
TI
G

ER
6.2 Model checking algorithm for TCTL 95

6.2.2 Coffee machine example in Uppaal

The problem is to model the behaviour of a system with three components, a coffee
Machine, a Person and an Observer. The person repeatedly tries to insert a coin, tries
to extract coffee after which (s)he will make a publication. Between each action the
person requires a suitable time-delay before being ready to participate in the next
one. After receiving a coin the machine should take some time for brewing the
coffee. The machine should time-out if the brewed coffee has not been taken before
a certain upper time-limit. The observer should complain if at any time more than 8
time-units elapses between two consecutive publications.

z<=6

z:=0

coin?

m:=0

cof!

m>2

cof!

(a) Machine

Wait1
y<=3

Ready

Wait2
y<=2

Go

coin!
y:=0

y==3

cof?
y:=0

y==2

pub!

(b) Person

Complain

pub?

x:=0

pub?

x:=0

x>8

(c) Observer

Figure 6.2: The three automata

The automata are shown in Figure 8.3, and (partially) model the specified system.
Why partially? In the specification there is a worrying phrase: “The Machine should
time-out if the brewed coffee has not been taken before a certain upper time-limit”.
This phrase is worrying because it is an under-specification of the system. For exam-
ple: “What does the machine do if it times out?”. If it times out and then dumps the
coffee, the system will deadlock, as the Person automata must pay and then drink.
So - rather than modifying the specified Person automaton, the machine specified
here times out and then synchronizes on the dispensing of coffee.



TI
G

ER
96

❖ Machine: The coffee machine accepts a coin and then delays for some time
(above it is 6 time units). It then sets a timeout timer, and either (to the
right) dispenses coffee, or (to the left) times out and then dispenses coffee.
The extra state on the left is because Uppaal does not allow both guards and
synchronizing elements to appear on the same transition.

❖ Observer: The observer has an 8 time unit timeout. If the publications keep
coming in more often than 8 time units, then the system stays in the middle
state. However, if the timer times out, we visit (briefly) the Complain state.

❖ Person: The person was already specified, and it just puts in a coin and then
drinks coffee before publishing.

In UPPAAL, the path operators
�

and � are written as <> and [], so to test the
model, the temporal query E<> Observer.Complain is used, which corre-
sponds to the CTL formula EF Observer.Complain, specifying that:

❖ for at least one computation path, at some time state Ob-
server.Complain is reached.

In addition the system is tested with A[] not deadlock. The results of the
testing are as follows:

❖ System is deadlock free

❖ Observer.Complain is reached if the coffee timeout is 7 or more

❖ Observer.Complain is never reached if the coffee timeout is 6 or less

The last two tests were done by trial and error - setting the value in the coffee ma-
chine model to different values, and rerunning the model checker.



TI
G

ER
6.2 Model checking algorithm for TCTL 97

6.2.3 A simple protocol example in Uppaal

The problem is to model a simple protocol, with a communication Medium, a Sender,
and a Receiver. The sender sends messages of a fixed length length, which is the
time between the beginning and the end of a message. The medium has a transmis-
sion delay delay.

b!

t:=0,
g:=0,
timevalid:=0

t>=length

e!

(a) Sender

b?

bl:=0

e?

el:=0

bl>=delay

br!

el>=delay

er!

(b) Medium

FIN

br?

er?

timevalid:=1

(c) Receiver

Figure 6.3: The three automata

❖ Sender: The sender just synchronizes on the beginning and end of the mes-
sage, ensuring a time of length between the two synchronizations. The
timevalid and g variables are global variables used to time the total tran-
sit time of the message.

❖ Receiver: The receiver just synchronizes on the beginning and end of the
message after it arrives from the medium, setting timevalid as the FIN
state is entered.

❖ Medium: The medium uses two local clocks, bl and el, to delay a message
enroute to the receiver.



TI
G

ER
98

The first step is to model the system, assuming length<delay. The model in
Figure 6.3 shows this model.

A quick test with A[] not deadlock shows that it is deadlock free. To find out
the total time between begin send and end receive, a global clock variable g is reset
by the sender at the beginning of a message, and its value in state Receiver.FIN
tells us the total time between the beginning of sending the message and the end of
receiving the message. To test this a global variable timevalid was added to the
system, and if the receiver is in the Receiver.FIN state, and the time is valid,
then we can run various tests - for example the query

E<> (Receiver.FIN and timevalid==1 and g<maxtime)

(where maxtime is length+delay) is always unsatisfied, which tells us there is
no time sequence shorter than length+delay. The query

A[] (Receiver.FIN and timevalid==1 imply g>=maxtime)

is satisfied, which tells us that the time will always be greater than or equal to
length+delay.

b?

bl:=0

e?

el:=0

bl>=delay

br!

el>=delay

er!

bl>=delay

br!

e?

el:=0

Figure 6.4: The new specification of the medium



TI
G

ER
6.3 Summary of topics 99

The preceding model could only handle systems in which the length of the message
was less than the medium delay time. We can extend the medium to also handle
messages with length>=delay. The only thing that needs changing is the defi-
nition of medium, given in Figure 6.4. The two queries before both still produce the
expected results, no matter what the relationship between length and delay:

E<> (Receiver.FIN and timevalid==1 and g<maxtime)
A[] (Receiver.FIN and timevalid==1 imply g>=maxtime)

6.3 Summary of topics

In this section, we introduced the following topics:

Theoretical foundations. Formal foundations for TCTL, syntax and semantics.
Model checking algorithms. Algorithms for checking timed CTL systems.
Examples. Two worked Uppaal examples.


