CS6201 Software Reuse

Lecture Notes Set# 4: More on Reuse and PLs
1. Reuse: general observations, reuse stats
How companies realize PL approach?
Comments on SOA and PLs

Many meanings of “software architecture”

o & WD

Reuse: hardware vs. software

_ =& NUS 1
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek i

Simalarity and reuse problem

¢ Systems Si evolved from the same original system
— They are all similar to each other but also different

Code unigue to each Si
here are reuse|opy MDD, DSl
and chalt

user interface}
business Iogié;
database |

middlewar Reuse ok

S1 82 S3 S4 S5 S6 S7

_ =2 NUS
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek @ e

Levels of reuse infrastructure

knowledge of how to build systems in application domains with reuse of
components : adgpttompo3sesconfigure, extend

6
O O O 5
domain-specific components (adaptable)]
]]] 4
components reused company-wide (adaptable)]
O O O O O O |3

other off-shelf and own components used “as are”

components used “as are”: O O O O 2

operating system & DCPs: EJB, J2EE, .NET, CORBA

]
computers, networks f — 1

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek o e 8

Obijectives of reuse and PL

o Reduction of the product development
cost
e Reduction of time-to-the-market

— Expanding the range of products to address

new customers or market segments

e Reduction of maintenance

1) E Ei
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b 4

Transition to reuse-based development

"*from scratch** development

development project « / software
system

development project « /[software
B system

development project] « / software
c “\system

\@on of reuse
reuse-based development

reusable assets

software
system B

software
system

=2 NUS 5

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek ‘E —

Reuse affects a company

e reuse requires changes in a company:
— culture: develop for others and use others work

- policies: setting up reuse procedures, reward system, monitoring
reuse

- structure: domain engineers and product developers
- technology: reuse methods and tool

/Company ™\
technology

ompan
Culture

e reuse can only be implemented incrementally

1) g Ea
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b 6

Maturity of reuse practice
the scope of reuse
3 reuse process

0SS OMPNES meturity

aompany-w e

many €sms

onetan

many sin Irpiojct

onepropct

componans ﬁaﬂ;NﬂO“G gpplicatbn reuse technolog;
athities geaabis

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek % .".bl;;‘l.:""‘"% !

How reuse scope affects reuse benefit

Productivity
A

14 three projects

12 two projects
10 /

08

06 one project

L
>

03 04 05 06 07
Proportion of code
reused

1) g Ea
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b 8

Some reuse statistics (old)

o Hitachi: reduced number of late projects from 72% to 7% in
4 years

e Toshiba: improved productivity 3 times in 9 years, 50% code
reuse

e Toshiba: reduced error rate from 7-20 per 1 KLOC to 2-3

o Fujitsu: improved productivity by 2/3, reduced error rate by
factor of 10

e NEC: increased productivity by 26% to 91%
e NobelTech: doubled productivity

e HP: shortened time-to-market by factor of 4, reduced error
rate by factor of 10

o frame technology (Netron): up to 90% reuse@asst s

s B

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek

Frames in industry

Frame Technology (by Netron, Inc)
e Applied to large business systems in COBOL
e Productivity indicators based on assessment by QSM:

— “time-to-market reduction by 70%”
— *“project costs reduction by 84%”
— *“reuse percentage from 50% to 95%”

Details in: Bassett, P. Framing software reuse - lessons from
real world, Yourdon Press, Prentice Hall, 1997

me E Ei
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek - 10

XVCL in industry

STEE experience: Web Portals in ASP/XVCL

o Over 20 different portals built/maintained with ASP/XVCL

o Short time (less than 2 weeks) and small effort (2 persons) to
start seeing the benefits

o Development productivity indicators:
- 60% - 90% reduction of code needed to build a new portal
- estimated eight-fold reduction of development effort

e Maintenance productivity indicators:

- for the for first nine portals, managed code lines was 22% less than the
original single portal

Retive Solutions PTe Ltd: CMRS-PL in JEE/XVCL
o On-going project; objective: technology transfer

. LIS NUS 11
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek ‘E —

What impedes reuse?

e Technology factors
— There is nothing to reuse
— Software component is too inefficient for a task in hand
- Software component is too specialized for a task in hand

Hard to modify: a software component does not do
exactly what we want but it is difficult to modify it
Hard to integrate a software component with the rest of
the system

The cost of finding, changing and testing of a software
component is bigger than the cost of writing anew

Poor software structure - programmers do not understand
a software component

me E Ei
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b 12

What impedes reuse?

— Software documentation:

- Lack of requirement/design/code documentation -
programmers do not understand a software component

- Inconsistent, ambiguous and incomplete documentation:
we cannot determine what a given software component
does without examining the code

¢ Psychological factors:
- Not Invented Here syndrome

— It is more fun to write software anew rather than to reuse.

- Reusing may mean that I cannot do this myself.

_ ==NUS I
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek ‘E —

What impedes reuse?

o Organizational and managerial factors:

— failing to establish reuse-oriented company
policies and infrastructure

e no incentives for writing reusable software and for reusing
software

— failing to measure and demonstrate the benefits
of reuse; high initial cost of reuse programme

— lack of commitment and support for reuse
programme from high management

— failing to cope with company changes triggered
by reuse

— not providing enough training

me E Ei
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b 4

PL Processes

PL requirements
evolution

Domain
Analysis

Feed-forward and
feedback loops

PLA
evolution

Software Engineering custom product
Standards releases
® N S
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek ‘E —

How companies realize PLs?

me g Ea
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b 16

What is PL?

o A software product line is, fundamentally, a set of related
products. Each product is formed by taking applicable
components from the base of common assets, tailoring them
as necessary through preplanned variation mechanisms such
as parameterization or inheritance, adding any new
components that may be necessary, and assembling the
collection according to the rules of a common, product-line-
wide architecture under the auspices of a production plan.
New or updated core assets are rolled back into the core asset
base for future systems.

e P. Clements on PL, SEI:

10 E g
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek ‘-E bt Y

Two types of PLs

o Fine-granularity components in PLA
— Many components reused in each product
— PLA: Component versions from past products
— Complex inter-component dependencies
— Example: Bosch PL
o Large-granularity components in PLA
— Smaller number of large components in PLA
— Standardization, documentation, process
— Educating staff
— Example: Tektronix PL

me E Eg
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek w b 1

Product derivation: Bosch

1. Analyze requirements for new product: select variant features

variant feature

reusable components

2. Initial phase:
a) understand the impact of variant features on components
b) select component configurations that “best match” new product
3. lteration phase:
a) adapt selected components, replace/add yet other components
b) integrate components, validate the new product

_ =& NUS 19
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek ‘E —

Comments on Bosch PL

the impact of variant features spreads through many
components!

variant features Em - Feeding

specific products
PL members

explosion of look-alike component versions

- same functionality implemented in variant forms, in hundreds of
similar component versions

complex, hidden dependencies among reusable components

> how do I reuse already implemented functionality?
- selecting and adapting component configurations for reuse

me g Ea
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b 2

10

Product derivation: Tektronix

1. Analyze requirements for new product: select variant features

IIIIII’

varian

D D)
t feature

L reusable components
2. Understand the impact of variant features on components

3. Iteration phase:

a) adapt selected components, replace/add yet other
components

b) integrate components, validate the new product

_ =& NUS 2
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek ‘E —

Comments on Tektronix PL

o techniques for component generalization:
- cpp, configuration parameters

o not much global controls to streamline customizations across
software assets

o little automation during product derivation

- wizards and GUIs for customization during product

me g Ea
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b 2

11

Reuse problems (general)

e Complex and invisible impact of variant features on

components
e =
® Hunt
O o) roduct
----» .' - . s Tion E Jump
. N @ - Feeding
Vanant featu res reusable components specific products

PL members

e Much manual work during product derivation
- For given variant features — which components should I customize and
how?

- Not much global controls and automation to streamline
customizations across software assets
o Difficulty to reuse of already implemented functionality

R LIS NUS 23
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek —

Selecting and scoping a PL

e Selecting a PL is driven by business considerations

— there must be a business value in a PL:
o the profits must outweigh the investment in reuse
e many customers requesting different variants of a system

e savings in development cost, time-to-the-market
e Scoping a PL:

- what should we engineer for reuse in a given PL?

o functional variants?

e portability across a range of platforms?

me g Ea
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b 2

12

Building and evolving PLA

¢ Proactive approach — domain engineering
- trying to anticipate variants (domain analysis)
— design pf a PL architecture to cater for variants
o Extractive approach
— extract features from existing system(s)
- design PL architecture based on that
o Reactive approach (iterative)

- add new variants as they appear in systems built for
various customers

- refine a PL architecture with variants as they come

. LIS NUS 25
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek ‘E —

Techniques for reuse

libraries of functions (sine, sqrt, etc.)

macros, pre-processors (cpp)

code generators, 4GL, CASE, IDE, GUI

parameterization: generics (Java, C#), templates (C++), ...
OO approach, design patterns, OO frameworks

software architectures and component-based approaches
platforms: J2EE, .NET

ERP packages such as SAP, PeopleTools

© N o g &M w b -

- accounting, payroll, customer order processing

9. Generative techniques such as XVVCL

me E Ei
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b %

13

SOA, Web services

_ =& NUS 2
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek ‘E —

Service-Oriented Architecture (SOA)

o Web applications built out of loosely-integrated
services distributed over WWW

e Each service performs some business function
- acredit checking service
- astock quote service

- apurchasing service XML Web services
e Same services can be combined /s""w' *xm}/s‘é‘ﬁ%te

- - | &
together to create many similar A E 7
£

'
@ o
Senvice T 7 | Semice

& >
o e
ﬂ:ﬂ « » @n
L N

applications (reuse)

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek

14

Software Product Line (SPL)

o A family of similar software products that

satisfy needs of a particular customer group

e These products are managed from a common,

reusable base of SPL core assets

_ =& NUS
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek ‘E —

Feature management challenge

o One feature may affect many product
components

Features interactions:

o Functionally interdependent features:
— If | select one feature | must also select some

other features

o One feature may affect implementation of

other features

me g Ea
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b %0

15

Types of features

o Coarse-grained feature: implemented in
source files that are included into a
customized product when feature is selected

e Fine-grained feature: affects many product
components, at many variation points

o Mixed-grained feature: involves both fine-
and coarse-grained impacts on components

ENUS [

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek

Steps towards RPG SPL

o A key to reuse are flexible, adaptable components

o Design architecture and reusable components for RPGs

- Apply extra variation mechanisms for component adaptation

o Static adaptation and configuration of components to build custom

products -
DigGem

game

. o
derivatign E Jump
. Feeding

core assets

variant features

me g Ea
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b %

16

SOA and SPL

e High-level goal is the same for both SOA and SPL.:
- Cost-effective engineering of similar applications
— Apply reuse for rapid development of applications
e Technical challenges are also similar:
- Component/service description (reuse)
- Adaptation of components/services

- Flexible composition and reconfiguration of
components/services

— Architectures/workflows
— Variation mechanisms

We now examine closer similarities and differences

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek

SOA vs. conventional SPL

e Service-based products form SPL on SOA

e Services vs. components

SPL component

Service implements well-defined business function Component may be just any
building block for products
Service description : WSDL, ontologies Component description: API;

must describe service advertisement, discovery; parameters
service quality

Service orchestration Use of architectures
Third part services In-house (and third party)
components

. 2 NUS
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek i

17

Dynamic vs. static configuration

e Service based products must be customizable,
re-configurable (at runtime)

o A conventional SPL, typically relies on static
customization (at design time)

35

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek

Software Architecture may
mean many things ...

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek %

18

Goals of software architectures

¢ to achieve uniformity across products
o to improve software productivity and quality
e to prevent programs from decaying

o to facilitate communication between stakeholders:
- business and technical people
- users and developers

e What constitutes an architecture depends on the
perspective of a given stakeholder
o different perspectives yield different architectures

CS6201 Set #5 PLA design © 2007 Stan Jarzabek

Software architecture

architecture must satisfy concerns of different stakeholders:

software architecture

maintenance

CS6201 Set #5 PLA design © 2007 Stan Jarzabek

19

Examples of architectural views:

o a framework for satisfying requirements:

- early evaluation of critical system requirements (functional,
performance, etc.)

— traceability from requirements to code
— rationale for design decisions
— supporting answering “what-if” questions

e a basis for partitioning the system:
- into runtime architecture, components, subsystems
- into reusable software building blocks
- to enable project management: planning and estimation
— to assign tasks to project team members

NUS

CS6201 Set #5 PLA design © 2007 Stan Jarzabek @ e

Software architecture — definition:

an abstract view of a system structure in terms of its:
e COmponents,

e component properties, and

e component relationships

What is a “component”, “property” and
“relationship” depends on the view and the
intended role of the architecture.

o levels of abstraction:
- from physical architecture to conceptual architecture

1)
CS6201 Set #5 PLA design © 2007 Stan Jarzabek @ ofs Eﬁ

20

Architectural styles

e typical ways to organize runtime architecture:
- pipes & filters
— procedural
- 00

layered

client-server
distributed

event-based implicit invocation

CS6201 Set #5 PLA design © 2007 Stan Jarzabek

Pipes & filters

fiiter L - T

o filters are components: read a stream of data
on input, transform data and produce a stream
of transformed data on output

e pipes are connectors: transmit data among
filters

B

1)
CS6201 Set #5 PLA design © 2007 Stan Jarzabek

21

Procedural and OO styles

modules ?

NN

procedure = |

|
|
|
|
% . __ SubsystemS1) k, subsystem S2

message

U N -
Program \a \W
|
\
|
J

object

method -
attribute

CS6201 Set #5 PLA design © 2007 Stan Jarzabek

Event-based, implicit invocation style

process 1 process 2 process 3

event manager

e processes announce events that mark completion of some
task

e other processes can register their interest in specific events

e ONCe an event occurs, an event manager invokes processes
that registered interest in that event

1)
CS6201 Set #5 PLA design © 2007 Stan Jarzabek @ ofs Ei

22

Reference architecture

e structure of a solution in a domain
- compiler: parser, semantic analyzer, optimizer and code generator

semantic
analyzer

C_Od_e nptimimd tree code _machine codex»
optimizer generator|

lexer parser

il b +
attroutetree

control connectors

\ i code i
_sourcecodes| lexer < parser - --»semantic | code | _
P analyzer optimizer generator|

data access/store symbol table
connectors attribute syntax tree

. E NUS 45
CS6201 Set #5 PLA design © 2007 Stan Jarzabek @ e

Runtime vs. design-time architecture views

software runtime architecture view:

o defines physical or logical software system structure at
runtime:

- components, component interfaces, subsystems, protocols
software design-time architecture view:
e serves the purpose of cost-effective development and

maintenance of software systems

- reusable components, impact of change

1)
CS6201 Set #5 PLA design © 2007 Stan Jarzabek @ ofs Eﬁ

23

Runtime

architecture view:

o platforms

e runtime system
components

e connectors

o deployment of components
e synchronization

e control

Design-time
architecture view:

e Wwho does what?

e development &
maintenance of system
components

e how to implement new
requirement or fix a bug?

- which components should |
revise?

- which components should |
test?
o if I change component X,
which other components
may be affected?

o portability, reusability, ease
of maintenance

CS6201 Set #5 PLA design © 2007 Stan Jarzabek

Examples of design-time
architectures

e program instrumented with macros

e OO framework
o X-framework
e generators

o GUI

e IDE

e mechanisms of JEE or .NET

o other examples?

CS6201 Set #5 PLA design © 2007 Stan Jarzabek

GV

24

Reuse: hardware vs. software

) =2 INUS 49
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek ‘E —

Reuse in other engineering disciplines

o iseach product model designed from scratch?

- car industry
- house construction — standardized doors, prefabricated walls
- computer industry — PCs built of integrated circuits

what is the essence of reuse in above examples?

can we do the same in software?

o issoftware like hardware?
o do approaches that work in classical engineering also work
for software?

- objects were proclaimed software ICs
- Java Bean, .NET and CORBA components

me g Ea
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b 50

25

Hardware design and production

evolution of car models

o distinction between product design
vs. product manufacturing

¢ evolution (reuse?) of the design, but
o replacement - not modification - of physical products

. LIS NUS 51
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek i

Software production process

software production phases:
requirements analysis
architectural design
implementation
testing

maintenance
o iterations across phases, changes of product architecture
e changes of requirements during the project
o lack of evaluation at the level of the architecture
o low level of reuse

e One architecture --> one program

_ =2 NUS 52
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek i

26

hardware wares out

hardware cannot be copied for free

_ ==NUS I
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek ‘E —

Hardware vs. software maintenance

hardware:
e parts wear out, need fixing or replacement

software:
e parts do not wear out

o drastic and frequent changes, enhancements (50%-80%)
- business environment and computer/software technology

- software must be very flexible to stay in sync with evolving
environment

— still — software is hard to change
o software decays during maintenance
e successful software may be around many years

me E Ei
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b 5

27

Hardware — software analogy?

o despite similarities, not completely so:

hardware software

strict physical boundaries product of thought

constrained by laws of physics |infinitely malleable

e software changes are more frequent and more
drastic than changes of hardware

% yﬂgé 55

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek

Hardware — software analogy

o life is easy as long as software components
behave like hardware components

- modularization, information hiding, interfaces

o when hard/soft analogy breaks - problems start

— at times the “lego model” does not fit software

- change cannot be localized and propagates across components

— methods must better utilize the “soft” nature of software

me E Ei
CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek W b %

28

QA&A

End of Set #4 More on PL

oral Uriversity
Singapone.

5NUS I

CS6201 Set #4 More on PL Copyright (C) 2010 Stan Jarzabek

