Verification of Real Time Systems - CS5270 6th lecture

Hugh Anderson

National University of Singapore School of Computing

February, 2007

A warning...

Outline

- Administration
 - Mid-semester test!
 - Assignment 2
 - The road map...
- 2 Reduction of TTS
 - Overview of reduction of TTS
 - From TTS to TS
 - From TS to TA
- 3 Reducing complexity
 - Quotienting

The mid semester test

During next timetabled class

- The mid semester test is on March 1, 2007
- During the lecture, in this room.
- 1 hour
- Similar to last year's test (handed out in class)

Assignment 2

Assignment number 2:

Not ready yet - will try to put up over the weekend

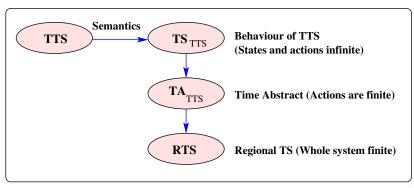
The immediate road map

After completing scheduling, next 2/3 weeks have three topics:

- TS: State transition systems
 - some definitions
 - parallel composition
- TTS: Timed transition systems
 - formal definition
 - parallel composition
 - Reduction of a TTS (which has possibly infinite states and actions) to a finite TS by quotienting? (takes time)
- Efficiency in TTS
 - Regions
 - zones

The process...

Three steps...



From TTS to TS_{TTS}

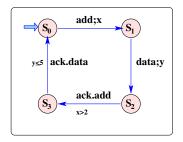
The reduction steps...

• TTS =
$$(S, S_{in}, Act, X, I, \rightarrow)$$

$$\quad \bullet \ TS_{TTS} = (\mathcal{S}, \mathcal{S}_0, Act \cup \mathbb{R}, \Longrightarrow)$$

Representing a TTS with TS

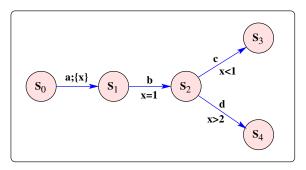
Behaviour of TTS linked with time



- The transition system TS_{TTS} works on (possibly infinite) sets of states S of the form $S \times V$, where V is a *valuation* (the current values of each clock variable).
- In the figure, $(s_1, (2, 5))$ is an example of a state in S.

Example of states/behaviours

Consider this TTS:



- $(S_1, 0) (S_2, 1.8) (S_4, \pi)$ are timed-states (t-states).
- \circ (S_3 , 5) is a t-state but not reachable.

Representing a TTS with TS

Behaviour of TTS linked with time

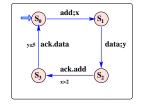
Given a timed transition system

```
TTS = (S, S_{in}, Act, X, I, \rightarrow), we can derive the associated transition system TS_{TTS} = (S, S_0, Act \cup \mathbb{R}, \Longrightarrow) where
```

- S is a (possibly infinite) set of pairs $S \times V$,
- S_0 is $S_0 \times \{V_0\}$,
- V are the valuations of the clock variables ($V: X \to \mathbb{R}$), and finally
- $\bullet \implies \subseteq \mathcal{S} \times (\operatorname{Act} \cup \mathbb{R}) \times \mathcal{S}.$

Example of states/behaviours

Consider this TTS:



- \circ $(S_1,(2,5))$ is a state: $(S_1,V):V(x)=2 \land V(y)=5$
- $(S_2, (15, 0))$ is a state. $(S_1, V') : V'(x) = 15 \land V(y) = 0$

A possible trace is

$$(S_0,(0,0))\, 1.6\, (S_0,(1.6,1.6))\, \text{add}\, (S_1,(0,1.6))\, 2\, (S_1,(2,3.6))...$$

Types of transitions

We have two types of transitions:

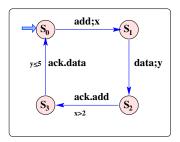
- ① Time passing move: $(s, V) \stackrel{\delta}{\Longrightarrow} (s, V + \delta)$, with $\delta \geq 0$
- 2 Action move: $(s, V) \stackrel{a}{\Longrightarrow} (s', V')$

Two consecutive time passing moves can be amalgamated into one time passing move.

For example $(s_0, (0,0))$ 0.6 $(s_0, (0.6,0.6))$ 0.6 $(s_0, (1.2,1.2))$ can be amalgamated into $(s_0, (0,0))$ 1.2 $(s_0, (1.2,1.2))$.

Time-passing move

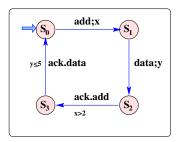
Example 1 - Consider this TTS:



• Is this a time passing move? $(S_1, (0,5)) \stackrel{1}{\Longrightarrow} (S_1, (1,6))$

Time-passing move

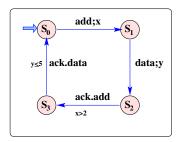
Example 2 - Consider this TTS:



• Is this a time passing move? $(S_1, (0,5)) \stackrel{0}{\Longrightarrow} (S_1, (0,5))$

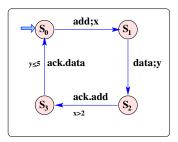
Time-passing move

Example 3 - Consider this TTS:



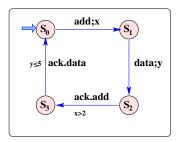
Is this a time passing move? $(S_1, (0,5)) \stackrel{2}{\Longrightarrow} (S_1, (2,7.7))$

Example 1 - Consider this TTS:



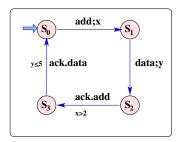
• Is this a possible transition? $(S_0, (3,3)) \stackrel{\text{add}}{\Longrightarrow} (S_1, (0,3))$

Example 2 - Consider this TTS:



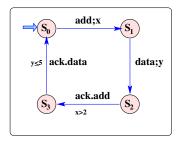
• Is this a possible transition? $(S_0, (3,3)) \stackrel{\text{add}}{\Longrightarrow} (S_3, (0,3))$

Example 3 - Consider this TTS:



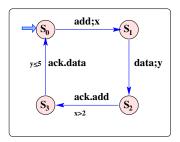
• Is this a possible transition? $(S_0, (3,3)) \stackrel{\text{add}}{\Longrightarrow} (S_1, (0,4))$

Example 4 - Consider this TTS:



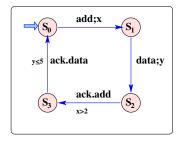
• Is this a possible transition? $(S_0, (0,0)) \stackrel{\text{add}}{\Longrightarrow} (S_1, (0,0))$

Example 5 - Consider this TTS:



• Is thispossible? $(S_0, (0,0)) \stackrel{\text{add}}{\Longrightarrow} (S_1, (0,0) \stackrel{\text{add}}{\Longrightarrow} (S_2, (0,0))$

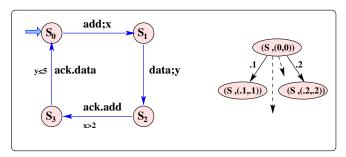
Example 6 - Consider this TTS:



- Is this a possible transition? $(S_2, (3,2)) \stackrel{\text{ack.add}}{\Longrightarrow} (S_3, (3,2))$
- Is this a possible transition? $(S_3, (5,5)) \stackrel{\text{ack.data}}{\Longrightarrow} (S_0, (5,5))$

TS is infinite!

Consider the number of states and transitions in the TS



 TS_{TTS} will have (uncountably) infinite number of states and transitions.

The behaviour of the TTS

Defined in terms of TS:

 $TS_{TTS} = (S, S_0, Act \cup \mathbb{R}, \Longrightarrow)$ represents the behaviour of $TTS = (S, S_{in}, Act, X, I, \Longrightarrow)$ in terms of the reachability of states, for $(s, V) \stackrel{\delta}{\Longrightarrow} (s, V + \delta)$ and $(s, V) \stackrel{a}{\Longrightarrow} (s', V')$ transitions, provided

$$s \xrightarrow{a;y} s'$$

such that the following conditions are true:

$$V'(x) = \begin{cases} 0 & \text{if } x \in X \\ V(x) & \text{otherwise} \end{cases}$$
V satisfies *g*, the guard for the transition.

The behaviour of the TTS

Runs and computations

In the transition system ${TS}_{TTS}$ we can record runs as for transition systems:

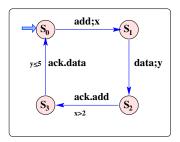
$$(s_0, V_0) \stackrel{\delta_0}{\Longrightarrow} (s_0, V_0') \stackrel{a}{\Longrightarrow} (s_1, V_1) \stackrel{\delta_1}{\Longrightarrow} (s_1, V_1') \stackrel{a_1}{\Longrightarrow} (s_2, V_2)$$

and $s \in S$ is reachable if and only if there is a computation $(s_0, V_0) \stackrel{*}{\Longrightarrow} (s_n, V_n)$ in TS_{TTS} such that $s_n = s$.

Definition: $s \in S$ is reachable in a TTS if and only if there exists an $(s, V) \in S$ such that (s, V) is reachable in TS_{TTS}.

Timed computation

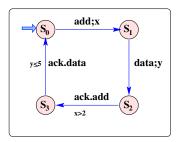
Example 1 - Consider this TTS:



Is this a timed computation? (add, 1) (data, 10) (ack.add, 3)

Timed computation

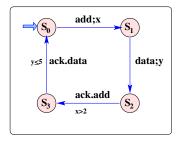
Example 2 - Consider this TTS:



Is this a timed computation? (add, 1) (ack.add, 3) (data, 10)

Timed computation

Example 3 - Consider this TTS:



Is this a timed computation? (add, 1) (data, 1) (ack.add, 10)

From TTS to TS_{TTS} to TA_{TTS}

The reduction steps...

• TTS =
$$(S, S_{in}, Act, X, I, \rightarrow)$$

$$\bullet \ \mathsf{TS}_{\mathsf{TTS}} = (\mathcal{S}, \mathcal{S}_0, \mathsf{Act} \cup \mathbb{R}, \Longrightarrow)$$

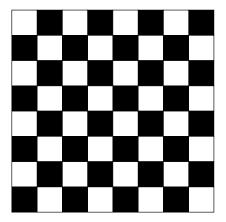
$$TA_{TTS} = (\mathcal{S}, \mathcal{S}_0, Act, \leadsto)$$

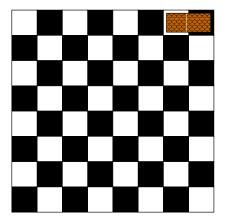
From TS_{TTS} to TA_{TTS}

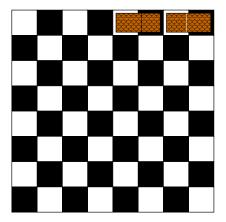
The next reduction...

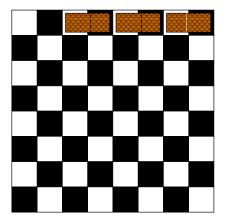
- The behaviour of TTS can be represented by the transition system TS_{TTS}.
- Next step is to look at the reduction from TS_{TTS} to the time-abstract transition system TA_{TTS}, which has only action moves, and not time-passing moves.

We can derive a time-abstract transition system $\begin{array}{l} TA_{TTS} = (\mathcal{S}, \mathcal{S}_0, Act, \leadsto) \text{ from } TS_{TTS} = (\mathcal{S}, \mathcal{S}_0, Act \cup \mathbb{R}, \Longrightarrow) \\ \text{where } (s, \textit{V}) \overset{\textit{a}}{\leadsto} (s', \textit{V}') \text{ if and only if there exists a } \delta \in \mathbb{R} \text{ such that } (s, \textit{V}) \overset{\textit{b}}{\Longrightarrow} (s, \textit{V} + \delta) \overset{\textit{a}}{\Longrightarrow} (s', \textit{V}'). \end{array}$

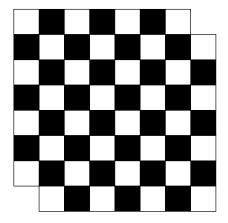




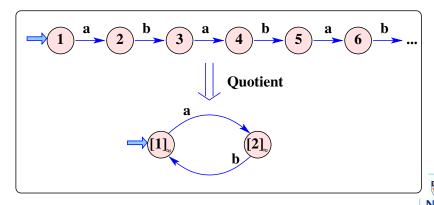




Tiling a chessboard missing these two squares?



Infinite into finite...



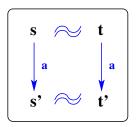
Stable equivalence relations...

Quotienting, (or partitioning by an equivalence relation^a) is commonly used to group together objects that are similar in some sense, and hence reduce the complexity of systems. In our domain, we can use quotienting to quotient a big (infinite) transition system into a small (finite) one.

Definition: Given a transition system $TS = (S, S_0, Act, \Longrightarrow)$, with $\approx \subseteq S \times S$ an equivalence relation, then \approx is a **stable equivalence relation** (a bisimulation) if and only if $s \approx t$ and $s \stackrel{a}{\Longrightarrow} s'$ implies that there exists t' such that $t \stackrel{a}{\Longrightarrow} t'$ and $s' \approx t'$

 $^{^{}a}$ An equivalence relation on a set X is a binary relation on X that is reflexive, symmetric and transitive.

Stable equivalence relations



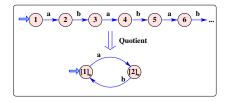
- A category theory diagram shows this construction.
- Since we wish to quotient infinite transition systems into finite ones, we are interested in stable equivalence relations that are finite in some sense.

Finite stable equivalence relations

Definition: Given $TS = (S, S_0, Act, \Longrightarrow)$, with \approx a stable equivalence relation, $[s]_{\approx}$ the equivalence class containing $s \in S$ (i.e. $\{s' \mid s \approx s'\}$), then \approx is a **stable equivalence** relation of finite index iff $\{[s]_{\approx} \mid s \in S\}$ is a finite set.

Given $TS = (S, S_0, Act, \Longrightarrow)$, with \approx a stable equivalence relation of finite index, then a new quotiented transition system is $QTS_{\approx} = (QS, QS_0, Act, \Longrightarrow)$. In this quotiented transition system, $QS = \{[s]_{\approx} \mid s \in S\}$ and $QS_0 = \{[s_0]_{\approx} \mid s_0 \in S_0\}$, and we construct $[s]_{\approx} \stackrel{a}{\Longrightarrow} [s']_{\approx}$ if and only if there exists $s_1 \in [s]_{\approx}$ and $s'_1 \in [s']_{\approx}$ such that $s_1 \stackrel{a}{\Longrightarrow} s'_1$ in the transition system TS.

Infinite into finite



A suitable stable equivalence relation of finite index is *odd* and *even*. $i \approx j$ iff both i and j are odd, or if both i and j are even:

$$\{1,3,5,\ldots\} = [1]_{\approx} \quad (=[3]_{\approx}=[5]_{\approx}=[7]_{\approx}\ldots)$$

$$\{2,4,6,\ldots\} = [2]_{\approx} (=[4]_{\approx} = [6]_{\approx} = [6]_{\approx}\ldots)$$

