Verification of Real Time Systems - CS5270 8th lecture

Hugh Anderson

National University of Singapore School of Computing

March, 2007

1

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture

Duckburg...

Outline

- Administration
 - Assignment 2
 - The road map...
- 2 Efficiency in TTS
 - From regions to zones
 - Matrix notation and zone operations
 - Closed zones and graph representation
- 3 Preliminaries to Model Checking
 - Behaviour, safety, liveness, automata, reachability...
 - Extensional and intensional logic
 - Linear and branching time

Administration Efficiency in TTS

Preliminaries to Model Checking

Assignment 2 The road map...

Assignment 2

A reminder... Assignment number 2:

- On the web site
- Due on 22nd March ...

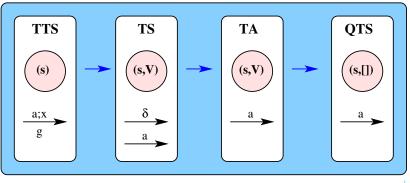
Administration Efficiency in TTS

Preliminaries to Model Checking

Assignment 2 The road map...

The reduction...

What we did...



Assignment 2 The road map...

The immediate road map

The topics:

- TTS: Timed transition systems
 - Reduction: $TTS \rightarrow TS_{TTS} \rightarrow TA_{TTS} \rightarrow RTS$ (by quotienting)
- Efficiency in TTS
 - Regions
 - Zones
 - Notation
 - Operations
 - Optimizations

• Preliminaries for Model Checking

- Behaviour, safety, liveness, automata, reachability
- Temporal logic

From regions to zones Matrix notation and zone operations Closed zones and graph representation

What is wrong with regions?

Unwieldy:

- The number of regions can be very large:
 - It is exponential in the number of clocks, and in the size of the maximal constraints appearing in the clock constraints.
 - As a result, practical verification of transition systems based on regional transition systems becomes infeasible.

What is a zone?

From regions to zones Matrix notation and zone operations Closed zones and graph representation

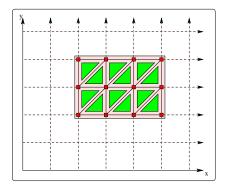
A more compact representation:

- ...of equivalence classes of valuations....
 - Can be efficiently represented as Difference Bounded Matrices (edge weighted directed graphs).
 - DBMs admit a canonical representation.
 - DBMs can be manipulated efficiently.

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Regions versus zones

47 regions versus 1 zone!



47 regions in zone $(2 \le x \le 5) \land (2 \le y \le 4)$

Formally:

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Definition of zone:

 A zone Z is a clock constraint of the "two-variable difference" form

$$\mathcal{Z} ::= x \operatorname{op} c \mid x - y \operatorname{op} c \mid z_1 \wedge z_2$$

where $op \in \{<,\leq,>,\geq\},$ and $\textbf{\textit{c}} \in \mathbb{N}.$

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Zone is a convex hull

What is this?

- A zone Z is a convex union (or *hull*) of all the regions \mathcal{R} : $Z = \bigcup_i \mathcal{R}_i$.
- To encode zones in a DBM, we
 - construct a new clock variable x_0 which will always have the value 0, and then encode all constraints as $x_i x_j < m$ or $x_i x_j \le m$ where $m \in \mathbb{Z}$.
 - For example the following terms on the left are translated to those on the right:

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Finiteness and hence termination

Ignore constraints bigger than C_x :

- To ensure termination:
 - Remove constraints of the form x < m, $x \le m$, x y < mand $x - y \le m$ if $m > C_x$.
 - Replace x > m, $x \ge m$ with $x > C_x$ if $m > C_x$.
 - Replace y x > m, $y x \ge m$ with $y x > C_x$ and $y x \ge C_x$ if $m > C_x$.

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Compact notation:

For n-1 clock variables, we then write out an $n \times n$ matrix M, with elements drawn from $(\mathbb{Z} \times \{<, \le\}) \cup \infty$ according to the following rules:

- For constraints like $x_i x_j < c$, set $M_{i,j} = (c, <)$
- For constraints like $x_i x_j \le c$, set $M_{i,j} = (c, \le)$
- Otherwise set $M_{i,j} = \infty$

Matrix notation

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Consider this clock zone:

$$(0 \le x_1 < 1) \land (0 < x_2 < 3) \land (x_2 - x_1 \ge 1)$$

then the DBM is

$$\begin{array}{c|cccc} & x_0 & x_1 & x_2 \\ \hline x_0 & (0, \leq) & (0, \leq) & (0, <) \\ x_1 & (1, <) & (0, \leq) & (-1, \leq) \\ x_2 & (3, <) & \infty & (0, \leq) \end{array}$$

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Tightening constraints

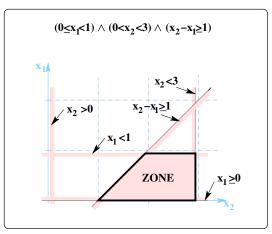
The canonical DBM:

• Obtained by strengthening/tightening all the constraints:

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Tightening constraints

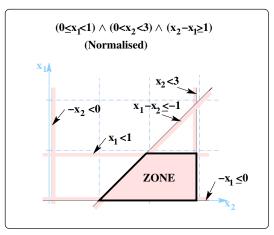
Halfspace view:



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Tightening constraints

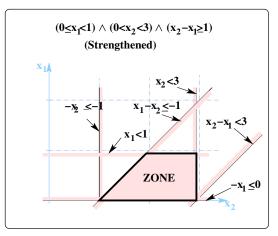
Halfspace view:



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Tightening constraints

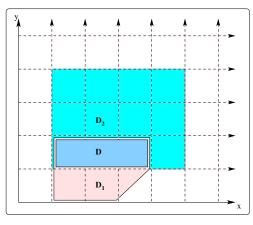
Halfspace view:



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Operations on zones

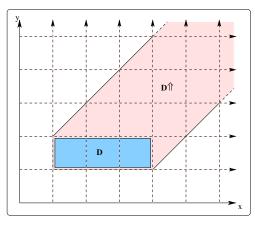
The intersection:



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Operations on zones

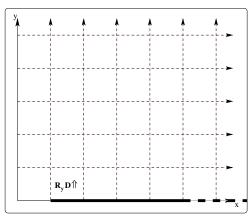
Time elapses:



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Operations on zones

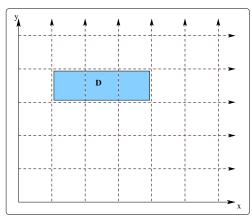
A clock is reset:



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Operations on zones

The PAST operation?



Constructing regional/zone transition systems

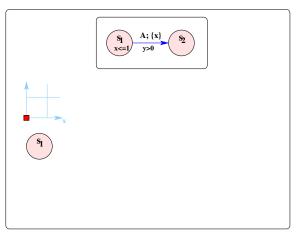
Practice versus mathematics:

- In the mathematics, en-route to the finite RTS or ZTS, we construct (infinite) transition systems.
- This is fine, but not actually possible (obviously).
- Instead we generate the transition systems in one step from the TTS.
- The following slides attempt to show the flavour of the algorithm in pictures...

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Drawing the operations (regions)

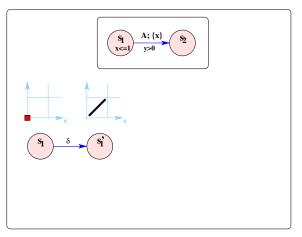
Show the regions in a diagram: Original state



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Drawing the operations (regions)

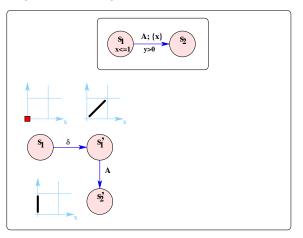
Show the regions in a diagram: Time passing



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Drawing the operations (regions)

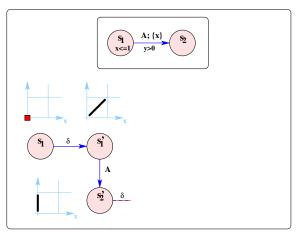
Show the regions in a diagram: Action move



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Drawing the operations (regions)

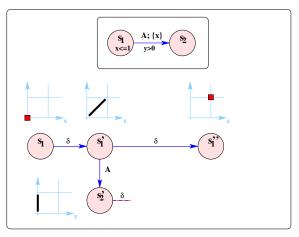
Show the regions in a diagram: Carry on time...



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Drawing the operations (regions)

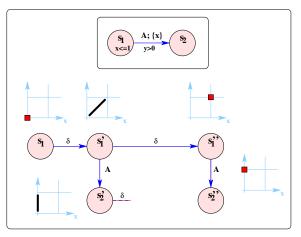
Show the regions in a diagram: Time passing move



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Drawing the operations (regions)

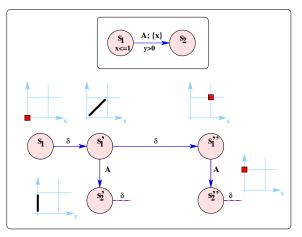
Show the regions in a diagram: Another action...



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Drawing the operations (regions)

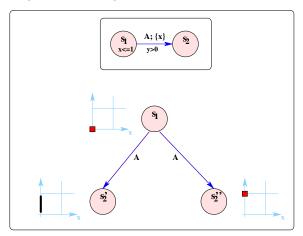
Show the regions in a diagram: and so on...



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Drawing the operations (regions)

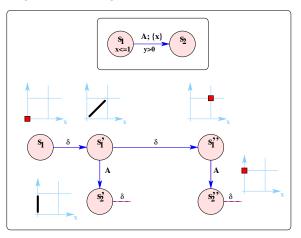
Show the regions in a diagram: TIME ABSTRACTED



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Drawing the operations (zones)

Show the regions in a diagram: from before...

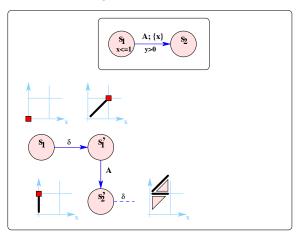


Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture 32

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Drawing the operations (zones)

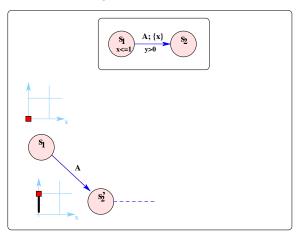
Show the zones in a diagram: smaller



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Drawing the operations (zones)

Show the zones in a diagram: TIME ABSTRACTED



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Operations on zones

Zones are relatively easily manipulated:

- Following three operations are needed for use in evaluating zone transitions:
 - If D₁ and D₂ are two clock zones, then the intersection of the zones is a new clock zone D₁ ∧ D₂.
 - $\mathcal{D} \Uparrow$ is the **time-elapsed zone** defined by $\mathcal{D} \Uparrow = \{ V + \delta \mid V \in \mathcal{D} \}$ with $\delta \in \mathbb{R}_{\geq 0}$.
 - The clock-reset zone $R_X \mathcal{D}$ is defined by $R_X \mathcal{D} = \{R_X(V) \mid V \in \mathcal{D}\}$ where $R_X(V)(\lambda) = 0$ if $\lambda \in X$ or $R_X(V)(\lambda) = V(\lambda)$ otherwise.

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Want a canonical representation

Equivalence of zones:

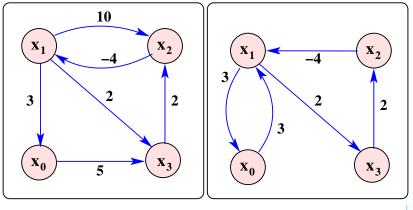
We do not want two different zones to represent the same set of valuations (i.e. (y − x ≤ 3, x = 2, y = 4) the same as (y − x = 2, x = 2, y = 4).

Definition: A zone is *closed* if no constraint can be strengthened without reducing the set of associated valuations.

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Closed zones are equivalent iff identical

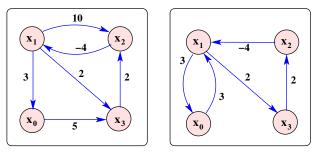
Graph representations (simplified)...



From regions to zones Matrix notation and zone operations Closed zones and graph representation

Closed zones are equivalent iff identical

Graph shortest path reduction:



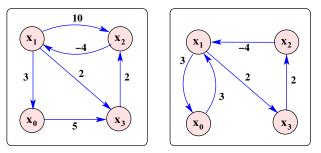
A shortest path reduction is performed on the graph (computed in $O(n^3)$ time), where redundant edges are removed when they can be. For example $x_1 \xrightarrow{10} x_2$ is replaced by $x_1 \xrightarrow{2} x_3 \xrightarrow{2} x_2$.

38

From regions to zones Matrix notation and zone operations Closed zones and graph representation

Closed zones are equivalent iff identical

Graph shortest path reduction:

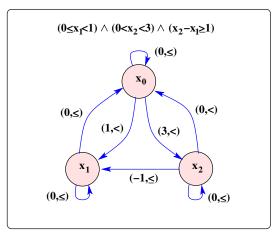


If *D* is closed then *D* is a subset of *D'* iff for every constraint $x - y \le m'$ in *D'* there is $x - y \le m$ in *D* with $m \le m'$. If *D* is closed then *D* is non-empty iff there are no negative weight cycles in the graph.

From regions to zones Matrix notation and zone operations Closed zones and graph representation

DBM example repeated

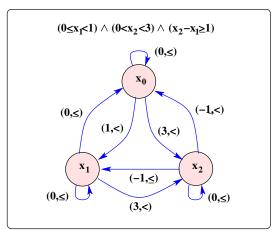
Graphs for DBMs: graph reduction...



From regions to zones Matrix notation and zone operations Closed zones and graph representation

DBM example repeated

Graphs for DBMs: graph reduction...



Behaviours

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

The behaviour of a TS...

- ...is its set of *runs*, or its set of *computations*.
- To verify behaviours against a property, we can consider questions like:
 - Does every computation (run) of the transition system have a desired property X ? or
 - Is it true that in no computation, C is immediately followed by on-ac?.

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

Safety and Liveness

Two types of behaviours:

- In handouts, the ideas of safety and liveness were introduced, identifying two types of behaviours that require different analysis methods.
 - A safety property is like "something bad doesn't happen", whereas
 - liveness is like "something bad (or good) must eventually happen".
- We can often formulate safety properties in terms of the reachability of a state.

Checking TS

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

What is an automata?

- An automata is a state transition system with some set of accepting states, which may be used to distinguish between good and bad computations.
- We can use automata matching a particular transition system to specify *desired* behaviour of the system, in a form like "Is there a run of the automaton that leads to the (desired) accepting state?", or "Is there a run of the automaton that leads to an accepting state in which property *P* holds?".
- These are examples of a reachability problem.

Finite automaton

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

Definition:

A finite automaton is a 5-tuple $(Q, \Sigma, \Delta, q_0, F)$, where

- Q is a finite set called the states
- Σ is a finite set called the **alphabet**
- $\Delta : Q \times \Sigma \rightarrow Q$ is the transition function
- q_0 is the start state
- $F \subseteq Q$ is the set of **accepting states**

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

Checking TS

Automata theory...

- These sort of problems have clear links to automata theory, and
- we could easily cast a lot of this discussion in terms of the languages accepted by (finite) automata.
- To reason about liveness properties, we need to consider infinite sequences.
- A Büchi automaton is an extension of a finite state automaton to one which accepts an infinite input sequence if, and only if, there is a run of the automaton which has infinitely many states in the set of final states.

Büchi automata

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

Definition:

A Büchi automaton is a 5-tuple $(Q, \Sigma, \Delta, q_0, F)$, as for a regular automaton, but with *F* interpreted differently. In particular $s_0 a_0 s_1 a_1 s_2 \dots$ is an accepting infinite trace if

- $s_0 \in Q$
- $(s_i, a_i, s_{i+1}) \in \Delta$ for all *i*
- For infinitely many *j*, the state s_j is in *F*

Büchi automata

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

What are they good for?

- They are useful for specifying behavior of nonterminating systems, such as
 - hardware (electronic circuits) or
 - operating systems.
- For example, you may want to specify a property like
 - "for every measurement, a recording eventually follows", or
 - the reverse "there is a measurement which is not followed by a recording".
- For the second example, an argument limited to finite sequences cannot satisfy this property.

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

Properties: Reachability and deadlock

Are related...

- For example, is there a run leading to deadlock?
- A deadlocked system can do no more computation, more formally:

Definition: The run $s_0 \stackrel{*}{\Longrightarrow} s_k$ with $s_0 \in S_{in}$ is in **deadlock** if no action is enabled at s_k .

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

Properties: qualitative

Questions such as...

- Every request is eventually served.
- The sensor signal x11 is sensed infinitely often.
- From any stage of the computation the all clear state can be reached within 3 steps

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

Properties: quantitative

Questions such as...

- Every request is served within 3 microseconds.
- The sensor signal x11 is sensed every 10 milliseconds for ever.
- From any stage of the computation the all clear state can be reached within 1 second.

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

The universe is not black and white

Consider...

Please answer YES or NO: Will the next answer you give me be NO?

You are either going to die in a bomb raid or you are not...

- *Extensional* logic means that you can determine the truth of a formula from the truth values of its parts.
- Intensional/modal logic refers to QUALIFIED truth (words like could, eventually, possibly and so on).

Modal logic

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

QUALIFIED truth

- The basic modal operators are

 - its dual \Diamond which represents possibility ($\Diamond A = \neg \Box \neg A$).
- The language of modal logic consists of
 - propositional variables,
 - a set of Boolean connectives such as $\{\land,\lor,\neg\}$, and
 - the modal operators.

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

Temporal logic (a modal logic)

Consider...

"The engine is too hot."

- The meaning is clear, it does not vary with time, but ...
- the truth value of the assertion *can* vary in time.
 - Sometimes it is true, and sometimes it is false, and
 - it is never true and false simultaneously.
- Temporal logics are a good mechanism for expressing *qualitative* temporal properties of reactive systems.
- Operators related to TIME, so that (for example) □φ means that propositional variable φ must hold in all the following (later) states.

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

Temporal operators

Common to use mnemonic letters X,G,F,U,R...

- Operators:
 - $\mathbf{X} \phi$ indicating that ϕ must hold in the next state.
 - G φ (or □ φ) indicating that φ must hold in all the following states.
 - F φ (or ◊ φ) indicating that eventually (finally) φ must hold somewhere.
 - $\phi U \psi$ indicating that ϕ has to hold until ψ holds at the current or a future position.
 - $\phi \mathbf{R} \psi$ The dual of U, ψ holds until the first state where ϕ holds.

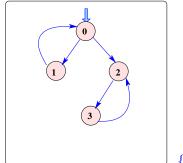
Quantification

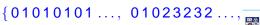
- A for all paths
- E there exists a path...

LTL: Linear time view

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

The set of runs...

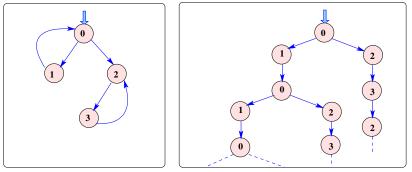




Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

CTL: Branching time view

Branches into the future...



Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

LTL versus CTL

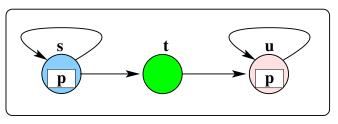
Linear Temporal Logic, Computation Tree Logic

- In LTL, one can encode formulæ about events along a single computation path.
- By contrast, CTL is a modal *branching-time* temporal logic. The operators quantify over all possible future paths from a given state.
- CTL and LTL are both subsets of a more general temporal logic CTL*.
- There are expressions in CTL that cannot be expressed in LTL and vice versa.
- In CTL formulæ each of the temporal operators must be preceded by a *path* quantifier: A, or E.

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

Consider this TS:

LTL≠CTL



- A(FG *p*), is an LTL formula representing: for all paths, eventually *p* holds globally (i.e. from then on).
- AF(AG p) is CTL for: for all paths, eventually you get to a state where for all paths p holds globally (i.e. from then on).

• LTL formula is not the same thing as CTL formula.

LTL≠CTL

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

LTL: All runs that start in *s* have *p* holding eventually:

The possible (infinite) runs from s are

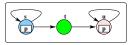
so in the linear time view, for state s, A(FG p).

Hugh Anderson Verification of Real Time Systems - CS5270 8th lecture

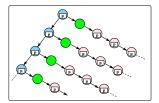
LTL≠CTL

Behaviour, safety, liveness, automata, reachability... Extensional and intensional logic Linear and branching time

CTL: Eventually you get to where *p* holds from then on:



The CTL counterexample for AF(AG p) is



so in the CTL view, for state s, AF(AG p) is not true.