Verification of Real Time Systems - CS5270 6th lecture

Hugh Anderson

National University of Singapore School of Computing

February, 2007

(日) (四) (三) (三)

A warning...

Outline

1

Administration

- Mid-semester test!
- Assignment 2
- The road map...

Reduction of TTS

- Overview of reduction of TTS
- From TTS to TS
- From TS to TA

Reducing complexity Quotienting

< E

Outline

1

Administration

- Mid-semester test!
- Assignment 2
- The road map...

2 Reduction of TTS

- Overview of reduction of TTS
- From TTS to TS
- From TS to TA

Reducing complexity Quotienting

Image: A matrix

Outline

1

Administration

- Mid-semester test!
- Assignment 2
- The road map...

2 Reduction of TTS

- Overview of reduction of TTS
- From TTS to TS
- From TS to TA

Reducing complexity Quotienting

< 17 >

Mid-semester test! Assignment 2 The road map

Outline

(1)

Administration

- Mid-semester test!
- Assignment 2
- The road map...

2 Reduction of TTS

- Overview of reduction of TTS
- From TTS to TS
- From TS to TA

Reducing complexity Quotienting

(日)

Mid-semester test! Assignment 2

The mid semester test

During next timetabled class

- The mid semester test is on March 1, 2007
- During the lecture, in this room.
- 1 hour
- Similar to last year's test (handed out in class)

イロト イヨト イヨト イヨト

Mid-semester test! Assignment 2 The road map...

Outline

(1)

Administration

- Mid-semester test!
- Assignment 2
- The road map...

2 Reduction of TTS

- Overview of reduction of TTS
- From TTS to TS
- From TS to TA

Reducing complexity Quotienting

(日)

Mid-semester test! Assignment 2 The road map...

Assignment 2

Assignment number 2:

Not ready yet - will try to put up over the weekend

Mid-semester test! Assignment 2 The road map...

Outline

(1)

Administration

- Mid-semester test!
- Assignment 2
- The road map...

2 Reduction of TTS

- Overview of reduction of TTS
- From TTS to TS
- From TS to TA

Reducing complexity Quotienting

(日)

Mid-semester test! Assignment 2 The road map...

The immediate road map

After completing scheduling, next 2/3 weeks have three topics:

- TS: State transition systems
 - some definitions
 - parallel composition
- TTS: Timed transition systems
 - formal definition
 - parallel composition
 - Reduction of a TTS (which has possibly infinite states and actions) to a finite TS by quotienting? (takes time)
- Efficiency in TTS
 - Regions
 - zones

US

Overview of reduction of TTS From TTS to TS From TS to TA

Outline

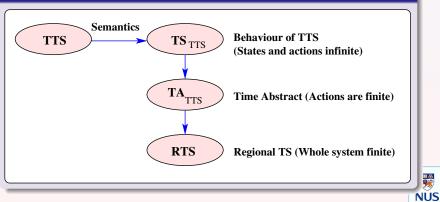
Administration

- Mid-semester test!
- Assignment 2
- The road map...

2 Reduction of TTS

- Overview of reduction of TTS
- From TTS to TS
- From TS to TA

Reducing complexity Quotienting



<ロ> < 回 > < 回 > < 回 > < 回

Overview of reduction of TTS From TTS to TS From TS to TA

The process...

Three steps...

Overview of reduction of TTS From TTS to TS From TS to TA

Outline

Administration

- Mid-semester test!
- Assignment 2
- The road map...

2 Reduction of TTS

- Overview of reduction of TTS
- From TTS to TS
- From TS to TA

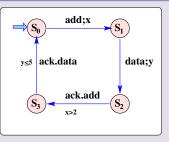
Reducing complexity Quotienting

(日)

Overview of reduction of TTS From TTS to TS From TS to TA

From TTS to TS_{TTS}

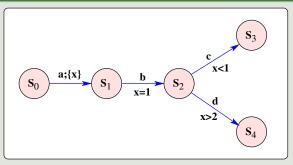
The reduction steps...


- TTS = $(S, S_{in}, Act, X, I, \rightarrow)$
- $TS_{TTS} = (S, S_0, Act \cup \mathbb{R}, \Longrightarrow)$

Overview of reduction of TTS From TTS to TS From TS to TA

Representing a TTS with TS

Behaviour of TTS linked with time


- The transition system TS_{TTS} works on (possibly infinite) sets of states S of the form S × V, where V is a valuation (the current values of each clock variable).
- In the figure, $(s_1, (2, 5))$ is an example of a state in S.

Overview of reduction of TTS From TTS to TS From TS to TA

Example of states/behaviours

Consider this TTS:

- $(S_1, 0) (S_2, 1.8) (S_4, \pi)$ are timed-states (t-states).
- (S₃, 5) is a t-state but not reachable.

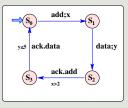
<ロ > < 部 > < き > < き >

Overview of reduction of TTS From TTS to TS From TS to TA

Representing a TTS with TS

Behaviour of TTS linked with time

Given a timed transition system
 TTS = (S, S_{in}, Act, X, I, →), we can derive the associated transition system TS_{TTS} = (S, S₀, Act ∪ ℝ, ⇒) where


- S is a (possibly infinite) set of pairs $S \times V$,
- S_0 is $S_0 \times \{V_0\}$,
- V are the valuations of the clock variables (V : X → ℝ), and finally
- $\Longrightarrow \subseteq \mathcal{S} \times (\operatorname{Act} \cup \mathbb{R}) \times \mathcal{S}.$

Overview of reduction of TTS From TTS to TS From TS to TA

Example of states/behaviours

Consider this TTS:

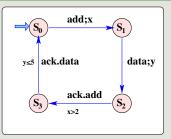
• $(S_1, (2, 5))$ is a state: (S_1, V) : $V(x) = 2 \land V(y) = 5$ • $(S_2, (15, 0))$ is a state. (S_1, V') : $V'(x) = 15 \land V(y) = 0$ A possible trace is $(S_0, (0, 0)) 1.6 (S_0, (1.6, 1.6)) add (S_1, (0, 1.6)) 2 (S_1, (2, 3.6))...$

Overview of reduction of TTS From TTS to TS From TS to TA

Types of transitions

We have two types of transitions:

- **1** Time passing move: $(s, V) \stackrel{\delta}{\Longrightarrow} (s, V + \delta)$, with $\delta \ge 0$
- **2** Action move: $(s, V) \stackrel{a}{\Longrightarrow} (s', V')$

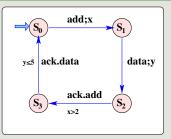

Two consecutive time passing moves can be amalgamated into one time passing move.

For example $(s_0, (0, 0)) 0.6 (s_0, (0.6, 0.6)) 0.6 (s_0, (1.2, 1.2))$ can be amalgamated into $(s_0, (0, 0)) 1.2 (s_0, (1.2, 1.2))$.

Overview of reduction of TTS From TTS to TS From TS to TA

Time-passing move

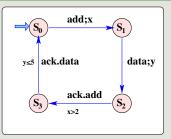
Example 1 - Consider this TTS:


• Is this a time passing move? $(S_1, (0,5)) \stackrel{1}{\Longrightarrow} (S_1, (1,6))$

Overview of reduction of TTS From TTS to TS From TS to TA

Time-passing move

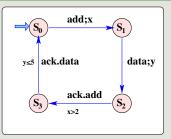
Example 2 - Consider this TTS:


• Is this a time passing move? $(S_1, (0,5)) \stackrel{0}{\Longrightarrow} (S_1, (0,5))$

Overview of reduction of TTS From TTS to TS From TS to TA

Time-passing move

Example 3 - Consider this TTS:


• Is this a time passing move? $(S_1, (0,5)) \stackrel{2}{\Longrightarrow} (S_1, (2,7.7))$

Overview of reduction of TTS From TTS to TS From TS to TA

Action move

Example 1 - Consider this TTS:

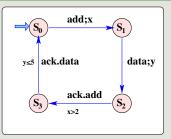
• Is this a possible transition? $(S_0, (3, 3)) \stackrel{\text{add}}{\Longrightarrow} (S_1, (0, 3))$

Overview of reduction of TTS From TTS to TS From TS to TA

Action move

Example 2 - Consider this TTS: add;x (S ack.data data;y v≤5 ack.add S3 S_2 x>2 • Is this a possible transition? $(S_0, (3,3)) \stackrel{\text{add}}{\Longrightarrow} (S_3, (0,3))$

Overview of reduction of TTS From TTS to TS From TS to TA

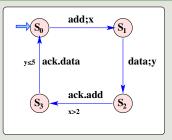

Action move

Example 3 - Consider this TTS: add;x (S ack.data data;y v≤5 ack.add S3 S_2 x>2 • Is this a possible transition? $(S_0, (3, 3)) \stackrel{\text{add}}{\Longrightarrow} (S_1, (0, 4))$

Overview of reduction of TTS From TTS to TS From TS to TA

Action move

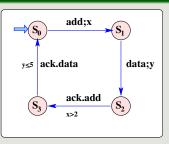
Example 4 - Consider this TTS:


• Is this a possible transition? $(S_0, (0, 0)) \stackrel{\text{add}}{\Longrightarrow} (S_1, (0, 0))$

Overview of reduction of TTS From TTS to TS From TS to TA

Action move

Example 5 - Consider this TTS:



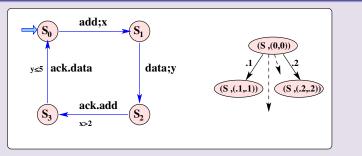
• Is thispossible? $(S_0, (0, 0)) \stackrel{add}{\Longrightarrow} (S_1, (0, 0) \stackrel{add}{\Longrightarrow} (S_2, (0, 0))$

Overview of reduction of TTS From TTS to TS From TS to TA

Action move

Example 6 - Consider this TTS:

• Is this a possible transition? $(S_2, (3, 2)) \stackrel{\text{ack.add}}{\Longrightarrow} (S_3, (3, 2))$ • Is this a possible transition? $(S_3, (5,5)) \stackrel{ack.data}{\Longrightarrow} (S_0, (5,5))$


・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

US

Overview of reduction of TTS From TTS to TS From TS to TA

TS is infinite!

Consider the number of states and transitions in the TS

• TS_{TTS} will have (uncountably) infinite number of states and transitions.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Overview of reduction of TTS From TTS to TS From TS to TA

The behaviour of the TTS

Defined in terms of TS:

 $\begin{array}{l} \mathrm{TS}_{\mathrm{TTS}} = (\mathcal{S}, \mathcal{S}_0, \mathrm{Act} \cup \mathbb{R}, \Longrightarrow) \text{ represents the behaviour of} \\ \mathrm{TTS} = (\mathcal{S}, \mathcal{S}_{\mathrm{in}}, \mathrm{Act}, \mathcal{X}, \mathcal{I}, \rightarrow) \text{ in terms of the reachability of states,} \\ \mathrm{for} \ (s, \mathcal{V}) \stackrel{\delta}{\Longrightarrow} (s, \mathcal{V} + \delta) \text{ and } (s, \mathcal{V}) \stackrel{a}{\Longrightarrow} (s', \mathcal{V}') \text{ transitions,} \\ \mathrm{provided} \end{array}$

$$S \xrightarrow{a;y}{g} S$$

such that the following conditions are true:

$$V'(x) = \begin{cases} 0 & \text{if } x \in X \\ V(x) & \text{otherwise} \end{cases}$$

V satisfies g, the guard for the transition

諤 US

Overview of reduction of TTS From TTS to TS From TS to TA

The behaviour of the TTS

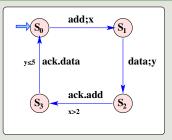
Runs and computations

In the transition system $\ensuremath{\text{TS}_{\text{TTS}}}$ we can record runs as for transition systems:

$$(s_0, V_0) \stackrel{\delta_0}{\Longrightarrow} (s_0, V_0') \stackrel{a}{\Longrightarrow} (s_1, V_1) \stackrel{\delta_1}{\Longrightarrow} (s_1, V_1') \stackrel{a_1}{\Longrightarrow} (s_2, V_2)$$

and $s \in S$ is reachable if and only if there is a computation $(s_0, V_0) \stackrel{*}{\Longrightarrow} (s_n, V_n)$ in TS_{TTS} such that $s_n = s$.

Definition: $s \in S$ is reachable in a TTS if and only if there exists an $(s, V) \in S$ such that (s, V) is reachable in TS_{TTS}.

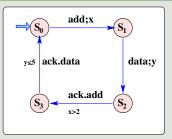

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

) 🛒 NUS

Overview of reduction of TTS From TTS to TS From TS to TA

Timed computation

Example 1 - Consider this TTS:

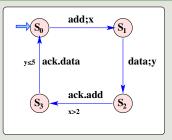

• Is this a timed computation? (add, 1) (data, 10) (ack.add, 3)

Overview of reduction of TTS From TTS to TS From TS to TA

Timed computation

Example 2 - Consider this TTS:

• Is this a timed computation? (add, 1) (ack.add, 3) (data, 10)


< □ > < □ > < □ > < □ > < □ >

) 🥰 NUS

Overview of reduction of TTS From TTS to TS From TS to TA

Timed computation

Example 3 - Consider this TTS:

• Is this a timed computation? (add, 1) (data, 1) (ack.add, 10)

Overview of reduction of TTS From TTS to TS From TS to TA

Outline

Administration

- Mid-semester test!
- Assignment 2
- The road map...

2 Reduction of TTS

- Overview of reduction of TTS
- From TTS to TS
- From TS to TA

Reducing complexity Quotienting

(日)

Overview of reduction of TTS From TTS to TS From TS to TA

From TTS to TS_{TTS} to TA_{TTS}

The reduction steps...

- TTS = $(S, S_{in}, Act, X, I, \rightarrow)$
- $TS_{TTS} = (S, S_0, Act \cup \mathbb{R}, \Longrightarrow)$
- $TA_{TTS} = (S, S_0, Act, \rightsquigarrow)$

Overview of reduction of TTS From TTS to TS From TS to TA

From TS_{TTS} to TA_{TTS}

The next reduction...

- The behaviour of TTS can be represented by the transition system TS_{TTS}.
- Next step is to look at the reduction from TS_{TTS} to the time-abstract transition system TA_{TTS}, which has only action moves, and not time-passing moves.

We can derive a time-abstract transition system $TA_{TTS} = (S, S_0, Act, \rightsquigarrow)$ from $TS_{TTS} = (S, S_0, Act \cup \mathbb{R}, \Longrightarrow)$ where $(s, V) \stackrel{a}{\rightarrow} (s', V')$ if and only if there exists a $\delta \in \mathbb{R}$ such that $(s, V) \stackrel{\delta}{\rightarrow} (s, V + \delta) \stackrel{a}{\Longrightarrow} (s', V')$.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

) 🛒 NUS

Quotienting

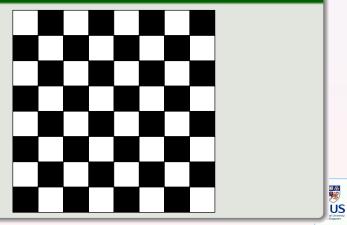
Outline

Administration

- Mid-semester test!
- Assignment 2
- The road map...

2 Reduction of TTS

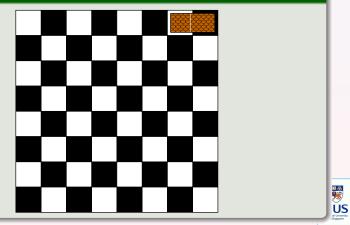
- Overview of reduction of TTS
- From TTS to TS
- From TS to TA


Reducing complexityQuotienting

Quotienting

A little deviation

Tiling a chessboard...

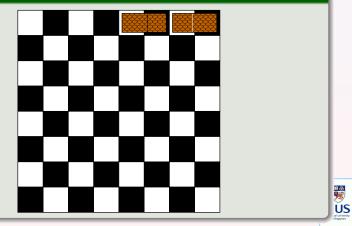


Hugh Anderson Verification of Real Time Systems - CS5270 6th lecture 31

Quotienting

A little deviation

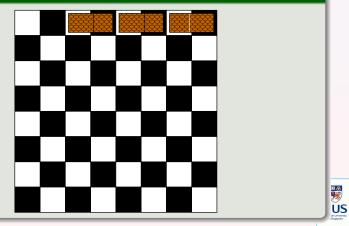
Tiling a chessboard...



Hugh Anderson Verification of Real Time Systems - CS5270 6th lecture 32

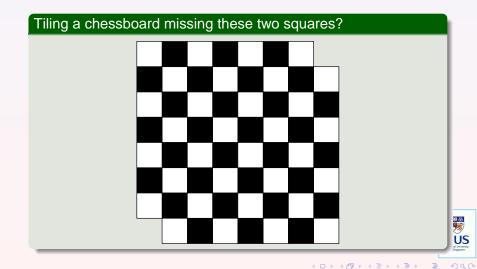
Quotienting

A little deviation


Tiling a chessboard...

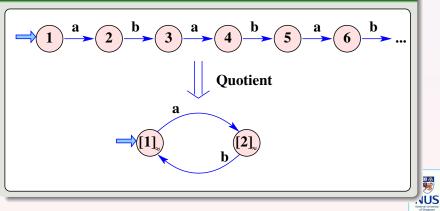
Quotienting

A little deviation


Tiling a chessboard...

Hugh Anderson Verification of Real Time Systems - CS5270 6th lecture 34

Quotienting


A little deviation

Quotienting

Quotienting

Infinite into finite...

イロト イヨト イヨト イヨト

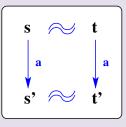
Quotienting

Quotienting

Stable equivalence relations...

Quotienting, (or partitioning by an equivalence relation^a) is commonly used to group together objects that are similar in some sense, and hence reduce the complexity of systems. In our domain, we can use quotienting to quotient a big (infinite) transition system into a small (finite) one.

Definition: Given a transition system $TS = (S, S_0, Act, \Longrightarrow)$, with $\approx \subseteq S \times S$ an equivalence relation, then \approx is a **stable equivalence relation** (a bisimulation) if and only if $s \approx t$ and $s \xrightarrow{a} s'$ implies that there exists t' such that $t \xrightarrow{a} t'$ and $s' \approx t'$


^aAn equivalence relation on a set X is a binary relation on X that is reflexive, symmetric and transitive.

🌹 US

Quotienting

Quotienting

Stable equivalence relations

- A category theory diagram shows this construction.
- Since we wish to quotient infinite transition systems into finite ones, we are interested in stable equivalence relations that are finite in some sense.

Quotienting

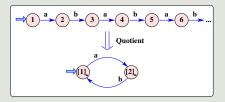
Quotienting

Finite stable equivalence relations

Definition: Given $TS = (S, S_0, Act, \Longrightarrow)$, with \approx a stable equivalence relation, $[s]_{\approx}$ the equivalence class containing $s \in S$ (i.e. $\{s' \mid s \approx s'\}$), then \approx is a **stable equivalence** relation of finite index iff $\{[s]_{\approx} \mid s \in S\}$ is a finite set.

Given $TS = (S, S_0, Act, \Longrightarrow)$, with \approx a stable equivalence relation of finite index, then a new quotiented transition system is $QTS_{\approx} = (QS, QS_0, Act, \Longrightarrow)$. In this quotiented transition system, $QS = \{[s]_{\approx} \mid s \in S\}$ and $QS_0 = \{[s_0]_{\approx} \mid s_0 \in S_0\}$, and we construct $[s]_{\approx} \stackrel{a}{\Longrightarrow} [s']_{\approx}$ if and only if there exists $s_1 \in [s]_{\approx}$ and $s'_1 \in [s']_{\approx}$ such that $s_1 \stackrel{a}{\Longrightarrow} s'_1$ in the transition system TS.

A D N A D N A D N A D


3

US

Quotienting

Quotienting

Infinite into finite

A suitable stable equivalence relation of finite index is *odd* and *even*. $i \approx j$ iff both *i* and *j* are odd, or if both *i* and *j* are even:

$$\{1, 3, 5, \ldots\} = [1]_{\approx} \qquad (= [3]_{\approx} = [5]_{\approx} = [7]_{\approx} \ldots) \\ \{2, 4, 6, \ldots\} = [2]_{\approx} \qquad (= [4]_{\approx} = [6]_{\approx} = [6]_{\approx} \ldots)$$

🌹 US