Verification of Real Time Systems - CS5270 5th lecture

Hugh Anderson

National University of Singapore School of Computing

February, 2007

1

Hugh Anderson Verification of Real Time Systems - CS5270 5th lecture

A warning...

Outline

Administration

- Assignment 1
- The road map...
- 2 State Transition Systems
 - State transition system overview
 - Parallel composition of TS
- 3 Timed transition systems
 - Timed transition systems overview
 - Parallel composition of TTS
 - Overview of reduction of TTS

Administration

Assignment 1 The road map...

State Transition Systems Timed transition systems

Assignment 1

Assignment number 1: Correction

• Hand in next week (Feb 15) - during lecture

Assignment 1 The road map...

The immediate road map

After completing scheduling, next 2/3 weeks have three topics:

- TS: State transition systems
 - some definitions
 - parallel composition
- TTS: Timed transition systems
 - o formal definition
 - parallel composition
 - Reduction of a TTS (which has possibly infinite states and actions) to a finite TS by quotienting? (takes time)
- Efficiency in TTS
 - Regions
 - zones

State transition system overview Parallel composition of TS

State transition systems and Automata

What is a state transition system?

- It is an abstract machine used in the study of computation.
- The machine consists of a set of states and transitions between states
- Differs from finite state automata in that state transition systems do not have *accepting* states, and also may have a set of states that is not necessarily finite, or even countable.
- i.e. TS + accepting_states=automata...

State transition system overview Parallel composition of TS

Definition seen before

A state transition system ...

A state transition system TS is a 4-tuple $(S, Act, \Longrightarrow, S_{in})$, where

- S is a set of states
- 2 Act is a set of actions
- ④ $S_{in} \subseteq S$ is the set of **initial states**

Note that *S* and Act are often *finite* sets, there is often only a single S_{in} state, and the transition relation is often *deterministic* (to be defined soon).

State transition system overview Parallel composition of TS

A state transition system

Temperature regulator example

State transition system overview Parallel composition of TS

State transition system

Formally ...

- **S** =
- Act =
- $\circ \Rightarrow =$
- $S_{in} =$

State transition system overview Parallel composition of TS

Temperature regulator

Controls the heater and air-con unit

The states have been labelled in diagram and we can use the labels to identify valid and invalid traces:

TRACE: S_4 on-heat S_5 ok S_6 off-heat S_0 ... NON-TRACE: S_5 off-heat S_6 off-heat S_0 ...

In this system the transition relation is deterministic, i.e. if $s_1 \stackrel{a}{\Longrightarrow} s_2$ and $s_1 \stackrel{a}{\Longrightarrow} s_3$ then $s_2 = s_3$. Non-determinism is useful for getting succinct specifications. When you abstract out elements of a program, this may give rise to non-determinism.

State transition system overview Parallel composition of TS

Deterministic system

Arrive at a road junction, toss a coin, turn left or right:

State transition system overview Parallel composition of TS

Non-deterministic system

Less states, is non-deterministic, may still be sufficient

State transition system overview Parallel composition of TS

Definitions for state transition systems

Paths and computations

Path: A **path** is an allowable sequence of states.

Run: Path starting from initial state is termed a run.

In a transition system, $\theta = s_0 \ s_1 \ s_2 \ s_3 \ \dots \ s_n$ (written $s_0 \stackrel{*}{\Longrightarrow} s_n$) is a run, with a complete trace of

 $s_0 a_1 s_1 a_2 s_2 a_3 s_3 \ldots s_{n-1} a_n s_n$.

Computation: The sequence of actions $a_1 a_2 a_3 \ldots a_n$ is termed a **computation**.

Every run θ induces a computation σ , and given a specific run θ , the corresponding computation σ is not unique. However, if the system is deterministic, for every computation σ , there is a unique run θ .

State transition system overview Parallel composition of TS

Examples for definitions

Paths, runs, computations

Path: $S_1 S_2 S_3$ Run: $S_0 S_1 S_2 S_3$ Computation: C on-heat ok

State transition system overview Parallel composition of TS

System behaviours and properties

Behaviours and properties...

- The behavior of a transition system is:
 - Its set of runs.
 - Its set of computations.
- Does the behavior of TS have the desired property?
 - Does every computation (run) of the transition system have the desired property?
 - In no computation, C is immediately followed by On-Ac...

State transition system overview Parallel composition of TS

Construct a parallel composition

The basic idea...

Hugh Anderson

State transition system overview Parallel composition of TS

Parallel composition

How to construct the parallel composition of a finite set of TS

- Take cartesian product of states of each transition system $S_{Gate} \times S_{Train} \times S_{Controller}$, and
- derive any allowable transitions for each of these states, performing common actions together.
 - Example: start from the new starting state $(g_1 t_1 c_1)$ synthesized from the starting states $(g_1, t_1 \text{ and } c_1)$, and
 - construct all possible future states by taking any actions common to the transition systems.
 - This process continues, at each stage constructing any new future state(s), until we have exhausted all possible actions.

State transition system overview Parallel composition of TS

Parallel composition

Using the TGC system:

- For the ParallelTS system, the cartesian product of all the states gives 72 potential new states (a state space explosion), although only 9 of these are actually used.
- For example, the action available at $(g_1 t_1 c_1)$ is approach, common to both the Train and the Controller. When we take this action, the next state is $(g_1 t_2 c_2)$.

State transition system overview Parallel composition of TS

Parallel composition

The parallel composition may be difficult...

- $TTS = TS_1 \parallel TS_2 \parallel \ldots \parallel TS_n$: TS is presented implicitly!
- Fix a communication convention between the *TS*, and present *TS*₁,...,*TS*_n
- We wish to analyze **TS** and often implement **TS**.
- But constructing *TS* first explicitly is often hopeless.
 - if $|TS_i| = 10$, and n = 6 then what is the worst case |TS| = ???
- STATE SPACE EXPLOSION!!

Timed transition systems overview Parallel composition of TTS Overview of reduction of TTS

TTS overview

TTS=TS+ClockVars

- Timed transition systems are transition systems with *clock* variables which are used to record the passage of time.
- Clock variables operate like hardware timers, can be reset to 0 during a transition, and can be read.
- Transitions are *guarded* (or constrained) by the current values of the relevant clock variables, which evolve in real-time until reset to 0.
- To capture all this, transitions are annotated with 3 items: the action, a set of clocks to reset, and a guard predicate over the clock variables:

TTS overview

Timed transition systems overview Parallel composition of TTS Overview of reduction of TTS

Some examples...

- Turn OFF AC if the termperature is OK or if 5 time units have elapsed since turing it ON...
- Turn ON AC within 3 time units of receiving the HOT signal...

Timed transition systems overview Parallel composition of TTS Overview of reduction of TTS

Formal definition

A timed transition system TTS is...

- a 6-tuple $(S, S_{in}, Act, X, I, \rightarrow)$:
- S, $S_{in} \subseteq S$ and Act are as defined before
- X is a finite set of clock variables
- *I* : S → Φ(X) assigns a clock invariant to each state. The clock constraints are limited to constraints of the form

 $\Phi(X) = x \leq c \mid x \geq c \mid x < c \mid x > c \mid \phi_1 \land \phi_2$

where $\mathbf{c} \in \mathbb{Q}$.

• \rightarrow : $S \times Act \times 2^{X} \times \Phi(X) \times S$ is the **transition relation**, and 2^{X} is the set of subsets of *X* (the powerset of *X*)^{*a*}.

Timed transition systems overview Parallel composition of TTS Overview of reduction of TTS

Example TTS

A simple timed transition system...

Actions: Act = {add, data, ack.add, ack.data}, clocks:
X = {x, y}. When transition taken, clocks are reset to 0.

 $(s_0, \text{add}, \{x\}, \text{True}, s_1)$, $(s_3, \text{ack.data}, \emptyset, y \le 5, s_0)$: valid transitions.

Timed transition systems overview Parallel composition of TTS Overview of reduction of TTS

Invariants and guards are related

Stay in state as long as state invariant not violated.

If time points violate the invariant, and no output is enabled, we have a *time* deadlock. If more than one output transition is enabled, the choice between the transitions is made non-deterministically

On left we have a state invariant asserting that x should be less than or equal to 2 time units in this state. On right we have a different guard asserting that the transition is enabled if x is more than 2 time units.

Timed transition systems overview Parallel composition of TTS Overview of reduction of TTS

Zeno computations

Consider this TTS:

- Look at the computation $(b, \frac{1}{2})(a, \frac{1}{2})(b, \frac{3}{4})(a, \frac{3}{4})(b, \frac{15}{16})\dots$
- This could go on forever
- We must model our systems carefully.

Timed transition systems overview Parallel composition of TTS Overview of reduction of TTS

Parallel compositon of TTS

Use the following principles:

To compute:

- Do common actions together.
- Take union of all the clock variables.
- Take conjunction of all the guards (state invariants).

Timed transition systems overview Parallel composition of TTS Overview of reduction of TTS

Example parallel composition

Two TTS:

Timed transition systems overview Parallel composition of TTS Overview of reduction of TTS

Formally...

Formalized by using the following construction:

Given $TTS_1 = (S_1, S_{0,1}, Act_1, X_1, I_1, \rightarrow_1)$, $TTS_2 = (S_2, S_{0,2}, Act_2, X_2, I_2, \rightarrow_2)$ the product construction $TTS = TTS_1 || TTS_2 = (S, S_0, Act, X, I, \rightarrow)$ is:

$$S = S_1 \times S_2, S_0 = S_{0,1} \times S_{0,2}, Act = Act_1 \cup Act_2, X = X_1 \cup X_2$$

• $I(s_1, s_2) = I_1(s_1) \wedge I_2(s_2)$

- Finally, → is the least subset of S × Act × Φ(X) × 2^X × S (given (s₁, a, φ₁, Y₁, s'₁) ∈→1 and (s₂, b, φ₂, Y₂, s'₂) ∈→2) that satisfies:
 - Case 1: $a = b \in \operatorname{Act}_1 \cap \operatorname{Act}_2$ then $((s_1, s_2), a, \phi_1 \land \phi_2, Y_1 \cup Y_2, (s'_1, s'_2)) \in \rightarrow$
 - Case 2: *a* ∈ Act₁ − Act₂ then ((*s*₁, *t*), *a*, φ₁, *Y*₁, (*s*'₁, *t*)) ∈→ for every *t* ∈ *S*₂
 - Case 3: b ∈ Act₂ − Act₁ then ((t, s₂), b, φ₂, Y₂, (t, s'₂)) ∈→ for every t ∈ S₁

28

Timed transition systems overview Parallel composition of TTS Overview of reduction of TTS

Three steps...

The process...

