
1

CS6201 Software ReuseCS6201 Software Reuse

CS6201 Lecture Notes: Berkeley DB case

studystudy

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 1

Berkeley DB Berkeley DB
 Berkeley DB: database engine, 86KLoC

Five DB subsystems:

Base components of DB

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 2

 38 DB variant features: AtomicTransaction, EnvironmentLock,
FSync, LatchesLeak, CheckingStatistics, …

 Each DB product variant may contain some combination of
38 features – many DB product variants

2

Towards software Product Line (SPL)Towards software Product Line (SPL)
systematic reusesystematic reuse

 Understand DB similarities and differences DB
– Top-down, business-oriented analysis of user needs

– Bottom analysis of existing DB products

 Standardize DB architecture and components

 Design parameterized, reusable DB components
– Apply variation mechanisms to facilitate reuse DBDB--11

DBDB 22

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 3

DB features
stored in CVS or SVN

DB reusable
components

DB

development

DBDB--22

DBDB--33

DBDB--44

Examples of DB featuresExamples of DB features

Feature Description

A i T i P f h i h iAtomicTransaction Part of the transaction system that is
responsible for atomicity

EnvironmentLock Presents two instances on the same database
directory

FSync File synchronization for writing log files

Latches Fine grained thread synchronization

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 4

Latches Fine grained thread synchronization

LeakChecking Debug checks for leaking transactions

Statistics Collects runtime statistics like buffer hit
ratio throughout the system

3

Feature impact on DB Feature impact on DB
componentscomponents

Feature # DB base components
affected

variation points
affected

MemoryBudget 32 190

Evictor 12 28

CheckSum 10 28

Statistics 10 34

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 5

CheckPointer 5 34

CpByteConfig 4 6
CpTimeConfig 4 7

Feature interactionsFeature interactions
Feature Interacting feature # variation points

CheckPointer Statistics 22

MemoryBudget Evictor 5

MemoryBudget CriticalEviction 1

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 6

SyncIO IO 4

EvictorDaemon Evictor 3

4

Feature impact on Feature impact on
FileProcessorFileProcessor

public class FileProcessor {
 …
 private boolean processFile(…) {
 …
 LookAheadCache lookAheadCache = new LookAheadCache();
 …
 lookAheadCache.add(getFileOffset(..));
 …
 if (lookAheadCache.isFull()) {
 processLN(.., lookAheadCache, ..);
 }

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 7

 …
 }
 private processLN(…, LookAheadCache lookAheadCache, …) {
 int offset = lookAheadCache.getOffSet();
 …
 }

Feature management in SPLFeature management in SPL

 Feature may mean any product characteristic

 One feature may affect many product One feature may affect many product
components

Features interactions:

 Functionally interdependent features:
– If I select one feature I must also select some

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 8

other features

 One feature may affect implementation of
other features

5

Select features
for DB product

f1 f2 f3 f4

Reuse challenge:Reuse challenge:
Tracing the impact of features on components

p

DB

f1 f2 f3 f4
DB features

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek

reusable components
with variation points

9

Component reuse is not Component reuse is not
enoughenough

Variation mechanisms help manage impact of
features on components

R ti i ti h i Runtime variation mechanisms
– Design patterns, reflection, conditionals

 Construction time variation mechanisms
– Parameterization: generics, templates, …

– Configuration parameters

– Preprocessing (#ifdef), commenting out feature code

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 10

p g (), g

– Build tools (make, Ant), Wizards

– Aspect-Oriented Programming (AOP)
 check Kästner, C., Apel, S. and Batory, D. “A Case Study

Implementing Features Using AspectJ,” Proc. Int. Software Product
Line Conference, SPLC’07, Kyoto, 2007, pp.223-232

6

Berkeley DB SPL in Berkeley DB SPL in XCppXCpp

 XCpp is a subset of XVCL

XML b d V i t C fi ti L– XML-based Variant Configuration Language

– A construction time variation mechanism for SPL

– All-in-one solution to managing features in SPL

– Used in sync with conventional programming technologies:

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 11

 Java/XVCL, ASP/XVCL, PHP/XVCL, J2EE/XVCL, .NET/XVCL

 Public domain, available at sourceforge

http://xvcl.comp.nus.edu.sg

SPC // specifies feature selection for DBNEW

<set a = “A” />

<set d = “D” />

<set b = “”/> <set c = “”/>

<adapt DBSchema/>

<adapt FeeUser/>

Suppose A, B, C, D are all DB features

and we selected A and D for DBNEW

FileManager

<set v = @a />

<select v > // feature A affects FileManager here

<option A> if feature A is selected

<otherwise> if A is not selected

</select>

Evictor

public class Evictor{

…some code for Evictor

<set v = @a @c @d />

<select v > // feature s A, C and D affect Evictor here

<option A> code for feature A

<option A D> code for feature interaction A and D

i A C D d f f A C d D

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek

…some code for FileManager

<set v = ..>

<select v > // another variation point in FileManager

<option A C D> code for feature interaction A, C and D

<otherwise>

</select>

… some code for Evictor

<set v = .. >

<select v > // another variation point in Evictor

12

7

SPC // here we set parameters for features required in DBNEW

<set all_features = “IO,EvcitorDaemon,LookAheadCache,DiskFullHandler,
Evictor,MemoryBudget ..."/>

<while all_features> <set @all_features = “” /> </while>

// Features selected for DBNEW

<set selected_features = “IO,LookAheadCache,DiskFullHandler,Evictor"/>_

<while selected_features> <set @selected_features = @selected_features/> </while>

<adapt FileManager />
<adapt Evictor/>

FileManager
public class FileManager {

Evictor
public class Evictor {

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 13

public class FileManager .. {
...
<set v = @LookAheadCache />
<select v>
<option LookAheadCache >

code for LookAheadCache
</option>

public class Evictor {

<set v= @CriticalEviction @MemoryBudget/>
<select v>

<option CriticalEviction >

code for CriticalEviction
<option CriticalEviction MemoryBudget >

code for interacting features @Evictor
</select>

Generation custom DB Generation custom DB
productsproducts

SPC DB-1 SPC DB-1 SPC DB-1

variant features

DBDB--11

product
derivation

XVCL
Processor

DBDB--22

FileManager
public class FileManager .. {
...
<set v = @LookAheadCache />

<select v>
<option LookAheadCache >

code for LookAheadCache
</option>

Evictor
public class Evictor {
<set v= @CriticalEviction
@MemoryBudget/>
<select v>

<option CriticalEviction >

code for CriticalEviction
<option CriticalEviction MemoryBudget >

code for interacting features @Evictor
</select>

LogBuffer
public class FileManager .. {
...
<set v = @LookAheadCache />

<select v>
<option LookAheadCache >

code for LookAheadCache
</option>

EnvironmentImpl
public class FileManager .. {
...
<set v = @LookAheadCache />

<select v>
<option LookAheadCache >

code for LookAheadCache
</option>

BaseManager

SPC DB 1 SPC DB 1 SPC DB-1

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 14

DBDB--33

custom DB products

DB components
wrapped in XCpp

8

Problem still remains:Problem still remains:

 How to find all variation points in many

components relevant to a given feature?

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek

Feature queriesFeature queries
 FQL: Feature Query Language

 A tool locates and shows all variation points relevant to a
given featuregiven feature

 Show all variation points where feature “f” affects components

 Show all variation points where feature “f” interacts with other

Declare option o
Select o

where o.feature=”f”

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek

S p
features

Declare option o
Select o
where o.feature=”*f*”

16

9

Filtering feature views with queriesFiltering feature views with queries
 Where do features Statistics and MemoryBudget interact

with each other?

Declare option o
lSelect o

where o.feature = ”*STATISTICS*” and
o.feature = ”*MEM_BUDGET*”

<set stat_membudget=”?@STATISTICS?_?@MEM_BUDGET?”/>
<select option=”stat_membudget”>

<option value=”STATISTICS MEM BUDGET”>

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 17

p _ _
long getFreeMemory() {

maxMemory – usedMemory;
}

</option>
</select>

Viewing feature codeViewing feature code

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 18

10

Summary of approachSummary of approach
 Embed features in reusable components

 A mechanism to compose required features
into the product

 Mark each variation point with names of
interacting features

 Formally inter-link all variation points

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 19

affected by a given feature

 Query-based visualization of features and
their interactions

Evaluation: problems solvedEvaluation: problems solved
 Legality of feature selection

– Validation done prior to feature processing (Zhang, H)

 Automation of product derivation
– feature composition into base done by XVCL Processor

 Feature comprehension
– each variation point marked with names of interacting

features

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 20

– inter-linking all variation points affected by a given feature

– query-based visualization of features and their interactions

11

Remaining problemsRemaining problems
 Solution gets complicated as the size of product

increases, and the number of features and feature
dependencies growsp g
– True, we can find feature code – but how to understand,

maintain and reuse features if their code spreads though
many variation points, in many base components?

 Assumption of “base components” is limiting
– we can’t contain the impact of features at the

implementation level only – use design!
 Direction for future work:

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 21

 Direction for future work:
– Reduce the number of variation points
– Relax the assumption of a “base components”
– Represent products in generic form (full XVCL)

Q & AQ & A

CS6201 Set #6 Copyright (C) 2010 Stan Jarzabek 22

End of Berkely DB case study

