Verification of Real Time Systems - CS5270 3rd lecture

Hugh Anderson

National University of Singapore School of Computing

January, 2007

(日) (四) (三) (三)

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Outline

Administration

- Assignment 1
- Introduction to Uppaal

2 Scheduling

- Scheduling concepts
- Critical sections and Semaphores

Scheduling algorithms

- RMS Rate Monotonic Scheduling
- Schedulability
- EDF Earliest Deadline First

(4) (3) (4) (4) (4)

Outline

Administration

- Assignment 1
- Introduction to Uppaal

Scheduling 2

- Scheduling concepts
- Critical sections and Semaphores

Image: A matrix

Outline

Administration

- Assignment 1
- Introduction to Uppaal

Scheduling 2

- Scheduling concepts
- Critical sections and Semaphores
- 3 Scheduling algorithms
 - RMS Rate Monotonic Scheduling
 - Schedulability
 - EDF Earliest Deadline First

Assignment 1 Introduction to Uppaal

Outline

Assignment 1

Introduction to Uppaal

2 Scheduling

- Scheduling concepts
- Critical sections and Semaphores

Scheduling algorithms

- RMS Rate Monotonic Scheduling
- Schedulability
- EDF Earliest Deadline First

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Assignment 1 Introduction to Uppaal

Assignment 1

Assignment number 1 is out

- Seven questions
- Some reading may be required?
- Hand in Feb 18

イロト イヨト イヨト イヨト

Assignment 1 Introduction to Uppaal

Outline

Administration

- Assignment 1
- Introduction to Uppaal

2 Scheduling

- Scheduling concepts
- Critical sections and Semaphores
- Scheduling algorithms
 - RMS Rate Monotonic Scheduling
 - Schedulability
 - EDF Earliest Deadline First

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

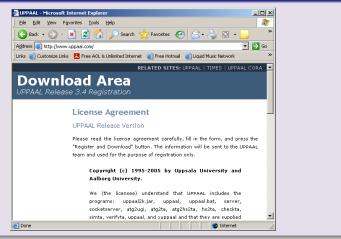
Assignment 1 Introduction to Uppaal

Uppaal

The website:

🗿 UPPAAL - Microsoft Internet Explorer 📃 💷	×
Elle Edit View Favorites Iools Help	7
🕒 😋 Back + 🕥 - 💌 😰 🏠 🔎 Search 🤺 Favorites 🤣 🔗 + 🌉 🔍 + 🛄	*
Address 🝓 http://www.uppaal.com/ 💌 🔁 G	D
Links 👸 Customize Links 🛛 Free AOL & Unlimited Internet 🛛 👸 Free Hotmail 🛛 👸 Liquid Music Network	**
RELATED SITES: TIMES UPPAAL CORA UPPAAL TRON	
UPPAAL Download	
Home About Documentation Download Examples Bugs	
Commercial Licenses	
Academic For information about commercial licenses and support, please contact Installation History	
Academic Licenses	
The following releases and utilities are available for free for non-profit applications.	
 <u>UPPAAL 3.4</u> The current official release (also available for <u>Mac OS X</u>). 	•
a 📋 📄 🖉 Internet	//

Hugh Anderson Verification of Real Time Systems - CS5270 3rd lecture 5


イロン イロン イヨン イヨン

US LUViervity Bigggoor

Assignment 1 Introduction to Uppaal

Uppaal

The license:

3

ŬS

Assignment 1 Introduction to Uppaal

Uppaal

Complete registration:

🖉 UPPAAL - Microsoft Internet Explorer	
Elle Edit View Favorites Iools Help	
🕞 Back + 💮 - 🙁 😰 🏠 🔎 Search 🤺 Favorites 🚱 🔗 + 🍃 🖸 + 🧾 👋	
Address 🍓 http://www.uppaal.com/	
Links 👛 Customize Links 🔣 Free AOL & Unlimited Internet 💣 Free Hotmail 👛 Liquid Music Network 🛛 🎽	
To help protect your security, Internet Explorer blocked this site from downloading files to your computer. Click here for X options	
RELATED SITES: UPPAAL TIMES UPPAAL CORA	
Download Area	
UPPAAL Registration	
Registration Completed	
Thank you for registration. Your download of UPPAAL Release Version 3.4 should begin shortly.	
Back to download page	
Updated >> 04/14/2005	
opeace # 04/14/2003	
	22
	US
🕡 🔰 👋 🖉 Internet	sal University Bingapore
	- nac

Assignment 1 Introduction to Uppaal

Uppaal

Download:

3.54 MB of form.php?PHP5E55ID=002fac5a04da647f7	
🤣 💼	
Saving: uppaal.zip from www.it.uu.se	
Estimated time left Not known (Opened so far 3.54 MB) Download to: C:\Documents and Setting\uppaal.zip Transfer rate: 45.9 KB/Sec	
Close this dialog box when download completes Open Open Eolder Cancel	
	N C (

Assignment 1 Introduction to Uppaal

Uppaal

Instructions:

UPPAAL - Microsoft Internet Explorer	_ 🗆 🗵
Eile Edit View Favorites Iools Help	
Ġ Back 🔹 🤣 🔹 🐔 🔎 Search 🤺 Favorites 🤣 🍃 🎍 🔯 🔹 📒	»
address 🗃 http://www.uppaal.com/	🔁 Go
inks 💩 Customize Links 🛛 🛃 Free AOL & Unlimited Internet 🛛 🍪 Free Hotmail 🛛 🍓 Liquid Music Network	*
Download the zip-file containing the installation files.	
4. Unzip the downloaded zip-file. This should created a number of finduding: uppeal2x.jar, uppeal, and the directories bin-finux, by SumOS, bin-finux, by dean. The bin-directories should all contain two files zerver(.exe) and verifyra(.exe) plus some additional findepending on the platform. The directory deano should contain so demo files with suffixes .mal, and .q.	in- — the es,
5. Make sure you have the Java version 5 (e.g. J2SE Java Rumi Environment) or newer installed and property configured on y system. The UPPAAL GUI will not run without Java installed. Java SunOS, Windows55/96/NT, and Linux can be downloaded fr <u>lava.sun.com</u> .	our for
 To run UPPAAL on Linux or SunOS systems run the startup script nan uppaal. To run on Windows95/98/NT systems, just double-click the uppaal2k.jar. 	
 (Optional) Join the UPPAAL mailinglist. The mailinglist is intended users of the tool. To join the list, email <u>upp- subscribely shooroups com</u>. To post to the mailing list, en <u>uppaal@vahooroups.com</u>.For more information, see <u>this page</u>. 	aal- nail
Please e-mail <u>buq-uppaal@list.it.uu.se</u> if you have problems to install, if	rou 🗾
] 🛛 😤 🧶 Internet	//.

US Mal University Bingapore

Assignment 1 Introduction to Uppaal

Uppaal

Extract/unzip:

🗐 WinZip - uppaal.zi	ip						_ 🗆 🗵
<u>File Actions Options</u>	Help						
6	1	<u>e</u>	(6	<u>ک</u> 🔇		>
New Open	Favorites A	dd	Extract	Vie	w Cheo	kOut	Wizard
Name	Туре		Modified		Size	e Ratio	Pacl 🔺
License-ASF	File		22/01/2002	10:4	2,698	3 55%	1,2
🚵 Readme	File		17/06/2005	8:23 PM	3,74:	l 55%	1,6
🛄 readme.txt	Readme Document		17/06/2005	8:23 PM	3,848	3 55%	1,1
🚵 uppaal	File		22/09/2003	9:29	263	3 27%	
🛃 uppaal2k.jar	Executable Jar File		17/06/2005	8:26 PM	501,356	5 8%	461,:
🚵 server	File		17/06/2005	8:24 PM	2,007,988	60%	795,:
🚵 socketserver	File		22/03/2004	1:55 PM	10,800	51%	5,:
🚵 verifyta	File		17/06/2005	8:24 PM	2,003,344	ŧ 60%	795,:
🚵 server	File		17/06/2005	8:52 PM	1,419,408	65%	497,:
🚵 socketserver	File		06/02/2003	9:56 PM	12,300	59%	5,(💌
•							
Selected O files, O bytes		To	tal 27 files, 14	,913KB			

US LUViervity Bigggoor

Assignment 1 Introduction to Uppaal

Uppaal

Click on jar file:

C:\Documents and Settings	dcsanh\Deskton\	CS5270\lecture3\un	naal-3.4.11		-	
Ele Edit View Favorites						
						~
Ġ Back 🔹 🌍 🔹 🏂 🍃	🔍 Search Po	olders 📴 🎯 🕽	K 🖌 🛄 -			
Address 🗀 C:\Documents and Se	ttings\dcsanh\Deskt	op\CS5270\lecture3\upp	aal-3.4.11			Go
Links 🕘 Customize Links 🔣 Fr	ee AOL & Unlimited I	nternet 🛛 🕘 Free Hotma	ail 🛛 👸 Liquid Music Network	🥶 RealPlayer	🕘 Welcome to Liquid Aud	io »
Name 🔻	Size	Туре	Date Modified			
📓 uppaal2k.jar	490 KB	Executable Jar File	17/06/2005 8:26 PM			
🖬 uppaal	1 KB	File	22/09/2003 9:29 AM			
🗐 readme.txt	4 KB	Text Document	17/06/2005 8:23 PM			
🖬 README	4 KB		17/06/2005 8:23 PM			
License-ASF	3 KB		22/01/2002 10:42 AM			
🚞 man		File Folder	01/02/2006 1:39 PM			
🚞 ib		File Folder	01/02/2006 1:39 PM			
🚞 demo		File Folder	01/02/2006 1:39 PM			
🗀 bin-Win32		File Folder	01/02/2006 1:39 PM			
bin-SunOS		File Folder	01/02/2006 1:39 PM			
🗀 bin-Linux		File Folder	01/02/2006 1:39 PM			

US al University Bingapore

200

Assignment 1 Introduction to Uppaal

Uppaal

The application:

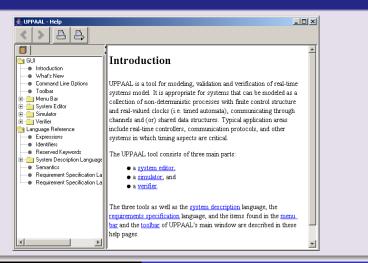
UPPAAL Ele Templates View Queries s	Online Link	×
	C C K Q	<i>₩ 𝔅</i>
System Editor Simulator Verifie		
	Name: P	Parameters:
Project Global declarations		
- 33 Process assignments		
System definition	[

Hugh Anderson Verification of Real Time Systems - CS5270 3rd lecture 12

< □ > < □ > < □ > < □ > < □ >

US Balloviereity Engapore

æ


Administration Scheduling

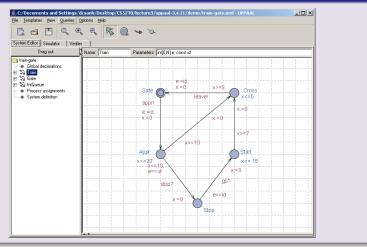
Scheduling algorithms

Assignment 1 Introduction to Uppaal

Uppaal

Help:

3


sal Univers

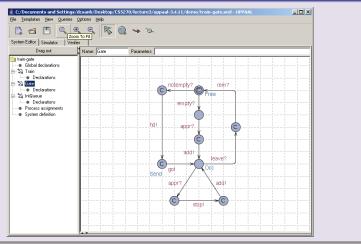
ŬS

Assignment 1 Introduction to Uppaal

Uppaal

Load up a demo:

Hugh Anderson

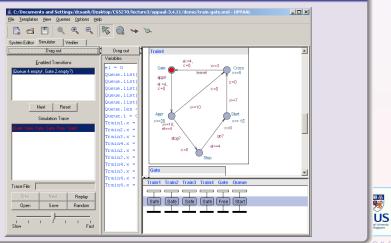

US al University Engapore Administration Scheduling

Scheduling algorithms

Assignment 1 Introduction to Uppaal

Uppaal

Look at TTS:

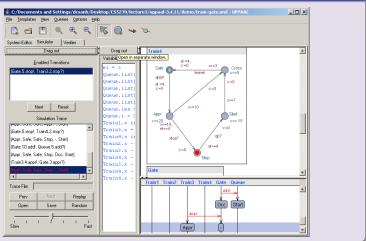

Hugh Anderson Verification of Real Time Systems - CS5270 3rd lecture 15

US Lingapore

Assignment 1 Introduction to Uppaal

Uppaal

Simulation:


Hugh Anderson

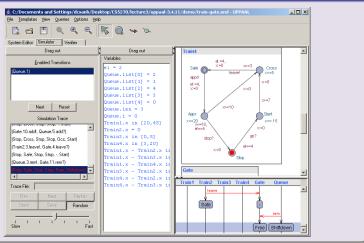
16

Assignment 1 Introduction to Uppaal

Uppaal

Simulation:

Hugh Anderson


US al University Bagapore Administration Scheduling

Scheduling algorithms

Assignment 1 Introduction to Uppaal

Uppaal

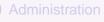
Simulation:

Hugh Anderson

US al University Engapore

Assignment 1 Introduction to Uppaal

Uppaal


Verification:

	미치
le Iemplates View Queries Options Help	
📮 🖽 🔍 🔍 🤻 隊 🔍 🍝 🌣	
ystem Editor Simulator Venilier	
Overview	
P0 Model Check	
P1EO Gate.Occ	
P2EO Trainl.Cross	4
Pleo Train2.Cross	4
Comments	
Query	
E<> Trainl.Cross and Train2.Stop	_
Comment	
Train 1 can be crossing bridge while Train 2 is waiting to cross.	-
Status	
Established direct connection to local server.	_
E Gate Doc	
Property is satisfied. E⇔ Train2 Cross	
Property is satisfied.	
E⇔ Train1.Cross and Train2.Stop	
Property is satisfied.	
i	

US Mal University Bingapore

Scheduling concepts Critical sections and Semaphores

Outline

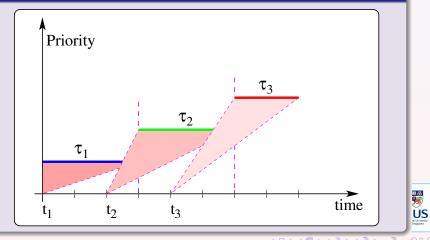
- Assignment 1
- Introduction to Uppaal

2 Scheduling

- Scheduling concepts
- Critical sections and Semaphores

Scheduling algorithms

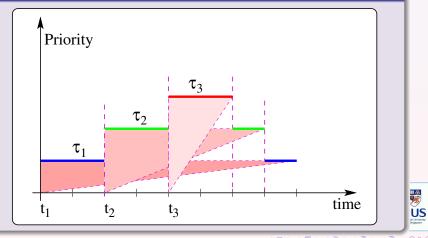
- RMS Rate Monotonic Scheduling
- Schedulability
- EDF Earliest Deadline First



A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Scheduling concepts Critical sections and Semaphores

Non-preemptive scheduling


Tasks are delayed until other tasks complete:

Scheduling concepts Critical sections and Semaphores

Preemptive scheduling

Hugh Anderson Verification of Real Time Systems - CS5270 3rd lecture 21

Scheduling concepts Critical sections and Semaphores

Scheduling terms

Definitions:

Feasible: a schedule is termed feasible if all tasks can be completed within the constraints specified

Schedulable: a task set is schedulable if a particular scheduling algorithm produces a feasible schedule

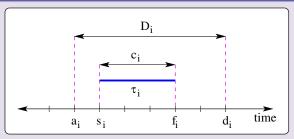
(I)

Scheduling concepts Critical sections and Semaphores

Scheduling terms

Constraints found in various areas:

Timing (deadlines for tasks) Precedence (which task comes first) Resource (shared access) Hard/Soft constraints



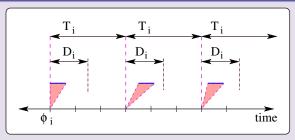
イロト イヨト イヨト イヨト

Scheduling concepts Critical sections and Semaphores

Scheduling terms

Deadlines:

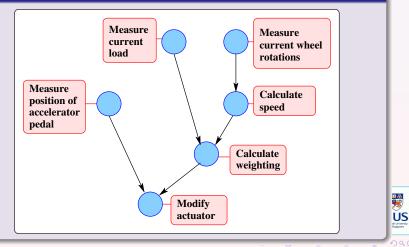
If a task *t_i* needs to finish before some time *d_i*, then this is called a deadline. A relative deadline *D_i* for the task is *D_i* = *d_i* − *a_i*.


Tasks run for time c_i, and must complete before a deadline

Scheduling concepts Critical sections and Semaphores

Scheduling terms

Periodic tasks:


- A periodic task is one that is regularly activated at a constant rate.
- Its period is T_i , and the time of first activation (its **phase**) is ϕ_i .

US al University Ingapore

Scheduling concepts Critical sections and Semaphores

Scheduling terms

Precedence between tasks - visualize as a graph:

Scheduling concepts Critical sections and Semaphores

Scheduling terms

Resource access:

A *resource* constraint, may be some variable or device or some other structure in the system. Resources only become *critical* resource constraints when they are shared with other tasks.

- An exclusive resource is one which may require exclusion of all other tasks when the resource is accessed. This is called mutual exclusion (OS normally provide mechanisms to assist tasks to provide mutually exclusive access to a resource). The code which requires this mutually exclusive access is termed a critical section (CS).
- The most common mechanism for this purpose is called the semaphore, where a semaphore variable s_i is used to control access to an associated CS_i.

Scheduling concepts Critical sections and Semaphores

Outline

- Assignment 1
- Introduction to Uppaal

2 Scheduling

- Scheduling concepts
- Critical sections and Semaphores

Scheduling algorithms

- RMS Rate Monotonic Scheduling
- Schedulability
- EDF Earliest Deadline First

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Scheduling concepts Critical sections and Semaphores

Critical section

A critical section is:

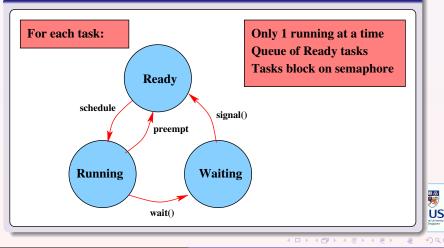
- A piece of code belonging to task executed under mutual exclusion constraints.
- Mutual exclusion is enforced by semaphores.
 - wait(s)
 - Blocked if s = 0.
 - signal(s)
 - s is set to 1 when signal(s) executes.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Scheduling concepts Critical sections and Semaphores

Critical sections

CS and blocking:


- A task waiting for an exclusive resource is blocked on that resource.
- Tasks blocked on the same resource are kept in a wait queue associated with the semaphore protecting the resource.
- A task in the running state executing wait(s) on a locked semaphore (s = 0) enters the waiting state.
- When a task currently using the resource executes signal(s), the semaphore is released.
- When a task leaves its waiting state (because the semaphore has been released) it goes into the ready state:

Scheduling concepts Critical sections and Semaphores

Semaphores and blocking

In an OS, tasks block when waiting for a resource:

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

The scheduling problem

The general scheduling problem is NP-complete:

There is a non-deterministic Turing Machine TM and a polynomial in one variable p(n) such that for each problem instance of size n, TM determines if there exists a schedule and if so outputs one in at most p(n) steps. Any non-deterministic polynomial time problem can be transformed in deterministic polynomial time to the general scheduling problem, and only exponential time deterministic algorithms are known.

Hence we must find imperfect but efficient solutions to scheduling problems. A great variety of algorithms exist, with various assumptions, and with different complexities.

A D F A B F A B F A B

10 75

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

Outline

Administration

- Assignment 1
- Introduction to Uppaal

2 Scheduling

- Scheduling concepts
- Critical sections and Semaphores

3 Scheduling algorithms

- RMS Rate Monotonic Scheduling
- Schedulability
- EDF Earliest Deadline First

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

Assumptions for RMS

In RMS:

- assume a set of tasks $\{\tau_1, \ldots, \tau_m\}$ with periods T_1, \ldots, T_m , $\phi_i = 0$ and $D_i = T_i$ for each task.
 - We allow preemption,
 - there is only a single processor, and
 - we have no precedence constraints.

(日) (四) (三) (三)

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

RMS

The RMS algorithm:

- Assign a static priority to the tasks according to their periods.
- Priority of a task does not change during execution.
- Tasks with shorter periods have higher priorities.
- Preemption policy:
 - If *T_i* is executing and *T_j* arrives which has higher priority (shorter period), then preempt *T_i* and start executing *T_j*.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

Assumptions RMS

From the Liu article:

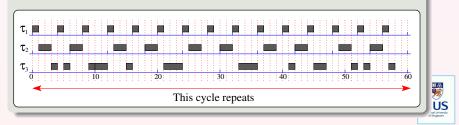
(A1) The requests for all tasks for which hard deadlines exist are periodic, with constant interval between requests.

(A2) Deadlines consist of run-ability constraints only - i.e. each task must be completed before the next request for it occurs.

(A3) The tasks are independent in that requests for a certain task do not depend on the initiation or the completion of requests for other tasks.

(A4) Run-time for each task is constant for that task and does not vary with time.

(A5) Any nonperiodic tasks in the system are special; they are initialization or failure-recovery routines; they displace periodic tasks while they themselves are being run, and do not themselves have hard, critical deadlines.


RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

Given this task set:

RMS

	$ au_1$	$ au_2$	$ au_3$
Ci	1	2	3
T _i	4	6	10

An RMS schedule is:

・ロト ・ 日 ・ ・ 日 ・ ・ 日

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

Properties of RMS:

- RMS is optimal (Given the previous constraints)
 - If a set of of periodic tasks (satisfying the assumptions set out previously) is not schedulable under RMS then no static priority algorithm can schedule this set of tasks.
- RMS requires very little run time processing.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

Outline

Administration

- Assignment 1
- Introduction to Uppaal

2 Scheduling

- Scheduling concepts
- Critical sections and Semaphores

3 Scheduling algorithms

- RMS Rate Monotonic Scheduling
- Schedulability
- EDF Earliest Deadline First

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

Schedulability terms

Definition of PUF, the Processor Utilization Factor:

The **processor utilization factor** U is the fraction of processor time spent in the task set:

 $\mathbf{U} = \sum_{i=1}^{m} \frac{C_i}{T_i}$

If this factor is *greater* than 1 then of course, the task set can not be scheduled. However if $U \leq 1$ then it is possible that it may be RMS-schedulable. If a particular set of tasks has a feasible RMS schedule, and any increase of the runtime of any task would render the particular set infeasible, then the processor is said to be fully utilized.

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

Schedulability terms

Example of PUF calculation:

	$ au_1$	τ_2	$ au_3$
Ci	1	2	3
T _i	4	6	10

the processor utilization factor is $U = \sum_{i=1}^{m} \frac{C_i}{T_i} = 0.833$.

() < </p>

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

Schedulability

The least upper bound of processor utilization:

The **least upper bound** U_{lub} is the minimum of the U over all sets of tasks that fully utilize the processor.

- If $U \leq U_{lub}$, then the set of tasks is guaranteed to be schedulable.
- Table gives a sufficient value for U_{lub} for different numbers of tasks for RMS ($U_{lub} = m(2^{\frac{1}{m}} 1)$), but note that it may be possible to schedule a task set even if the criterion fails.

m	1	2	3	4	5	6	∞	
U _{lub}	1.000	0.828	0.780	0.757	0.743	0.735	0.690	

ヘロト ヘヨト ヘヨト

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

Schedulability

Using our example:

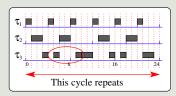
	$ au_1$	$ au_2$	$ au_3$
Ci	1	2	3
T _i	4	6	10

the processor utilization factor is $U = \sum_{i=1}^{m} \frac{C_i}{T_i} = 0.833$.

• The least upper bound for rate monotonic scheduling for 3 tasks is given in the table as $U_{lub} = 0.780$, and since $U_{lub} < U$, we cannot guarantee that this task set is schedulable..

) 🧱 NUS

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First


Schedulability

Another example:

	$ au_1$	$ au_2$	$ au_3$
Ci	1	2	3
T _i	4	6	8

the processor utilization factor is $U = \sum_{i=1}^{m} \frac{C_i}{T_i} = 0.95833$.

 With this set of tasks, we have that task τ₃ fails to complete within its period (8), task set is not schedulable using RMS.

10 75

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

Outline

Administration

- Assignment 1
- Introduction to Uppaal

2 Scheduling

- Scheduling concepts
- Critical sections and Semaphores

3 Scheduling algorithms

- RMS Rate Monotonic Scheduling
- Schedulability
- EDF Earliest Deadline First

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First

Earliest Deadline First

The policy:

- Tasks with earlier deadlines will have higher priorities.
- Applies to both periodic and aperiodic tasks.
- EDF is optimal for dynamic priority algorithms.
- A set of periodic tasks is schedulable with EDF iff the utilization factor is not greater than 1.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First


Earliest Deadline First

RMS fails:

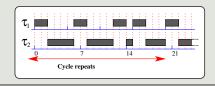
From $U = 0.4 + 0.57 = 0.97 \le 1$ we know that it is guaranteed to be schedulable under EDF, and might be schedulable under RMS.

It is not RMS schedulable:

Hugh Anderson

10 75

RMS - Rate Monotonic Scheduling Schedulability EDF Earliest Deadline First


Earliest Deadline First

EDF can guarantee deadlines in the system at higher loading:

From $\mathrm{U}=0.4+0.57=0.97\leq 1$ we know that it is guaranteed to be schedulable under EDF.

• EDF scheduling succeeds:

10 75