}.
Regional transition system

Notations when discussing RTS:

There are three levels:

1. The elements of the set \overline{R} are called the **regions** of the RTS.

2. The notation for identifying a particular region will be $\bar{r} \in \overline{R}$, and

3. a (transitory) state with a particular clock **valuation** within that region will be denoted by $r = (s, \nu)$.
Regional transition system

From TTS to RTS:
RTS is finite (reminder):

- Note that since \equiv_{REG} is a stable equivalence relation of finite index, the RTS is a finite structure.
- We do not need to differentiate between the RTS and the zone based transition system here, instead considering that the zone based transition system is just a more efficient version of the RTS.

The semantics for TCTL is again defined in terms of a Kripke structure or TCTL-model. This model is derived from the RTS.
Regional transition system

Definition for the model:

A TCTL model \overline{M} over a set AP of atomic propositions is a 4-tuple $(\overline{R}, \Delta, AP, L)$, where

- \overline{R} is the finite set of regions derived from the RTS.
- $\Delta \subseteq \overline{R} \times \overline{R}$ is a transition relation derived from \rightarrow in RTS. It must be total.
- AP is a finite set of atomic propositions.
- $L : \overline{R} \rightarrow 2^{AP}$ is a function which labels each region with the set of atomic propositions true in that region.
Timed CTL-

Definition:
Given a proposition $p \in AP$ (atomic propositions), $x \in X$ (clock variables), $z \in Z$ (clock variables in the property formula) and $\phi \in \Phi(X \cup Z)$ (clock constraints), then p and ϕ are both TCTL-formulæ, and if ψ_1 and ψ_2 are TCTL-formulæ, then

- $\neg \psi_1$ is a TCTL-formula
- $\psi_1 \land \psi_2$ is a TCTL-formula
- $\psi_1 \lor \psi_2$ is a TCTL-formula
- $z \in \psi_1$ is a TCTL-formula
- $A(\psi_1 U \psi_2)$ is a TCTL-formula
- $E(\psi_1 U \psi_2)$ is a TCTL-formula
Timed CTL-

How time is handled in timed CTL-:

- The **FREEZE** definition in line 4. The meaning of “\(z \text{ in } \psi\)” is that \(\psi\) holds when the property formula clock \(z\) is reset to 0. Corresponds to the clock reset.

- Temporal operators are subscripted with time constraints:

\[
A(\psi_1 \mathbin{U}_{\leq 5} \psi_2)
\]

expresses the idea that \(\psi_1\) holds until within 5 time units, \(\psi_2\) becomes true. This may be defined in TCTL- using the **FREEZE** operator:

\[
z \text{ in } A((\psi_1 \land z \leq 5) \mathbin{U} \psi_2)
\]
Timed CTL-

How time is handled in timed CTL-:

- **Example 1:**
 \[A(alarm \ U_{<7} boileroff) \]
 expresses the idea that the **alarm** is on until (within 7 time units) the **boileroff** is signaled.

- **Example 2:**
 \[EF_{<7}(alarm) \]
 expresses the idea that the **alarm** will be on within 7 time units.
Timed CTL- \models_τ relation

Definition:

- $\overline{M}, (r, f) \models_\tau p \iff p \in L(\overline{r})$
- $\overline{M}, (r, f) \models_\tau \phi \iff \nu \cup f \models \phi$
- $\overline{M}, (r, f) \models_\tau \neg \psi_1 \iff$ iff it is not the case that $\overline{M}, (r, f) \models_\tau \psi_1$
- $\overline{M}, (r, f) \models_\tau \psi_1 \land \psi_2 \iff$ iff $\overline{M}, (r, f) \models_\tau \psi_1$ and $\overline{M}, (r, f) \models_\tau \psi_2$
- $\overline{M}, (r, f) \models_\tau \psi_1 \lor \psi_2 \iff$ iff $\overline{M}, (r, f) \models_\tau \psi_1$ or $\overline{M}, (r, f) \models_\tau \psi_2$
- $\overline{M}, (r, f) \models_\tau z \text{ in } \psi_1 \iff$ iff $\overline{M}, (r, z \text{ in } f) \models_\tau \psi_1$
- $\overline{M}, (r, f) \models_\tau A(\psi_1 \text{ U } \psi_2) \iff$ iff for every path $\overline{\pi} = s_0 \ s_1 \ldots$ from r, where for some j, $\overline{M}, \overline{\pi}(j) \models_\tau \psi_2$, and $\forall i < j, \overline{M}, \overline{\pi}(i) \models_\tau \psi_1 \lor \psi_2$
- $\overline{M}, (r, f) \models_\tau E(\psi_1 \text{ U } \psi_2) \iff$ iff there is a path $\overline{\pi} = s_0 \ s_1 \ldots$ from r, where for some j, $\overline{M}, \overline{\pi}(j) \models_\tau \psi_2$, and $\forall i < j, \overline{M}, \overline{\pi}(i) \models_\tau \psi_1 \lor \psi_2$
The modelling relation \models_{τ}

Comments on the relation:

- In this definition, the progression of time is defined in reference to the states of the original TS_{TTS}. In particular, a path from one state r is an infinite sequence of states $\pi = s_0 \ s_1 \ldots$ such that $s_0 = r$ and $s_i \rightarrow s_{i+1}$. A particular i-th element of π is $\pi(i)$.

- The notation found in the definition for the **FREEZE** operator $(\overline{M}, (r, z \text{ in } f) \models_{\tau} \psi_1)$ indicates that $\overline{M}, (r, f) \models_{\tau} \psi_1$ if all occurrences of z in f are reset to 0.
The modelling relation \models_τ

Comments on the relation:

- An interesting element of the definition is found in the definitions for $E(\psi_1 U \psi_2)$ and $A(\psi_1 U \psi_2)$, where at some j, $\overline{M}, \overline{\pi}(j) \models_\tau \psi_2$, but for all $i < j$, $\overline{M}, \overline{\pi}(i) \models_\tau \psi_1 \lor \psi_2$.

- If you compare this with the similar definition from CTL, you find in that case the condition “for all $i < j$, $M, \pi(i) \models \psi_1$” (i.e. ψ_1 instead of $\psi_1 \lor \psi_2$).
The modelling relation $|=\tau$

Explanation:

We can see the need for the expression $\psi_1 \lor \psi_2$ instead of just ψ_1 by considering the *big* step from a particular valuation in \bar{r}_1 to another in \bar{r}_2 seen below. For all points in the two regions we want $A(\psi_1 U \psi_2)$, but for the two points connected by the line, ψ_1 is not true just before the new point.