
1

CS6201 Software ReuseCS6201 Software Reuse
Lecture Notes Set# 4: More on Reuse and PLs

1. Reuse: general observations, reuse stats

2. How companies realize PL approach?

3. Comments on SOA and PLs

4. Many meanings of “software architecture”

5. Reuse: hardware vs. software

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
1

Simalarity and reuse problemSimalarity and reuse problem
 Systems Si evolved from the same original system

– They are all similar to each other but also different

Components reused after adaptationsComponents reused after adaptations

Code unique to each SiCode unique to each Si

user interface,user interface,
business logicbusiness logic

databasedatabase

Little reuse orLittle reuse or
tedious reusetedious reuse

here are reuse opportunitieshere are reuse opportunities
and challengesand challenges

MDD, DSLMDD, DSL

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek

Components reused “as is”Components reused “as is”

S1S1 S2S2 S3S3 S5S5S4S4 S7S7S6S6

middlewaremiddleware

databasedatabase

Reuse okReuse ok

powerpower--genericgeneric
with XVCLwith XVCL

2

Levels of reuse infrastructureLevels of reuse infrastructure
knowledge of how to build systems in application domains with reuse of

components : adapt, compose, configure, extend

5

6

other off-shelf and own components used “as are”

components reused company-wide (adaptable)

domain-specific components (adaptable))

4

3

5

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
3

computers, networks

operating system & DCPs: EJB, J2EE, .NET, CORBA

components used “as are”: 2

1

Objectives of reuse and PLObjectives of reuse and PL
 Reduction of the product development

tcost

 Reduction of time-to-the-market

– Expanding the range of products to address

new customers or market segments

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
4

new customers or market segments

 Reduction of maintenance

3

Transition to reuseTransition to reuse--based developmentbased development

software
system A

development project
A

"from scratch" development

software
system B

software
system C

development project
B

development project
C

adoption of reuse
software
system Areuse based development

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
5

software
system B

software
system C

system Areuse-based development

reusable assets

Reuse affects a companyReuse affects a company
 reuse requires changes in a company:

– culture: develop for others and use others work

policies: setting up reuse procedures reward system monitoring– policies: setting up reuse procedures, reward system, monitoring
reuse

– structure: domain engineers and product developers

– technology: reuse methods and tool

Company
Structure

Company
Policies

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
6

 reuse can only be implemented incrementally

Company
technologyreuse

Company
Culture

4

Maturity of reuse practiceMaturity of reuse practice

reuse process
t itacross companies

the scope of reuse

systematic

coordinated

integrated

opportunistic

maturity acossco pa es

company-wide

many teams

one team

many similar projects

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
7

application
generators

frameworks
and

architectures

components

one project

reuse technology

How reuse scope affects reuse benefitHow reuse scope affects reuse benefit

Productivity

th j t

two projects

three projects
1.4

1.2

1.0

0.8

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
8

Proportion of code
reused

one project

0.70.60.50.40.3

0.6

5

Some reuse statistics (old)Some reuse statistics (old)
 Hitachi: reduced number of late projects from 72% to 7% in

4 years

 Toshiba: improved productivity 3 times in 9 years 50% code Toshiba: improved productivity 3 times in 9 years, 50% code
reuse

 Toshiba: reduced error rate from 7-20 per 1 KLOC to 2-3

 Fujitsu: improved productivity by 2/3, reduced error rate by
factor of 10

 NEC: increased productivity by 26% to 91%

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
9

 NobelTech: doubled productivity

 HP: shortened time-to-market by factor of 4, reduced error
rate by factor of 10

 frame technology (Netron): up to 90% reuse(Bassett 97)

Frame Technology (by Netron, Inc)

 Applied to large business systems in COBOL

Frames in industryFrames in industry

 Productivity indicators based on assessment by QSM:

– “time-to-market reduction by 70%”

– “project costs reduction by 84%”

“reuse percentage from 50% to 95%”

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
10

– reuse percentage from 50% to 95%
Details in: Bassett, P. Framing software reuse - lessons from

real world, Yourdon Press, Prentice Hall, 1997

6

XVCL in industryXVCL in industry
STEE experience: Web Portals in ASP/XVCL

 Over 20 different portals built/maintained with ASP/XVCL

 Short time (less than 2 weeks) and small effort (2 persons) to
start seeing the benefits

 Development productivity indicators:
– 60% - 90% reduction of code needed to build a new portal

– estimated eight-fold reduction of development effort

 Maintenance productivity indicators:

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
11

– for the for first nine portals, managed code lines was 22% less than the
original single portal

Retive Solutions PTe Ltd: CMRS-PL in JEE/XVCL

 On-going project; objective: technology transfer

What impedes reuse?What impedes reuse?
 Technology factors

– There is nothing to reuse

– Software component is too inefficient for a task in hand

– Software component is too specialized for a task in hand

– Hard to modify: a software component does not do
exactly what we want but it is difficult to modify it

– Hard to integrate a software component with the rest of
the system

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
12

y

– The cost of finding, changing and testing of a software
component is bigger than the cost of writing anew

– Poor software structure - programmers do not understand
a software component

7

What impedes reuse?What impedes reuse?
– Software documentation:

– Lack of requirement/design/code documentation -

programmers do not understand a software component

– Inconsistent, ambiguous and incomplete documentation:

we cannot determine what a given software component

does without examining the code

 Psychological factors:

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
13

y g

– Not Invented Here syndrome

– It is more fun to write software anew rather than to reuse.

– Reusing may mean that I cannot do this myself.

What impedes reuse?What impedes reuse?
 Organizational and managerial factors:

– failing to establish reuse-oriented company
policies and infrastructurepolicies and infrastructure
 no incentives for writing reusable software and for reusing

software

– failing to measure and demonstrate the benefits
of reuse; high initial cost of reuse programme

– lack of commitment and support for reuse
f hi h t

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
14

programme from high management
– failing to cope with company changes triggered

by reuse
– not providing enough training

8

PL ProcessesPL Processes

Domain
Analysis

PL requirements
evolution

Analysis

A li tiPLA

Feed-forward and
feedback loops

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
15

Application
development

PLA
evolution

Software Engineering
Standards

custom product
releases

How companies realize PLs?How companies realize PLs?

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
16

9

What is PL?What is PL?
 A software product line is, fundamentally, a set of related

products. Each product is formed by taking applicable
components from the base of common assets, tailoring them
as necessary through preplanned variation mechanisms such
as parameterization or inheritance, adding any new
components that may be necessary, and assembling the
collection according to the rules of a common, product-line-
wide architecture under the auspices of a production plan.
New or updated core assets are rolled back into the core asset
base for future systems.

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
17

 P. Clements on PL, SEI: http://www.sei.cmu.edu/news-
at-sei/columns/software-product-lines/software-
product-lines.htm

Two types of PLsTwo types of PLs
 Fine-granularity components in PLA

– Many components reused in each product
– PLA: Component versions from past products
– Complex inter-component dependencies
– Example: Bosch PL

 Large-granularity components in PLA
– Smaller number of large components in PLA

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
18

g p
– Standardization, documentation, process
– Educating staff
– Example: Tektronix PL

10

Product derivation: BoschProduct derivation: Bosch
1. Analyze requirements for new product: select variant features

2. Initial phase:
a) understand the impact of variant features on components

b) select component configurations that “best match” new product

variant feature
reusable components

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
19

b) select component configurations that best match new product

3. Iteration phase:
a) adapt selected components, replace/add yet other components

b) integrate components, validate the new product

Comments on Bosch PLComments on Bosch PL
 the impact of variant features spreads through many

components!
PLA DigGemDigGem

 explosion of look-alike component versions
– same functionality implemented in variant forms in hundreds of

product

derivation

reusable componentsvariant features

HuntHunt

JumpJump

FeedingFeeding

specific products
PL members

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
20

same functionality implemented in variant forms, in hundreds of
similar component versions

 complex, hidden dependencies among reusable components

 how do I reuse already implemented functionality?
- selecting and adapting component configurations for reuse

11

Product derivation: TektronixProduct derivation: Tektronix
1. Analyze requirements for new product: select variant features

2. Understand the impact of variant features on components

3. Iteration phase:

variant feature
reusable components

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
21

p

a) adapt selected components, replace/add yet other
components

b) integrate components, validate the new product

Comments on Tektronix PLComments on Tektronix PL

 techniques for component generalization:
– cpp, configuration parameters

 not much global controls to streamline customizations across

software assets

 little automation during product derivation

– wizards and GUIs for customization during product

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
22

12

Reuse problems (general)Reuse problems (general)
 Complex and invisible impact of variant features on

components

PLA
DigGemDigGem

H

 Much manual work during product derivation
– For given variant features – which components should I customize and

h ?

product

derivation

reusable componentsvariant features

HuntHunt

JumpJump

FeedingFeeding

specific products
PL members

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
23

how?

– Not much global controls and automation to streamline

customizations across software assets

 Difficulty to reuse of already implemented functionality

Selecting and scoping a PL Selecting and scoping a PL
 Selecting a PL is driven by business considerations

– there must be a business value in a PL:there must be a business value in a PL:

 the profits must outweigh the investment in reuse

 many customers requesting different variants of a system

 savings in development cost, time-to-the-market

 Scoping a PL:

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
24

– what should we engineer for reuse in a given PL?

 functional variants?

 portability across a range of platforms?

13

 Proactive approach – domain engineering

– trying to anticipate variants (domain analysis)

Building and evolving PLABuilding and evolving PLA

– design pf a PL architecture to cater for variants

 Extractive approach

– extract features from existing system(s)

– design PL architecture based on that

 Reactive approach (iterative)

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
25

 Reactive approach (iterative)

– add new variants as they appear in systems built for
various customers

– refine a PL architecture with variants as they come

Techniques for reuseTechniques for reuse
1. libraries of functions (sine, sqrt, etc.)

2. macros, pre-processors (cpp)

3 code generators 4GL CASE IDE GUI3. code generators, 4GL, CASE, IDE, GUI

4. parameterization: generics (Java, C#), templates (C++), …

5. OO approach, design patterns, OO frameworks

6. software architectures and component-based approaches

7 platforms: J2EE NET

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
26

7. platforms: J2EE, .NET

8. ERP packages such as SAP, PeopleTools

– accounting, payroll, customer order processing

9. Generative techniques such as XVCL

14

SOA, Web servicesSOA, Web services

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
27

ServiceService--Oriented Architecture (SOA)Oriented Architecture (SOA)

 Web applications built out of loosely-integrated
services distributed over WWW

E h i f b i f i Each service performs some business function
– a credit checking service

– a stock quote service

– a purchasing service

 Same services can be combined
t th t t i il

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
28

together to create many similar
applications (reuse)

15

Software Software PProduct roduct LLine (ine (SPL)SPL)

 A family of similar software products that

satisfy needs of a particular customer group

 These products are managed from a common,

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek

reusable base of SPL core assets

Feature management challengeFeature management challenge

 One feature may affect many product
componentsp

Features interactions:

 Functionally interdependent features:
– If I select one feature I must also select some

other features

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
3030

 One feature may affect implementation of
other features

16

Types of featuresTypes of features

 Coarse-grained feature: implemented in
source files that are included into asource files that are included into a
customized product when feature is selected

 Fine-grained feature: affects many product
components, at many variation points

Mixed grained feature: involves both fine

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
3131

 Mixed-grained feature: involves both fine-
and coarse-grained impacts on components

Steps towards RPG SPLSteps towards RPG SPL

 A key to reuse are flexible, adaptable components

 Design architecture and reusable components for RPGsg p

– Apply extra variation mechanisms for component adaptation

 Static adaptation and configuration of components to build custom

products
DigGemDigGem

HuntHunt

DigGemDigGem

HuntHunt

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
32

variant featuresvariant features

Hunt

JumpJump

FeedingFeeding

gamegame

derivationderivation

variant featuresvariant features

Hunt

JumpJump

FeedingFeeding

RPG PL RPG PL
core assetscore assets

17

SOA and SPLSOA and SPL
 High-level goal is the same for both SOA and SPL:

– Cost-effective engineering of similar applications

Apply reuse for rapid development of applications– Apply reuse for rapid development of applications

 Technical challenges are also similar:
– Component/service description (reuse)

– Adaptation of components/services

– Flexible composition and reconfiguration of
components/services

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek

p

– Architectures/workflows

– Variation mechanisms

We now examine closer similarities and differences We now examine closer similarities and differences
between SOA and conventional SPLsbetween SOA and conventional SPLs

SOA vs. conventional SPLSOA vs. conventional SPL
 Service-based products form SPL on SOA

 Services vs components Services vs. components

SOA service SPL component

Service implements well-defined business function Component may be just any
building block for products

Service description : WSDL, ontologies
must describe service advertisement, discovery;

Component description: API;
parameters

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
34

y
service quality

p

Service orchestration Use of architectures

Third part services In-house (and third party)
components

18

Dynamic vs. static configurationDynamic vs. static configuration
 Service based products must be customizable,

re-configurable (at runtime)

 A conventional SPL, typically relies on static
customization (at design time)

dynamic static

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
35

Software Architecture may Software Architecture may
mean many things …mean many things …

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
36

19

Goals of software architecturesGoals of software architectures

 to achieve uniformity across products

 to improve software productivity and quality

 to prevent programs from decaying

 to facilitate communication between stakeholders:
– business and technical people

– users and developers

 what constitutes an architecture depends on the

CS6201 Set #5 PLA designCS6201 Set #5 PLA design  2007 Stan Jarzabek2007 Stan Jarzabek
37

 what constitutes an architecture depends on the

perspective of a given stakeholder

 different perspectives yield different architectures

Software architectureSoftware architecture

functional requirements quality attributes

architecture must satisfy concerns of different stakeholders:

software architecture

usability, performance, reliability

OS, GUI,

DBMS, platforms

CS6201 Set #5 PLA designCS6201 Set #5 PLA design  2007 Stan Jarzabek2007 Stan Jarzabek
38

runtime concerns

(components, processes, threads)
maintenance

20

Examples of architectural views:Examples of architectural views:
 a framework for satisfying requirements:

– early evaluation of critical system requirements (functional,
performance, etc.)pe o ce, e c.)

– traceability from requirements to code

– rationale for design decisions

– supporting answering “what-if” questions

 a basis for partitioning the system:

i t ti hit t t b t

CS6201 Set #5 PLA designCS6201 Set #5 PLA design  2007 Stan Jarzabek2007 Stan Jarzabek
39

– into runtime architecture, components, subsystems

– into reusable software building blocks

– to enable project management: planning and estimation

– to assign tasks to project team members

Software architecture Software architecture –– definition:definition:

an abstract view of a system structure in terms of its:

 components,

 component properties, and

 component relationships

What is a “component”, “property” and
“relationship” depends on the view and the
i t d d l f th hit t

CS6201 Set #5 PLA designCS6201 Set #5 PLA design  2007 Stan Jarzabek2007 Stan Jarzabek
40

 levels of abstraction:
– from physical architecture to conceptual architecture

intended role of the architecture.

21

Architectural stylesArchitectural styles

 typical ways to organize runtime architecture:

– pipes & filters

– procedural

– OO

– layered

– client-server

di t ib t d

CS6201 Set #5 PLA designCS6201 Set #5 PLA design  2007 Stan Jarzabek2007 Stan Jarzabek
41

– distributed

– event-based implicit invocation

Pipes & filtersPipes & filters

pipefilt

 filters are components: read a stream of data
on input, transform data and produce a stream

f f d d

pipefilter

CS6201 Set #5 PLA designCS6201 Set #5 PLA design  2007 Stan Jarzabek2007 Stan Jarzabek
42

of transformed data on output

 pipes are connectors: transmit data among
filters

22

Procedural and OO stylesProcedural and OO styles
Shared data

Program
d lmodules

procedure

subsystem S1 subsystem S2

message

CS6201 Set #5 PLA designCS6201 Set #5 PLA design  2007 Stan Jarzabek2007 Stan Jarzabek
43

object

attribute
method

EventEvent--based, implicit invocation stylebased, implicit invocation style

process 3process 2process 1

 processes announce events that mark completion of some
task

 other processes can register their interest in specific events

event manager

CS6201 Set #5 PLA designCS6201 Set #5 PLA design  2007 Stan Jarzabek2007 Stan Jarzabek
44

 other processes can register their interest in specific events
 once an event occurs, an event manager invokes processes

that registered interest in that event

23

Reference architectureReference architecture
 structure of a solution in a domain

– compiler: parser, semantic analyzer, optimizer and code generator

source code tokens parse tree

attribute tree

optimized tree machine codecode
generator

code
optimizer

semantic
analyzer

parserlexer

control connectors

CS6201 Set #5 PLA designCS6201 Set #5 PLA design  2007 Stan Jarzabek2007 Stan Jarzabek
45

source code machine code

data access/store
connectors

symbol table
attribute syntax tree

code
generator

code
optimizer

semantic
analyzer

parserlexer

Runtime vs. Runtime vs. designdesign--timetime architecture viewsarchitecture views

software runtime architecture view:

 defines physical or logical software system structure at p y g y

runtime:

– components, component interfaces, subsystems, protocols

software design-time architecture view:

 serves the purpose of cost effective development and

CS6201 Set #5 PLA designCS6201 Set #5 PLA design  2007 Stan Jarzabek2007 Stan Jarzabek
46

 serves the purpose of cost-effective development and

maintenance of software systems

– reusable components, impact of change

24

Runtime Runtime
architecture view:architecture view:

 platforms

ti t

 who does what?
 development &

maintenance of system

DesignDesign--timetime
architecture view:architecture view:

 runtime system
components

 connectors

 deployment of components

 synchronization

 control

y
components

 how to implement new
requirement or fix a bug?
– which components should I

revise?
– which components should I

test?

CS6201 Set #5 PLA designCS6201 Set #5 PLA design  2007 Stan Jarzabek2007 Stan Jarzabek
47

control
 if I change component x,

which other components
may be affected?

 portability, reusability, ease
of maintenance

Examples of designExamples of design--time time
architecturesarchitectures

 program instrumented with macros

 OO framework OO framework

 x-framework

 generators

 GUI

IDE

CS6201 Set #5 PLA designCS6201 Set #5 PLA design  2007 Stan Jarzabek2007 Stan Jarzabek
48

 IDE

 mechanisms of JEE or .NET

 other examples?

25

Reuse: hardware vs. softwareReuse: hardware vs. software

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
49

Reuse in other engineering disciplinesReuse in other engineering disciplines
 is each product model designed from scratch?

– car industry

– house construction – standardized doors, prefabricated walls

– computer industry – PCs built of integrated circuits

what is the essence of reuse in above examples?

can we do the same in software?

 is software like hardware?

 do approaches that work in classical engineering also work

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
50

 do approaches that work in classical engineering also work
for software?

– objects were proclaimed software ICs

– Java Bean, .NET and CORBA components

26

Hardware design and productionHardware design and production

 distinction between product design distinction between product design
vs product manufacturingvs product manufacturing

evolution of car modelsevolution of car models

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
51

vs. product manufacturingvs. product manufacturing

 evolution (reuse?) of the design, but evolution (reuse?) of the design, but

 replacement replacement -- not modification not modification -- of physical productsof physical products

Software production processSoftware production process
software production phases:

requirements analysis

architectural designarchitectural design

implementation

testing

maintenance

 iterations across phases, changes of product architecture

changes of req irements d ring the project

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
52

 changes of requirements during the project

 lack of evaluation at the level of the architecture

 low level of reuse

 one architecture --> one program

27

hardware wares outhardware wares out

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
53

hardware cannot be copied for freehardware cannot be copied for free

Hardware vs. Hardware vs. softwaresoftware maintenancemaintenance

hardware:

 parts wear out, need fixing or replacement

software:

 parts do not wear out

 drastic and frequent changes, enhancements (50%-80%)
– business environment and computer/software technology

– software must be very flexible to stay in sync with evolving

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
54

environment

– still – software is hard to change

 software decays during maintenance

 successful software may be around many years

28

Hardware Hardware –– softwaresoftware analogy?analogy?

 despite similarities, not completely so:

hardware software

strict physical boundaries product of thought

constrained by laws of physics infinitely malleable

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
55

 software changes are more frequent and more

drastic than changes of hardware

Hardware Hardware –– softwaresoftware analogyanalogy

 life is easy as long as software components

behave like hardware components

– modularization, information hiding, interfaces

 when hard/soft analogy breaks - problems start

at times the “lego model” does not fit software

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
56

– at times the lego model does not fit software

– change cannot be localized and propagates across components

– methods must better utilize the “soft” nature of software

29

Q & AQ & A

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek
57

End of Set #4 More on PL

