
1

CS6201 Software Reuse
Lecture Notes Set #1: Introduction

O tli f t d ’ l tOutline of today’s lecture:

1. Course overview

2. Software Product Line concepts and examples

3 Fundamental reuse problems

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 1

3. Fundamental reuse problems

4. Common variation mechanisms and XVCL

About this course

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 2

2

What do we learn in this course?

1. Software Product Line (SPL) approach

a) Domain analysisa) Domain analysis

b) SPL core assets (all what we can reuse)

c) Components and architectures

d) Variation mechanisms and why we need them

2. XVCL: reuse technique, used in the project

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 3

q , p j

3. SPL case studies

– class libraries, Web Applications, others

4. Misc topics related to design for reuse

Practical problems addressed in the
course:

 day-to-day software maintenance

 long-term software evolution

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 4

 software reuse via product lines

3

Course organization
 lectures

 project (30%): applying reuse techniques in practice p j () pp y g q p

 presentations of research topics (10%):

– select a topic for the presentation from the list (check course

Web); or propose your own topic – must be approved

– prepare and conduct 1-hour presentation Q&A

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 5

prepare and conduct 1-hour presentation, Q&A

 exam (60%) – open book, based on:

– lectures, project, presentations

Presentation and project teams

 there should be max 8 presentation teamsp

 project teams can be the same as presentation

teams or not

– you can choose to do a project individually

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 6

y p j y

4

Hands on: reuse with XVCL
 xvcl.comp.nus.edu.sg, open source software

 a generative technique for enhanced reusability and g q y

maintainability

 applied on top of conventional OO programs

 XVCL helps control software complexity:

id d d d titi i ft t ()

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 7

– avoid redundancy and repetition in software systems (reuse)

– manage change during maintenance

– increase software flexibility and adaptability

Project types
 apply XVCL to enhance maintainability and/or

reusabilityreusability

 build a new program or work with and existing

program

 propose your own topic for the project or select

from the list

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 8

from the list

 emulate one of the case studies discussed during the

lectures

5

First month of the course at glance
 first four weeks – lectures only, no presentations:

– Reuse, software product line concepts, examples

– XVCL briefing

 after that: 1h. presentation + 1h. lecture

 by January 21,

– form presentations teams and let me know your presentation

topic (see Web site)

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 9

topic (see Web site)

 by February 4

– form project teams (if different from presentation teams) and

let me know the topic of your project

Introduction to software reuse

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 10

6

We can develop very complex software
 IBM OS (1960’s)

 military software is huge, complex, must be reliable

 WINDOWS (close to 100 million LOC) WINDOWS (close to 100 million LOC)

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

How can we develop software at lower cost, with
higher success rate?

12th century

2000 BC

10th - 15th century

20th century

1
1

Software engineering challenges
despite new technologies and many successes:

 Software projects are often unpredictable
j j– many projects run out of schedule and budget, 25% of large projects are

never completed

 Maintenance cost up to 80% of computing cost

– change is hard, evolution is hard

 Reuse has not become a standard practice

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 12

p

 Outsourcing: a leading software development technique
– US$ 100 billion, growing trend

Hard work ≠ productivity

7

Some technical challenges
 software models (documentation) integrated with code

– models developed, maintained and reused in sync with evolving code

– external docu UML and generators dilemma: disconnection from codeexternal docu, UML and generators dilemma: disconnection from code

 traceability from requirements to design and to code

– how various requirements are implemented?

 managing families of similar software systems (reuse)

– multiple software releases (evolution) or software Product Lines

how to make benefit of commonalties among systems?

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 13

– how to make benefit of commonalties among systems?

– how to delineate differences among systems from commonalities?

 explosion of similar component versions

 already implemented functionalities are difficult to spot and reuse

Reuse and productivity
 Many companies today:

– Develop multiple product variants rather than single product
 Similar products for different customers

– Then, maintain all those product variants

 These companies can benefit from reuse via Product Lines

Where to look for productivity improvements?
 We can’t cut the cost of creative development activities

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 1414

 We can cut down the cost of routine, repetitive work

 Similarities: potentials for productivity improvements

 Reuse is suppose to realize these potentials

8

Software Product Line (SPL)

explained by examples

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 15

p y p

Project Collaboration Environment

(PCE)(PCE)

Software Product Line

References to this study:

Patterson, U., and Jarzabek, S. “Industrial Experience with Building a Web Portal Product Line using a Lightweight,

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 1616

Reactive Approach,” ESEC-FSE'05, Europ. Soft. Eng. Conf, and ACM SIGSOFT Symp. on the Foundations of Soft Eng,

Sept. 2005, Lisbon, pp. 326-335;

Rajapakse, D. and Jarzabek, S. “Towards generic representation of web applications: solutions and trade-offs” Software,

Practice & Experience, Volume 39 Issue 5, April 2009, pp. 501 – 530, Published Online: 27 Nov 2008

Rajapakse, D. and Jarzabek, S. “Using Server Pages to Unify Clones in Web Applications: A Trade-off Analysis,” Int. Conf.

Software Eng, ICSE’07, Minneapolis, USA, May 2007, pp. 116-125

9

Project Collaboration Envir
(PCE)

 PCE stores staff, project data, facilitates project progress

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 17

p j p j p g
monitoring, communication in the team, etc.

 e.g., Module Staff: allows the user to create, edit, and update

data about staff members, assign staff members to projects, etc.

PCE product variants

PCESmall-1

PCEBig-1

reuse

PCEMyTeam

PCE

PCESmall-2

PCESmall-3
PCEBig-2

PCEBig-2-Dept1

PCEBig-2-Dept2

PCEBig-2-Dept3

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 18

PCEBig-3

PCEAgile

PCEWaterfall

PCEAgile-Small

PCEAgile-Big

10

Transition to reuse-based development

PCE-1development project
PCE-1

"from scratch" development

development project
PCE-2

development project
PCE-3

adoption of reuse
reuse based development

PCE-2

PCE-3

PCE-1

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 19

reuse-based development

PCE reusable
core assets PCE-3

PCE-2

Ad hoc reuse

 Store PCE code under software configuration

management toolmanagement tool

– Such as CVS or SVN

 Implementation of a new product:

– Reuse by copy-paste-modify relevant source files

from existing products

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 2020

g p

– Implement new features into a product

what problems?

11

Ad hoc reuse

CVS

a1 b1 1

ai, bi, ci are component versions
PCE-1

PCE-2

custom PCEs

(a1,b1,c1,…)

(a2,b1,c2,…)

 Development of new PCENew:

a1
a2
a3
a4

b1
b2
b3
b4
b5

c1
c2
c3
c4

c30

...

PCE-3

PCE-4

PCE-30

(a3,b2,c3,…)

(a25,b30,c15,…)

(a3,b4,c4,…)

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

Development of new PCE :
– Analyze requirements for PCENew

– Find component versions that “best match” PCENew requirements
– Customize components (copy-modify), integrate, test

 We maintain/evolve each custom products separately

21

Problems of ad hoc reuse
 Many component versions stored in CVS

 Tracing features to components not easy
Which components implement which features?– Which components implement which features?

– Which component versions will fit new product?

– How to find components for reuse?

– Many errors during component version selection, customization,
integration

 We may need to repeat component
selection/customization cycle many times before we

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 2222

selection/customization cycle many times before we
get it right!

 Many products need be maintained, ignoring much
similarity

12

Software Product Line (SPL)
definition:

 a family of similar software products that

satisfy needs of a particular market segment

or customer group,

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

 managed from a common, reusable base of

core assets

Towards PCE Product Line
 Each PCE variant implements:

– Common features shared by all PCEs

– Features shared with some of the PCEs

– Some unique new features

 Implementation of the same feature varies across PCEs

 Solution: reuse! re-engineer into PCE PL

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 24

PCE-2PCE-1 PCE-3
PCE-1

PCE-2

PCE-3

13

SPL core assets and their reuse

D i domain engineering

domain
knowledge existing systems in a

domain

Domain experts

Feedback

user
requirements

domain engineering

PCE PL core assets

design and evolution of core assets

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

product developmentProduct
development team

PCEAgile

reuse of core assets

25

Reuse-based PCE development
We wish to build PCEAgile

Analyze requirements for PCEAgile

select features for PCEAgile
Done

failed
no fit

OK

select features for PCEAgile

Find components affected
by selected features

1

Customize components

2

T t PCEAgile

5
PCE PL

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 26

Customize components

Integrate PCEAgile

4

Test PCEAgile

Implement any new features

3

PCE PL
core assets

14

1. Analyze requirements for PCEAgile: select variant features

Reuse-based PCE development

2. Initial phase:
a) Understand the impact of variant features on components

b) Find all the feature-related variation points

reusable components

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 27

3. Iteration phase:
a) Customize components at variation points

b) Implement any new features and components

c) Integrate components, test PCEAgile

Role-Playing Games

(RPG)(RPG)

Software Product Line

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 2828

Reference to this study:

Zhang, W. and Jarzabek, S. “Reuse without Compromising Performance: Experience from RPG Software Product Line for

Mobile Devices,” 9th Int. Software Product Line Conference, SPLC’05, September 2005, Rennes, France, pp. 57-69

15

RPGs on mobile phones
RPG: Role Playing Games

An opportunity and nightmare for RPG vendors!

Jump
FeedingDigGem

Hunt

Climb FeedingDigGem HuntRPGs

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

Climb FeedingDigGem Hunt

Nokia E65 Nokia E70 Nokia E90 W890i W910i Motorola ….

RPGs

obile
hones

29

Market forces: good reasons to reuse

 Similar RPGs must run on many types of mobile

devices and must perform well

 Many brands and models of mobile devices

– differ in platforms, communication protocols, display

units, memory size, etc.

– 640 x 200 color screen vs. 100 x 80 mono display

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

– 80M memory vs. less than 100kb memory

– J2ME MIDP2.0 vs. MIDP1.0

 Development cost, time-to-market are important

30

16

RPG features

 Two dimensions of variability

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 31

 Two dimensions of variability

– Game functionality variants

– Mobile phone platform variants

 Scoping RPG PL (Product Line)

So – what are features?
Feature: any system characteristics from use or

developer view point

 User requirements (functionality)

 Quality requirements

 Platform characteristics

 Design alternatives

Features show how products are similar and different:

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 32

Features show how products are similar and different:
– Common features

– Variant features:
 optional features, alternative features, OR-features

17

Towards RPG PL
 Each RPG implements:

– Common features shared by all RPGs

– Features shared with some of the RPGs

– Some unique new features

 Implementation of the same feature varies across RPGs

 Solution: reuse! re-engineer into RPG Product Line

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 33

HuntDigGem Jump
DigGem

Jump

Feeding
Feeding

Vendor provided reuse
solutions

Game engines and platform mechanisms

Climb FeedingDigGem HuntRPGs

reuse with game engines

reuse with SPL approach

manual
work

manual
work with SPL

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

Nokia E65 Nokia E70 Nokia E90 W890i W910i Motorola ….

portability with SPL approach

portability with platform mechanisms

34

18

SPL core assets and their reuse

D i domain engineering

domain
knowledge existing systems in a

domain

Domain experts

Feedback

user
requirements

domain engineering

RPG PL core assets

design and evolution of core assets

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

product developmentProduct
development team

DigGem

for Nokia

reuse of core assets

35

What software assets should we reuse?

coding

design
specification

requirements
analysis

 source code, code deployed to the customer
 design (component architecture) and requirement

reusable
assets

maintenancetesting

coding

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 36

 design (component architecture) and requirement
specifications

 documentation: technical (models), user (manuals)
 test cases
 software processes, best practices, company standards

19

What are SPL core assets?
SPL core assets include all software assets that form a product

and whose reuse is beneficial

 Common architecture shared by products
– Core components and their organization

– Component interfaces

– All important design assumptions, decisions, strategies

 Component implementation (parameterized)

 Variation mechanisms to manage product variability
– Conditional compilation, Ant, make, parameter files, …

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

 Product derivation methods, techniques and tools
– Help developers build custom products with reuse of assets

 Models, technical documentation, user manuals

 Test cases

37

Steps towards reuse in RPG domain
 How are RPGs similar and different?

– business-oriented analysis of variability in a domain (top-down)

– observe repetitions across similar RPGs (bottom-up)p (p)

 Design architecture and reusable components for RPGs
– Apply extra variation mechanisms for component adaptation

DigGemDigGem

HuntHunt

JJump

game

derivation

DigGemDigGem

HuntHunt

JJump

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 38

variant features

JumpJump

FeedingFeeding

variant features

JumpJump

FeedingFeeding

stored in configuration
management repository

RPG core assets
PLA

reusable componentsreusable components

20

Case study of reuse practice at

Fudan Wingsoft Ltd

Wingsoft Financial System

g f

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 3939

Software Product Line - WFS PL

Wingsoft company and Product Line

 Fudan Wingsoft Ltd: a small company in Shanghai (60 staff)

 Wingsoft Financial System (WFS): g y ()

– supports financial operations at universities

– first WFS developed in 2003

– evolved to an SPL used at more than 100 universities

 Our case study: Tuition Management Subsystem (TMS)

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

– A web-based portal for students to pay tuition fee

 58 Java source files

 99 other source files: JSP (HTML) files, configuration files (XML), DB

schema (SQL Scripts)

40

21

WFS functions and architecture

Sub-systems

PLA
Accountancy
Mangement

Salary
Management

Tuition
Management

Reward
Management

PLA
reusable assets

Financial Database

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

Configuration
Defintion Salary RewardTuitionAccountancy

41

A journey towards Product Line
WFSFudan

WFSHabrin WFSSichuan WFS Zhejiang

Ad hoc reuse

1. Started with WFS developed for Fudan University

2. Five WFS variants developed for other universities
– Ineffective ruse by copy and modify files, maintenance problems

3 R i d i t WFS P d t Li WFS PL

WFSShanghai
WFS W S

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 42

3. Re-engineered into WFS Product Line WFS PL
– Refine and stabilize WFS architecture

– Variant features handled with many simple variation mechanisms

4. WFS product variants used at over 100 universities

22

WFS features (32)

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 43

WFS PL core assets and their reuse

D i domain engineering

domain
knowledge existing systems in a

domain

Domain experts

WFS PL core assets

Feedback

user
requirements

domain engineering

design and evolution of core assets

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

product developmentProduct
development team

WFSHabrin

reuse of core assets

44

23

How Wingsoft did WFS PL?
 WFS core assets: All-in-one, customizable product

 Set up WFS component architecture: base
components

 Apply common variation mechanisms to embed
features in base components
– Conditional compilation & comments

– Design patterns & reflection

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

– Overloaded fields

– Ant

– Parameter configuration files

45

All-in-one reusable product

WFS core assets
base components Variation points with embedded

WFS f tWFS features

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 46

 To derive a custom WFS, we enable required
features at variation points

24

Conditional Compilation
 To manage fine-grained features in Java code

1
2
3
4

public class FeatureConfiguration {
// Configuration items
public static final boolean DelegationLock = true;
public static final boolean OperationLock = true;4

5
public static final boolean OperationLock true;

}

1
2
3
4
5
6
7

public class FeeInfo {
. . .
public void initInfo(FeeUser user, boolean isPaidFeeInfo)

throws Exception {
//get each year’s fee items
for(int i=0; i < yearTemp.size(); i++) {

if (FeatureConfiguration.DelegationLock

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 47

8
9

10
11
12
13
14

(g g
&& FeatureConfiguration.OperationLock)
// Code when both features are selected

else if (FeatureConfiguration.DelegationLock)
// Code when delegationLock is selected

else if (FeatureConfiguration.OperationLock)
// Code when operationLock is selected

Commenting out feature
code

 To manage fine grained features in non-Java files
– DB schema definitions, JSP files, etc.

1
2
3
4
5
6
7
8

create table userInfo(
uniNo char(21),
name char(30),
password char(21),
id_card char(20),
inYm char(6),

 banks char(50),
// If feature InitPayMode is selected, use the following field

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

9
10
11
12
13

y , g
 // to record pay mode for each student payMode char(1) default 'F'

feeDBUser char(50),

primary key(unino)

);

25

Design patterns
 AbstractFactory with FactoryMethod

 Strategy pattern

P tt d ith th i ti h i h Patterns used with other variation mechanisms such as
reflection and Ant)

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

Example:
Strategy Pattern
with Reflection

49

Overloaded Fields
 Used for the customizing DB schema

 The same field used for different purposed in
different WFS variants
– E.g. the same table field may be used to store bank card

number in one product variant and ID card number in
another one

 Pros: several product share the same DB schema,
not need to configure for specific product

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

not need to configure for specific product

 Cons: hard to understand when many product
variants share the same field, error-prone

50

26

Ant
 For customizing coarse-grained features

 The build tool configures product components
1 <project name="webfee" basedir="." default="main">

Example: configure
DownloadPaymentDetail with Ant

2
3
4
5
6
7
8
9

<target name="copy-src" depends="create-folders">
<!-- Copy java classes of Feature DownloadPaymentDetail -->
<copy todir="${src.dir}">
<fileset dir="${core-src.dir}/${DownloadPaymentDetail}"/>

</copy>
</target>
<target name="copy-webpage"
depends="create-folders">

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 51

9
10
11
12
13
14
15

depends create-folders >
<!-- Copy webpages of Feature DownloadPaymentDetail -->
<copy todir="${web-root.dir}">
<fileset dir="${core-webpage.dir}/${DownloadPaymentDetail}" />

</copy>
</target>

<project>

Parameter configuration files
 Contain both data and control parameters (XML)

 A tool reads the file and does configuration
 e.g., generates the Ant configuration file

1 <webFee>
2
3
4
5
6
7
8
9
10

<paymode>PayByItem</paymode>
<bank-info>
<supportedBank>
<bank>ICBC</bank>
<bank>CCB</bank>
<bank>CMB</bank>

</supportedBank>
<ICBC>

b kU l h // b k i b / l / /b kU l

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 52

10
11
12
13
14
15
16
17

<bankUrl>http: //mybank.icbc.com.cn/servlet/co...</bankUrl>
<keyPath>C: /apache-tomcat-/webapps/…</keyPath>
<keyPass>12345678</keyPass>
<merchantid>440220500001</merchantid>

</ICBC>
</bank-info>
<DownloadDetail>true</DownloadDetail>

</webFee>

27

Variation mechanisms in WFS-
PLA

Techniques # Features

Conditional compilation & comment 31

Ant 19

Overloading fields 13

configuration items 12

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

configuration items 12

Design Pattern & reflection 3

53

Multiple variation mechanism : Pros

 Expressive power: any unique feature of WFS can
be handled by conditional compilation, comments,
Ant, etc.Ant, etc.

 Common variation mechanisms are easy to learn,
apply
– No need for training, third party tools, etc.

On overall: Multiple variation mechanism strategy worked

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 54

fine for WFS-PLA (over 100 custom products maintained
by 1-2 developers)

Recommendation: It is the right strategy for small- to

medium-size SPLs (<10K LOC, <100 features)

28

Multiple variation mechanisms: Cons

 Poorly compatible variation mechanisms used
together create problemsg p

 Using many mechanism together becomes
complicated:
– Manual, error-prone customizations (reuse)

– Manual evolution of core assets (PLA)

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 55

A key reuse problem:

How features affect reusable components?

 If I select feature f – which components are
affected and how?

f ff p

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 56

 If I select features f1, …, f2 – which
components are affected and how?

29

1 function editable_form($form, $id=0, $relModID=null,
 $Container=null, $ContainerID=null)

2 {
global $module_name, $attributes;
If($form==”Edit”){
 $msg=” Please modify the $module_name data”;
 $title="Edit $module_name";

 value=" if(($form=="Edit")||($form=="copy")) echo
$result['Title'];"></td></tr>
If($form==”Edit”){
 // retrieve data, show link to container, if exists…
} elseif ($form==”createInsideContainer”){
 //show link to container
}

Components with embedded features

 $nextAction=”saveChanges”;
} elseif ($form==”createInsideContainer”){
 $msg=” Please enter the $module_name data”;
 $title="New Composed $module_name ";
 $nextAction=”saveInstanceInsideContainer”;
} elseif ($form=="copy"){
 $msg="Please enter the ".$module_name." data";
 $title="Copy ".$module_name;
 $nextAction="saveCopy";
}else{
 $msg=” Please enter the $module_name data”;
 $title="New $module_name ";
 $nextAction=”saveInstance”;
}

3 If($form==”Edit”){

5 foreach($attributes as $attribute)
 <tr><td>echo $attribute; </td>
 <td><input name="Data[echo $attribute;]"
 type="echo ($module_name=="File" &&
 $attribute=="FileUpload")? "file":"text";"
 value="if(($form=="Edit")||($form=="copy")) echo
$result[$attribute];" >
 </td></tr>
}

6 If($form==”Edit”){
 <tr><td>Change Remark</td>
 <td><textarea name="Remark" ></textarea></td></tr>
}
<input type="hidden" name="cmd" value="$nextAction">
}

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 5757

(){
 //check user has rights to edit instance…
} elseif ($form==”createInsideContainer”){
 //check user has rights to edit container…
}elseif($form=="copy"){
 //retrieve data to be copied
}

4 Title($title);
<form><table>
<tr><td> echo($msg); </td></tr>
<tr><td>Title</td>
<td><input name="Data[Title]" type="text"

}

Impact of features on components

f1 f2 f3 f4

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 58

30

Feature management in SPL

 Feature may mean any product characteristic

 One feature may affect many product One feature may affect many product
components

Features interactions:

 Functionally interdependent features:
– If I select one feature I must also select some

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 59

other features

 One feature may affect implementation of
other features

Types of features

 Coarse-grained feature: implemented in
source files that are included into asource files that are included into a
customized product when feature is selected

 Fine-grained feature: affects many product
components, at many variation points

Mixed grained feature: involves both fine

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 60

 Mixed-grained feature: involves both fine-
and coarse-grained impacts on components

31

Select features
for WFSHabrin

f1 f2 f3 f4

Reuse challenge:
Tracing the impact of features on components

Manual
customization

WFSHabrin

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

customization

reusable components
with variation points

61

Reuse-based WFS development
We wish to build WFSHabrin

Analyze requirements for WFSHabrin

select features for WFSHabrin
Done

failed
no fit

OK

select features for WFSHabrin

Find components affected
by selected features

1

Customize components

2

T t WFSHabrin

5
WFS core assets

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

Customize components

Integrate WFSHabrin

4

Test WFSHabrin

62

Implement any new features

3

WFS core assets
base components

32

1. Analyze requirements for WFSHabrin : select variant features

Reuse-based WFS development

2. Initial phase:
a) Understand the impact of variant features on components

b) Find all the feature-related variation points

variant feature
reusable components

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 63

3. Iteration phase:
a) Customize components at variation points

b) Implement any new features and components

c) Integrate components, test WFSHabrin

In the course we study better
ways to manage features

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 64

33

WFS PL in subset of XVCL

• XML-based Variant Configuration Language

A i i i i h i f S• A construction time variation mechanism for SPL

• All-in-one solution to managing features in SPL

• Used in sync with conventional programming

technologies:

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 65

technologies:

• Java/XVCL, ASP/XVCL, PHP/XVCL, J2EE/XVCL, .NET/XVCL

• Public domain, available at sourceforge

http://xvcl.comp.nus.edu.sg

SPC // specifies feature selection for WFSNEW

<set a = “A” />

<set d = “D” />

<set b = “”/> <set c = “”/>

<adapt DBSchema/>

<adapt FeeUser/>

Suppose A, B, C, D are all WFS features

and we selected A and D for WFSNEW

DBSchema

<set v = @a />

<select v > // feature A affects DBSchema here

<option A> if feature A is selected

<otherwise> if A is not selected

</select>

FeeUser

public class FeeUser {

…some code for FeeUser

<set v = @a @c @d />

<select v > // feature s A, C and D affect FeeUser here

<option A> code for feature A

<option A D> code for feature interaction A and D

i A C D d f f A C d D

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

…some code for DBSchema

<set v = ..>

<select v > // another variation point in DBSchema

<option A C D> code for feature interaction A, C and D

<otherwise>

</select>

… some code for FeeUser

<set v = .. >

<select v > // another variation point in FeeUser

66

34

SPC
// Login feature group
<set IDCard = "IDCard"/>
<set SSO = "SSO"/>
<set Direct = ""/>
// Paymode feature group
<set PayByItem = "PayByItem"/>
<set PayByYear = ""/>
<set PayByYearOrder = ""/>
<set InitPayMode = "InitPayMode"/>

<set PayMode = "PayByYear"/>

<adapt FeeOrder />
<adapt DBSchema/>
<adapt FeeUser/>
...

FeeOrder
<set PayMode = "PayByItem"/>

public class FeeOrder {
public init(FeeUser user, FeeInfo info,
HttpServletRequest request) {

...

DBSchema
create table userInfo(

uniNo char(21),
name char(30),
password char(21),
id_card char(20),
inYm char(6)

FeeUser
public class FeeUser {

public FeeUser() throws Exception {
<set Login = @IDCard @SSO @Direct />

// feature s IDCard, SSO and Direct affect FeeUser
<select Login >

<option IDCard>
…
<option IDCard SSO>

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

try
@PayMode c = new @PayMode();

c.init (. . .);
} catch(Exception e) {

e.printStackTrace();
}

}.. .
}

inYm char(6),
banks char(50),

<select InitPayMode >
<option InitPayMode >

payMode char(1) default 'F',
</select>
feeDBUser char(50),

primary key(unino)
);

p

</select>
}
public boolean login() throws Exception{

…
<select InitPayMode >
<option "InitPayMode">

payMode = Global.nTrim
(rs.getString("payMode"

)).charAt(0);
</select>

....} }
67

Generation of custom WFS products

SPC WFS-1 SPC WFS-2 SPC WFS-3

variant features

WFS-1

product
derivation

XVCL
Processor

WFS-2

FileManager
public class FileManager .. {
...
<set v = @LookAheadCache />

<select v>
<option LookAheadCache >

code for LookAheadCache
</option>

Evictor
public class Evictor {
<set v= @CriticalEviction
@MemoryBudget/>
<select v>

<option CriticalEviction >

code for CriticalEviction
<option CriticalEviction MemoryBudget >

code for interacting features @Evictor
</select>

LogBuffer
public class FileManager .. {
...
<set v = @LookAheadCache />

<select v>
<option LookAheadCache >

code for LookAheadCache
</option>

EnvironmentImpl
public class FileManager .. {
...
<set v = @LookAheadCache />

<select v>
<option LookAheadCache >

code for LookAheadCache
</option>

BaseManager

SPC WFS 1 SPC WFS 2 SPC WFS-3

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 68

WFS-3

custom WFS products

DB components
in XVCL

Reuse is automated by XVCL Processor

35

Reuse-based WFS development
We wish to build WFSHabrin

Analyze requirements for WFSHabrin

select features for WFSHabrin
Done

failed
no fit

OK

select features for WFSHabrin

Find components affected
by selected features

1

Customize components

2

T t WFSHabrin

5
WFS core assets

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

Customize components

Integrate WFSHabrin

4

Test WFSHabrin

69

Implement any new features

3

WFS core assets
base components

1. Analyze requirements for DBNew : select variant features

Reuse-based DB development

2. Initial phase:
a) Understand the impact of variant features on components

b) Find all the feature-related variation points

variant feature
reusable components

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 70

3. Iteration phase:
a) Customize components at variation points

b) Implement any new features and components

c) Integrate components, test DBNew

36

Problems still remain:

 Things work fine as long as we reuse features
“as is”

 Base components with embedded features may
be complex to work with

 To modify feature, we must:
– find all variation points relevant to a given feature

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

– understand feature

– understand feature interactions

 Adding new feature can be also complex

Feature queries
 FQL: Feature Query Language

 A tool locates and shows all variation points relevant to a
given featuregiven feature

 Show all variation points where feature “f” affects components

 Show all variation points where feature “f” interacts with other

Declare option o
Select o

where o.feature=”f”

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

S p
features

Declare option o
Select o

where o.feature=”*f*”

72

37

Viewing feature code

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 73

Summary of approach
 Embed features in reusable components

 A mechanism to compose required features
into the product

 Mark each variation point with names of
interacting features

 Formally inter-link all variation points

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 74

affected by a given feature

 Query-based visualization of features and
their interactions

38

Evaluation: problems solved
 Legality of feature selection

– Validation done prior to feature processing (Zhang, H)

 Automation of product derivation
– feature composition into base done by XVCL Processor

 Feature comprehension
– each variation point marked with names of interacting

features

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 75

– inter-linking all variation points affected by a given feature

– query-based visualization of features and their interactions

Problems still remain
 Solution gets complicated as the size of product increases,

and the number of features and feature dependencies grows
– True, we can find feature code – but how to understand, maintain and , ,

reuse features if their code spreads though many variation points, in
many base components?

 Assumption of “base components” is limiting
– we can’t contain the impact of features at the implementation level

only – use design!

 Direction for possible improvements:

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 76

 Direction for possible improvements:
– Reduce the number of variation points

– Relax the assumption of a “base components”

– Represent products in generic form (full XVCL)

39

An example of perfect reuse

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 77

STL
 STL: a library of C++ classes and functions:

– containers: stack, queue, set, …

– operations: sort, search, …

i il d t t t d ti diff ti t d similar data structures and operations are differentiated
by all kinds of properties-features:

data type

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 78

 for each legal combination of features (container,
operation, data type, etc.) – we need a class

40

STL classes
 we need a lot of classes and functions:

 Stacks of int, float, double, char, …
– IntStack, ShortStack, LongStack, FloatStack …

 Queues of int, float, double, char, …

– IntQueue, ShortQueue, LongQueue, FloatQueue …

 Sets:
– IntSet, ShortSet, LongSet, FloatSet …

– IntSet (Hashed Single Unique)

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 79

IntSet (Hashed, Single, Unique)

– IntSet (Sorted, Pair, Unique)

 search, sort functions for different Containers
– SortStack, SortQueue, SearchStack, SearchSet, …

 etc.

Perfect reuse
 STL is a perfect example of effective reuse

– A template (generics) represents a group of
similar classes in generic, adaptable form:similar classes in generic, adaptable form:

Stack <T>
Queue<T>
Set<T>
Sort <T>
Search<T>

IntStack

template

instantiation

ShortStack

IntQueue

ShortQueue

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 80

Question: Can we scale templates to a
general reuse paradigm?

41

STL uses theSTL uses the

principle of generic design

to tackle repetitions, and

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 81

to achieve reuse

STL as a Product Line
 each concrete class we consider as a

member of STL Product Linemember of STL Product Line

– IntStack, ShortStack, LongStack, FloatStack …

 templates form a PLA for STL

Stack <T> IntStack

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 82

Queue<T>
Set<T>
Sort <T>
Search<T>

template

instantiation

ShortStack

IntQueue

ShortStack

42

STL Product Line

STL design and evolutionSTL d i

domain
knowledge existing systems in a

domain

STL

STL design and evolutionSTL designers

Feedback

user
requirements

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 83

instantiate and reuse STL
templates

programmers program

Interesting questions
1. What’s the essence of STL’s way of reuse?

2. How would STL look like if we designed it using
architecture/component approach?

3. Which one is more effective in tacking repetitions?

4. Can we apply STL-like solution to reuse in other
application domains?

 Can we built parameterized PLAs in other domains?

h d h

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 84

 When we can and when we cannot?

5. Can we enhance architecture/component approach to reuse
with the STL’s ability to tackle repetitions?

In this course we try to answer these questions

43

 A simple mechanism for unrestricted generic design

XVCL
XML-based Variant Configuration Language

p g g

 Automated by XVCL Processor

 Used in sync with conventional OO/component technologies:

– C, C++, Java, ASP, PHP, JEE, .NET, etc.

P bli d i il bl t htt // l d

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 85

 Public domain, available at http://xvcl.comp.nus.edu.sg

 XVCL method supported by XVCL Workbench

 Based on Bassett’s frames, Frame Technology™, Netron, Inc

Generic components with XVCL

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 86

44

Toy example: similar Account classes

class SavingsAccount {
public static void main(String[] args) {

System out println(“This is a bank account”);System.out.println(This is a bank account);
System.out.println(“Savings Account”);

}
}

class CurrentAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Current Account”);

}
}

class LoanAccount {

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

}public static void main(String[] args) {
System.out.println(“This is a bank account”);

System.out.println(“Loan Account”);
System.out.println(“ Interest”);

}
}

87

SPC
<set className = SavingsAccount />

<set messages = This is a bank account, Savings Account/>

Generic class Account

Account
class @className {

public static void main(String[] args) {
<while messages>

l S i A t {

<adapt Account />

XVCL Processor

Savings

Loan

Current

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 88

System.out.println(“@messages”);
</while>

}
}

class SavingsAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Savings Account”);

}
}

45

Deriving Current Account

SPC
<set className = CurrentAccount />

<set messages = This is a bank account, Current Account/>

Account
class @className {

public static void main(String[] args) {
<while messages>

l C tA t {

<adapt Account />

XVCL Processor

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 8989

System.out.println(“@messages”);
</while>

}
}

class CurrentAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Current Account”);

}
}

Deriving Loan Account

SPC
<set className = LoanAccount />

<set messages = This is a bank account, Loan Account, Interest />

Account
class @className {

public static void main(String[] args) {
<while messages>

<adapt Account />

XVCL Processor

l LoanAcco nt {

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 90

System.out.println(“@messages”);
</while>

}
}

class LoanAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Loan Account”);

System.out.println(“Interest”);
}

}

46

Deriving three Account classes
class SavingsAccount {

public static void main(String[] args) {
System.out.println(“This is a bank account”);

System.out.println(“Savings Account”);
}

}

SPC
<set className = SavingsAccount, CurrentAccount,

LoanAccount />
<set common = This is a bank account/>

<while className>
<select option = className>

<option SavingsAccount >
l C tA t {<set messages = @common, Savings Account />

<adapt Account />
<option CurrentAccount >

<set messages = @common, Current Account />
<adapt Account />

<option LoanAccount >
<set messages = @common, Loan Account, Interest />

<adapt Account />
</select>

</while>

class CurrentAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Current Account”);

}
}

class LoanAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Loan Account”);

System.out.println(“Interest”);
}

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 9191

}
}

Account
class @className {

public static void main(String[] args) {
<while messages>

System.out.println(“@messages”);
</while>

}
}

XVCL Processor

<adapt>-driven composition of x-frames

Start End ! SavingAccount {

…

}SPC

Saving.s Current.s

XVCL
Processor

}

CurrentAccount {

…

}

other

LoanAccount {

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 9292

Account
processing path

generated classes

LoanAccount {

…

}

how does this compare to generics/templates so far?

47

Evolution of classes

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 9393

Foreign currency account

 we need class FcAccount for foreign currency

 class FcAccount needs some extra methods as
compared to other account classes

class FcAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Foreign Account”);

}

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 9494

}
// extra methods for FcAccount

int convert () { … }
int interest () { … }

}

48

<set className = SavingsAccount, CurrentAccount, LoanAccount, FcAccount />
<set common = This is a bank account/>

<while className>
<select option = className>

<option SavingsAccount >
<set messages = @common, Savings Account />

<adapt Account />
<option CurrentAccount >

<set messages = @common, Current Account />
<adapt Account />

<option LoanAccount >
< t @ L A t I t t />

class SavingsAccount {
}

<set messages = @common, Loan Account, Interest />
<adapt Account />

<option FcAccount >
<set messages = @common, Foreign Account />

<adapt Account >
<insert extra-methods>

// extra methods for Foreign Account:
int convert () { … }
int interest () { … }

</insert>
</select>

</while>

class LoanAccount {
}

class CurrentAccount {
}

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 9595

Account
class @className {

public static void main(String[] args) {
<while messages>

System.out.println(“@messages”);
</while>

}
<break extra-methods>

}

/while

XVCL Processor

class FcAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Foreign Account”);

}
// extra methods for Foreign Account:

int convert () { … }
int interest () { … }

}

Summary of XVCL mechanisms

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 96

49

SPC
<set v = X />

<set Type = Byte, Char, Double, Float, Int, Long, Short />
<adapt A>
<adapt B>

<insert b>
code spcp

</adapt>

A
<while Type>

class @TypeBuffer {
<select option = elmntType >

< ti B t >

B
<set v = Y />

reference to v: @v

<adapt C>

adapts

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 9797

<option Byte>
@Type b;

<option Char>
@Type c;

</select>

</while>

<insert b>
code bbbb

</adapt>

C

<break b>

code cccc

</break>

Processing rules
 the processor traverses x-framework in depth-first order, as

dictated by <adapt>s embedded in x-frames

 the processor interprets XVCL commands embedded in

visited x-frames and emits a custom program into one or

more files

 x-frames are read-only. The processor creates and modifies a

copy of the adapted x-frame and never changes the original

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 98

py p g g

x-frame

 customization commands are specified for each <adapt A>

 recursive adaptations are not allowed

50

Project Collaboration Environment

(PCE)(PCE)

Software Product Line

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 9999

Project Collaboration Envir (PCE)

 PCE stores staff, project data, facilitates project progress

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 100

p j p j p g
monitoring, communication in the team, etc.

 e.g., Module Staff: allows the user to create, edit, and update

data about staff members, assign staff members to projects, etc.

51

PCE product variants

PCESmall-1

PCEBig-1

reuse

PCEMyTeam

PCE

PCESmall-2

PCESmall-3
PCEBig-2

PCEBig-2-Dept1

PCEBig-2-Dept2

PCEBig-2-Dept3

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 101

PCEBig-3

PCEAgile

PCEWaterfall

PCEAgile-Small

PCEAgile-Big

PCE domain analysis

 analysis of requirements for many PCEs

 each PCE involves entities and operations each PCE involves entities and operations

entities:

operations:

Staff Project Product

Create Edit Delete Display Save

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 102102

 PCE modules implement operations for various
entities

52

Modules for Staff, Project, …

More detailed analysis of PCE domain and design next slide

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 103103

More detailed analysis of PCE domain and design, next slide

Modules for Staff, Project, …
PCE

Staff ... Project ...

Delete Staff

Create D isplayEdit Delete

Create
Staff inside
container

create Staff
Edit Staff

Sort by
num ber
of reads

Display all
Staff

Delete
Project

Create D isplayEdit Delete

Edit Project

Create
Project
inside

container
Sort by
num ber
of readsDisplay

D isplay all
Projects

create
Project

Link w ith
Project

Delete link
with Project

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 104104

Printer-
friendly

of reads

Sort by
creation

tim e

Sort by
T itle

D isplay
Staff data

Printer-
friendly

of reads

Sort by
creation

tim e

Sort by
T itle

p y
Project

data

 Operations Create for Staff, Project, Product, etc.

are similar but also different

53

Group of similar operations:
Create[E]

CreateStaff UI CreateProject UI CreateProd ct UI

CreateStaff CreateProject CreateProduct

CreateStaff.BL
validateStaff()

CreateProject.BL
validateProject()

CreateStaff.UI
createStaff()

CreateProject.UI
createProject()

CreateProduct.BL
validateProduct()

CreateProduct.UI
createProduct()UI

BL

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 105105

Staff.DB
addStaff()
Staff Table

Project.DB
addProject()
Project Table

Product.DB
addProduct()
Product Table

DB

Group of similar operations:
Edit[E]

EditStaff EditProject EditProduct

EditStaff.BL
validateEditStaff()

EditProject.BL
validateEditProject()

EditStaff.UI
editStaff()

EditProject.UI
editProject()

EditProduct.BL
validateEditProduct()

EditProduct.UI
editProduct()UI

BL

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 106106

Staff.DB
editStaff()
Staff Table

Project.DB
editProject()
Project Table

Product.DB
editProduct()
Product Table

DB

54

Generic representation of
component patterns in XVCL

CreateTask
User Interface

CreateProject
User Interface

CreateStaff
User Interface

executes

UI

visualizes

Task Table

CreateTask
Business Logic

Project Table

CreateProject
Business Logic

Staff Table

CreateStaff
Business Logic

executes

BL

DB

visualizes

accesses

Create[E].UI

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 107

Create[E].BL

Create[E].DB

generic Create[E].gen in XVCL

E = Staff, Project, Task,…

Generating Create[E] modules
CreateStaff
User Interface

CreateStaff
Business Logic

SPC
PCE

Staff Table

Project Table

CreateProject
Business Logic

CreateProject
User Interface

Create[E].UI

XVCL

SPC
Staff

SPC
Project

SPC
Task

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 108108

Task Table

CreateTask
Business Logic

CreateTask
User Interface

Create[E].BL

Create[E].DB

XVCL
Processor

PCE-PLA in XVCL

55

Generic PCE with XVCL
in SPC, we specify entities and
operations we need in PCE and
entity-level customizations

here we specify a component pattern for each
operation and customizations for UI, BL and
DB components

here we specify customizations per entity

SPC

Create [E] Edit [E]

Level 1:

Level 2:

Level 3:

others

Create[E].BL Create[E].DBCreate[E].UI Edit [E].BL Edit [E].DBEdit [E].UI

i l

generic operations
(patterns of component

generic operation
components

p y p y
action: CreateStaff, CreateTask, EditStaff,
EditTask, etc.

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 109109

Level 4:

Level 5:

generic classes

generic methods

feature diagram

Buffer

Element Type
(T)

Access Mode
(AM)

Memory Allocation
Scheme (MS)

Direct

Native

View Buffer
(VB)

Read-Only Writable

Non-direct

Non-nativeLittle-Endian Big-Endian

double
float

char

byte

short

long
int

Alternative
features

Mandatory
features

Byte Order
(BO)

Optional
features

specification
of custom PCEs

SPC PCE-1 SPC PCE-2 SPC PCE-3 SPC PCE-4

feature selection

PCE-Module

Create [E] Edit [E] others

Create[E].BL Create[E].DBCreate[E].UI Edit [E].BL Edit [E].DBEdit [E].UI

generic classes

generic operations
(patterns of components)

generic operation
components

XVCL
Processor

PCE-2

PCE-1

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 110110

generic, reusable x-frames

g

generic methods

Processor

custom PCE products

PCE-3

PCE-4

56

What can we achieveWhat can we achieve

in XVCL way?

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 111111

Experiences, Evaluation

Web Portal in ASP/XVCL
by ST Electronics (Info-Software Systems) Pte Ltdby ST Electronics (Info Software Systems) Pte Ltd

Details in : Pettersson, U., and Jarzabek, S. “Industrial Experience with Building

a Web Portal Product Line using a Lightweight, Reactive Approach,” ESEC-

FSE'05, European Software Engineering Conference and ACM SIGSOFT

Symposium on the Foundations of Software Engineering, Sept. 2005, Lisbon,

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 112112

pp. 326-335

57

4
XVCL-based development

From PCE to PCE Product Line
Conventional ASP Development

1

4

PCE-PLA in XVCLPersonal Portal
(home) First PCE

(office)

5
2 3 6

REACTIVE

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 113113

New PCEs
(generated)

People Tracking
(business product - SARS) More PCEs

(office)

Experiences from ASP/XVCL project:

 STEE has built and maintains over 20 different portals

– based on XVCL-enabled Product Line architecture

 Short time (less than 2 weeks) and small effort (2
persons) to start seeing the benefits

 High productivity in building new portals with XVCL

– 60% - 90% reduction of code needed to build a new portal

– estimated eight-fold reduction of effort

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 114114

– estimated eight-fold reduction of effort

 Reduced maintenance effort for released portals

– for the for first nine portals, managed code lines was 22% less
than the original single portal

58

XVCL reuse capabilities
PLA design:

 Handle any product-specific customizations (like in case of common
variation mechanisms)

 XVCL captures knowledge of product customization XVCL captures knowledge of product customization
– no need to store component versions in CVS as they can be re-generated

Product derivation (reuse)

 Specify unique properties of a product separately from core
components

 System-wide propagation of parameters, customizations for reuse

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 115

 Automation by XVCL Processor

PLA and product evolution

 Propagate changes of core components selectively to products

 Modify products without disconnecting them from core components

XVCL Workbench

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek

59

Summary

 Use one variation mechanism instead of
many

 Unrestricted customizations

 Automation of reuse

 Evolution of products and reusable
components

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 117117

components

Trade offs

 XVCL applied with good results:

– only in small- to medium-size projectsy p j

– agile development methods

 Integration with standard processes is a
challenge

– XVCL Workbench

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 118118

– technology transfer and methodological
guidelines

60

technology Ttechnology T
HLLHLL
OOOO
J2EE NETJ2EE, .NET, …

cons

Impact of technology on productivity

J2EE, .NET, J2EE, .NET, ……

overhead of T:overhead of T:
learning curvelearning curve
complexitycomplexity
problems inducedproblems induced

problems solved by Tproblems solved by T

highhigh--level programming languages HLLlevel programming languages HLL
((much productivity gainmuch productivity gain))

pros

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 119119

 technology impact – benefit: balancing cons and pros

– impact on maintenance – a critical factor in technology evaluation

where do we place technologies on this scale?

Q & A

CS6201 Set #1 Copyright (C) 2010 Stan Jarzabek 120

--- The End set #1---

