Verification of Real Time Systems - CS5270 7th lecture

Hugh Anderson

National University of Singapore School of Computing

March, 2007

(日) (四) (三) (三)

A warning...

Outline

- The road map...
- Reducing complexity
 Quotienting
- Quotiented systems...Regional equivalence

< E

Outline

- Assignment 2
- The road map...
- Reducing complexityQuotienting
- Quotiented systems...Regional equivalence

ъ

Outline

- Assignment 2
- The road map...
- Reducing complexityQuotienting
- Quotiented systems...Regional equivalence

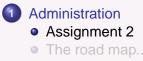
< 口 > < 戶

Administration Reducing complexity

Quotiented systems...

Assignment 2 The road map..

Outline



- Reducing complexityQuotienting
- Quotiented systems...Regional equivalence

(日)

Assignment 2 The road map...

Assignment 2

Assignment number 2:

- On the web site
- Due on 22nd March

< □ > < □ > < □ > < □ > < □ >

Assignment 2 The road map...

Outline

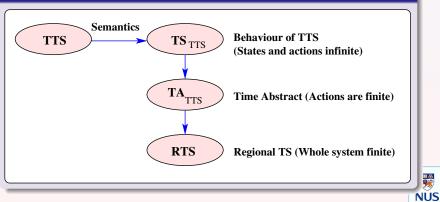
- Reducing complexityQuotienting
- Quotiented systems...Regional equivalence

(日)

Assignment 2 The road map...

The process...

Three steps...



・ロト ・四ト ・ヨト ・ヨト

Assignment 2 The road map...

The immediate road map

The topics:

- TTS: Timed transition systems
 - formal definition
 - parallel composition
 - Reduction of a TTS (which has possibly infinite states and actions) to TA_{TTS} (which has infinite states and finite actions)TTS $\rightarrow TS_{TTS} \rightarrow TA_{TTS}$
 - Reduction of a TA_{TTS} to a finite RTS by quotienting? $TA_{TTS} \rightarrow RTS$
- Efficiency in TTS
 - Regions
 - zones

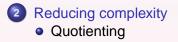
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

US

Quotienting

Outline

- Assignment 2
- The road map...



Quotiented systems...Regional equivalence

< E

Quotienting

From TTS to TS_{TTS} to TA_{TTS} to quotiented TS

The reduction steps...

- TTS = $(S, S_{in}, Act, X, I, \rightarrow)$
- $TS_{TTS} = (S, S_0, Act \cup \mathbb{R}, \Longrightarrow)$
- $TA_{TTS} = (S, S_0, Act, \rightsquigarrow)$

•
$$QTS_{TTS} = (QS, QS_0, Act, \longrightarrow)$$

Note that RTS and ZTS are examples of QTS.

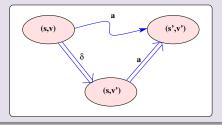
イロト イポト イヨト イヨト

Quotienting

Time abstract system

The view:

We derive a time-abstract transition system $TA_{TTS} = (S, S_0, Act, \rightsquigarrow) \text{ from } TS_{TTS} = (S, S_0, Act \cup \mathbb{R}, \Longrightarrow)$ where $(s, V) \stackrel{a}{\Rightarrow} (s', V')$ if and only if there exists a $\delta \in \mathbb{R}$ such that $(s, V) \stackrel{\delta}{\Longrightarrow} (s, V + \delta) \stackrel{a}{\Longrightarrow} (s', V')$



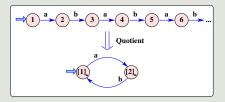
(日) (圖) (E) (E)

🌹 US

Quotienting

Quotienting to reduce TA to QTS

Infinite into finite



A suitable stable equivalence relation of finite index is *odd* and *even*. $i \approx j$ iff both *i* and *j* are odd, or if both *i* and *j* are even:

$$\{1, 3, 5, \ldots\} = [1]_{\approx} \qquad (= [3]_{\approx} = [5]_{\approx} = [7]_{\approx} \ldots) \\ \{2, 4, 6, \ldots\} = [2]_{\approx} \qquad (= [4]_{\approx} = [6]_{\approx} = [6]_{\approx} \ldots)$$

🌹 US

Quotienting

Stable equivalence relation of finite index

Or ... a finite index bisimulation ...

- Given $TA_{TTS} = (S, S_0, Act, \rightsquigarrow)$, with $\approx \subseteq S \times S$ then
 - $s \approx s$ for every $s \in S$ (i.e. \approx is *reflexive*)
 - $s \approx s'$ implies $s' \approx s$ (i.e. \approx is symmetric)
 - $s \approx s'$ and $s' \approx s''$ implies $s \approx s''$ (i.e. \approx is *transitive*)
- $s \approx t$ and $s \stackrel{a}{\rightsquigarrow} s'$ implies that there exists t' such that $t \stackrel{a}{\rightsquigarrow} t'$ and $s' \approx t'$.
- $s \approx t$ and $t \stackrel{a}{\leadsto} t'$ implies that there exists s' such that $s \stackrel{a}{\leadsto} s'$ and $s' \approx t'$

🌹 US

Quotienting

Quotiented QTS_{TTS}

The construction:

- Given $TA_{TTS} = (S, S_0, Act, \rightsquigarrow)$
- Then given \approx a (finite) quotient of TA_{TTS}, we have $QTS_{TTS} = (QS, QS_0, Act, \longrightarrow)$
 - $QS = \{[s]_{\approx} \mid s \in S\}$
 - $QS_0 = \{[s]_{\approx} \mid s \in S_0\}$
 - $[s] \longrightarrow [s']$ if there exists $s_1 \in [s]$ and $s'_1 \in [s']$ such that $s_1 \rightsquigarrow s'_1$ in TA_{TTS}
- Everything is now finite!

Regional equivalence

Quotiented QTS_{TTS} ... RTS? ZTS?

Skipped over...

- We have defined the quotiented transition system, without examining the particular form of quotienting to use.
- There are various quotients we will examine
 - Regional equivalence
 - Zone eqivalence

イロト イヨト イヨト イヨト

Regional equivalence

Outline

- Assignment 2
- The road map...
- Reducing complexityQuotienting
- Quotiented systems...Regional equivalence

< 2 > < 2

Regional equivalence

First step - rationals to integers...

Remember the definition of clock constraints?

I : S → Φ(X) assigns a clock invariant to each state. The clock constraints are limited to constraints of the form

 $\Phi(X) = x \le c \mid x \ge c \mid x < c \mid x > c \mid \phi_1 \land \phi_2$

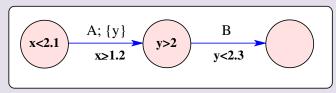
where $c \in \mathbb{Q}$

- There are only a finite number of rationals in any finite timed transition system.
- We can compute the least common multiple (LCM) k of all the denominators of all the (rational) constants in the original TTS, and then transform our system into a new one TTS' where every term like x ≤ c is changed to x ≤ k ⋅ c.

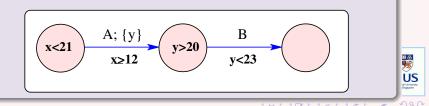
Regional equivalence

First step - rationals to integers...

Take the LCM of denominators of the time constants...



System TTS' has the same reachability properties...



Regional equivalence

$(s, V) \approx (s', V')$ based on regional equivalence

Assume we have this new TTS'...

- In this new transition system TTS', s is reachable if and only if it was reachable in the original TTS, and
- we have (s, V) ≈ (s', V') if and only if s = s' and
 V ≡_{REG} V' (V is regionally equivalent to V', or V belongs to the same region as V').

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Regional equivalence

Second step - regional equivalence

Construct a stable equivalence relation of finite index \equiv

For any clock variable x, let C_x be the largest integer appearing in constraints involving x. We now construct a stable equivalence relation of finite index \equiv_{REG} :

- V ≡_{REG} V' if and only if the following three conditions are met for all clock variables, x and y:
 - $\lfloor V(x) \rfloor = \lfloor V'(x) \rfloor$, or $V(x) > C_x$ and $V'(x) > C_x$.
 - if $V(x) \leq C_x$ and $V(y) \leq C_y$ then $\operatorname{frac}(V(x)) \leq \operatorname{frac}(V(y))$ if and only if $\operatorname{frac}(V'(x)) \leq \operatorname{frac}(V'(y))$.
 - if $V(x) \le C_x$, then $\operatorname{frac}(V(x)) = 0$ if and only if $\operatorname{frac}(V'(x)) = 0$.

What does this mean?

• • • • • • • • • • • • •

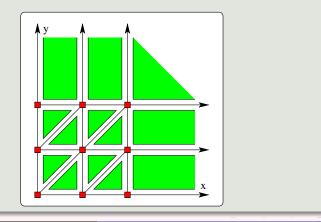
US

Regional equivalence

Regional equivalence

Consider a TTS' system

with two clocks $\{x, y\}$ with $C_x = 2$ and $C_y = 2$.

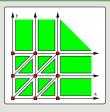


US al University Begapore

Regional equivalence

Regional equivalence

Consider the *TTS*' system

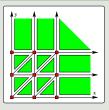


- Since we have two variables in the system, the regions can be of dimension 0, 1 or 2, i.e. points, lines or areas.
- We can visualize the regions by looking at the diagram where the points are marked with small shaded boxes, the lines are given as lines, and the areas are shaded.

Regional equivalence

Regional equivalence

Consider the *TTS*' system



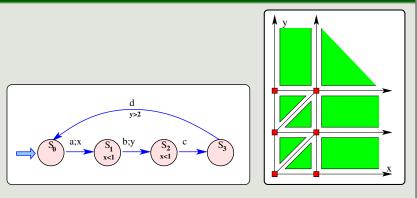
• 9 Points: {(0,0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} • 22 Lines: $\begin{cases} \{(x, y) \mid y = 0 \land 0 < x < 1\} & \{(x, y) \mid y = 0 \land 1 < x < 2\} \\ \{(x, y) \mid y = 1 \land 0 < x < 1\} & \{(x, y) \mid y = 1 \land 1 < x < 2\} \\ \dots & \dots & \dots \\ \end{cases}$ • 13 Areas: $\begin{cases} \{(x, y) \mid 0 < x < y < 1\} & \{(x, y) \mid 0 < y < x < 1\} \\ \{(x, y) \mid 1 < x < y < 2\} & \{(x, y) \mid 1 < y < x < 2\} \\ \dots & \dots & \dots \\ \end{cases}$

US LI University Engapore

Regional equivalence

Regional equivalence

Regions for simple TTS



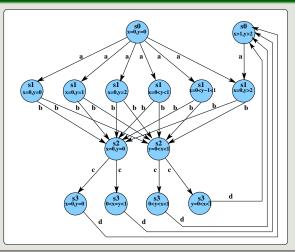
• In this example, $C_x = 1$ and $C_y = 2$.

雳 US

Regional equivalence

Regional equivalence

Regions for simple TTS



Hugh Anderson

舅 US