

October 2001

Contact Information:

www.biglever.com
info@biglever.com
(512) 426-2227

Software Mass Customization

Charles W. Krueger, Ph.D.

Software mass customization is a powerful business model as well as a
powerful engineering model that enables software organizations to efficiently
engineer customized variations of their software products. This document
describes software mass customization in three parts. First is an overview of
software mass customization and its benefits. Second is an introduction to a
software engineering technology that enables organizations to quickly adopt
software mass customization as part of their business and engineering models.
Third is a collection of scenarios of how software product organizations can
rapidly adopt software mass customization.
d
uto-
h
,
uction
 mass
r of

as
tele-
ples
m-
ls,

od-
tomi-

tions

n the
cts to
 able
1.0 Software Mass Customization and its Benefits

Software mass customization focuses on the means of efficiently producing and main-
taining multiple similar software products, exploiting what they have in common an
managing what varies among them. This is analogous to what is practiced in the a
motive industry, where the focus is on creating a single production line, out of whic
many customized but similar variations of a car model are produced. The powerful
though subtle, essence of this description is the focus on a singular means of prod
rather than a focus on producing the many individual products. Once the means of
customization is established, production of the individual products is more a matte
automated instantiation rather than manual creation.

Real world success stories of software mass customization come from diverse are
such as mobile phones, e-commerce software, computer printers, diesel engines,
com networks, enterprise software, cars, ships, and airplanes. Each of these exam
relies on creating and maintaining a collection of similar software systems. For exa
ple, a mobile phone company may have tens or hundreds of different phone mode
each of which uses software that is unique though similar to software in the other m
els. New models may be introduced every two weeks. By using software mass cus
zation techniques to exploit what their software systems have in common and to
effectively manage the variation, companies are reporting order of magnitude reduc
in time-to-market, engineering overhead, error rates, and cost[1,2,3,4,5,6].

What is most interesting from these success stories, however, is that the tactical
improvements in software engineering are large enough to have strategic impact o
business of a company. By bringing larger numbers of precisely customized produ
market faster and with better quality than their competitors, companies have been
to assume market leadership.
Copyright  2001 BigLever Software, Inc. All Rights Reserved 1 of 14

omiza-
el.
llars.
y

onal
 now
ted

ass
ring
re
a
 model
m-
t cus-

s, and

e
,

s and
rmal
aria-
are

,
ent

re not
-level

lex
ost of

zation
rfor-

t the

1.1 Challenges of Software Mass Customization

Many of the companies who have reported great success with software mass cust
tion have also reported great challenges and costs in making the move to that mod
Adoption times are often measured in terms of years and the costs in millions of do
Often, key architects and senior technical personnel must be taken off line for man
months to prepare for the move to software mass customization. Often, organizati
restructuring and process re-tooling are required. Although many organizations are
learning of the huge potential benefits of software mass customization, the associa
costs, risks, and resources are prohibitive barriers for many.

The tension between the potential benefits and imposing challenges of software m
customization is often manifest in the interactions between marketing and enginee
groups in a company. Sales and marketing frequently encounter opportunities whe
customizations of their software products could result in additional revenue. From
business perspective, software mass customization represents a lucrative strategic
for dominating market share, expanding into new market segments, and closing co
plex deals with demanding customers. However, engineering must frequently resis
tomization requests because of the associated high level of effort, resources, cost
risks.

Why is software mass customization more difficult than simply (1) building a single
software system, and then (2) building the collection of small variations? Why do w
need a major shift to complex and heavyweight software engineering technologies
methods, processes, and techniques?

The answer is that, over the past several decades, we have developed formal tool
techniques for building single software systems (item #1 above), but we have no fo
tools or techniques in our arsenal for building and managing a collection of small v
tions for a software product line (item #2 above). To compensate for this void, softw
engineers historically have relied on informally contrived solutions such as IFDEFs
configuration files, assembly scripts, install scripts, parallel configuration managem
branches, and so forth. However, these informal solutions are not scalable; they a
manageable beyond a small number of product variations. Moreover they are code
mechanisms that are ill-suited to express product-level constraints. More recently,
research has focused on some of software engineering’s most powerful and comp
solutions for managing product line variation, but these have the associated high c
adoption.

The current situation, then, can be summarized as follows. Software mass customi
has the potential to bring order-of-magnitude improvements to an organization’s pe
mance, but the practices up to this point combine a massive up-front investment a
highest organizational levels with unsatisfactory code-level mechanisms to actually
manage the variabilities. The time is right for another approach.
2 of 14 Copyright  2001 BigLever Software, Inc. All Rights Reserved

tion
e
so
g.
gram-
, and
e,

order
less
ths
, or

ture
s

rent
g-
nes, it
arallel
rt of
ents
t.

mass
s fac-
ed to

 the
soft-
dual
asily

ts, or
arate

2.0 Simplifying Software Mass Customization

Using one of computer science’s most powerful principles, separation of concerns, Big-
Lever Software has created BigLever Software GEARS, a software mass customization
technology that enables organizations to quickly adopt a software mass customiza
business and engineering model[7,8,9,10,11]. GEARS works in conjunction with th
existing tools and techniques, currently used for building single software systems,
that mass customization is a straightforward extension to single system engineerin
The separation of concerns is applied so that the technology is independent of pro
ming language, operating system, configuration management system, build system
so forth. Furthermore, it does not depend on a particular domain modeling languag
architecture language, or design language.

By extending the existing single system technology set with a formal technology
focused on software mass customization, software organizations can achieve the
of magnitude benefits of software mass customization with an order of magnitude
time and effort than has previously been required. Rather than timeframes of mon
and years, BigLever talks in terms of what can be accomplished the first day, week
month.

2.1 BigLever Software GEARS

BigLever Software GEARS1 provides the infrastructure and a development environment
for creating a software mass customization production line. Revisiting the analogy to
automotive mass customization, where a single production line is used to manufacture
many customized variations of a car model, GEARS is analogous to the infrastruc
and technology used to create the automotive production facility. That is, GEARS i
used to create a single software production line, out of which many customized varia-
tions of a software system can be produced.

Imagine, for example, that your company has already manually created three diffe
variations of a software product for three different customers or different market se
ments. Because these product customizations were created under different deadli
was easiest to just create and maintain three independent copies of the system in p
(for example, on different configuration management branches). However, the effo
parallel maintenance of these three system versions is taking its toll, and requirem
for more customized variations are looming in the sales and marketing departmen

Using GEARS, these three system copies are consolidated into a single software
customization production line. Software that is common among all three systems i
tored out. For software that varies among the three, the GEARS infrastructure is us
encapsulate the differences at the point of variation in the source code, along with
logic descriptions for choosing among the differences at production time. With the
ware now structured into a single GEARS software production line, the three indivi
products can be assembled with the push of a button. The production line can be e
extended and maintained to accommodate new customized products, requiremen
defects. Note again that the focus shifts from developing and maintaining three sep
products to developing and maintaining a single production line.

1. Patent pending
Copyright  2001 BigLever Software, Inc. All Rights Reserved 3 of 14

r
tem,
,

 sys-
le

2.2 The Software Mass Customization Layer

BigLever Software GEARS works at the granularity of files. By not intruding in you
files, GEARS remains neutral to programming language, compilers, operating sys
editors, and so forth. GEARS works equally well with files that contain source code
documentation, test cases, requirements, and even binary multimedia files.

Figure 1 illustrates where the GEARS software mass customization layer fits in, relative
to conventional technology layers. At the bottom layer is the operating system’s file
tem. Configuration management extends that layer by providing management for fi
and system versions that vary over time. GEARS extends that layer by providing mass
customization of system versions that vary at a fixed point in time.

File System

Configuration Management System

BigLever GEARS

Conventional software tools such
as editors, build systems, defect
trackers, compilers, debuggers,

and test frameworks.

FIGURE 1. The Software Mass Customization Layer of GEARS
4 of 14 Copyright  2001 BigLever Software, Inc. All Rights Reserved

lop-
s soft-
s
 actu-
ces.

ents,

c-
ra-
n

d

te.

duc-
nt,
ture
f the

d

 the
RS

urce
e
ic in

od-
2.3 GEARS Infrastructure, Development Environment, and Actuator

GEARS comprises mass customization infrastructure, a mass customization deve
ment environment, and a mass customization actuator. The infrastructure structure
ware into a mass customization production line. The development environment ha
editors and browsers to view, create, modify, and maintain the production line. The
ator activates the production line to produce the individual software product instan

The software mass customization infrastructure of GEARS has three major compon
feature declarations, product definitions, and automata:

• Feature declarations model the scope of variation in the production line. Figure 2
illustrates an editor from the GEARS development environment, viewing a colle
tion of feature declarations in the infrastructure. In this example there are decla
tions of four features that can vary in the production line, which in this case is a
automotive e-commerce web site. AutoLocator is a Boolean parameter indicating
whether or not an automobile locator feature is available, ServerCount indicates how
many servers are configured, Brand indicates the automotive brand for the site, an
DeliveryOptions indicates which vehicle delivery options are supported by the si

• Product definitions model the product instances that can be created from the pro
tion line. Figure 3 illustrates an editor from the GEARS development environme
viewing a product definition in the infrastructure. Values are selected for the fea
declarations in the previous figure, indicating the desired customized features o
product. The product in this example will include the AutoLocator, operate on a 10
server configuration, display the Ford brand of vehicles, and support factory an
dealer delivery options.

• Automata encapsulate source code variants that exist in the production line and
logic for selecting among the variants. Figure 4 illustrates an editor from the GEA
development environment, viewing the selection logic in an automaton. In this
example the automaton selects among two file variants, normal.java and stub.java,
depending on the value of the Boolean feature declaration AutoLocator.

The GEARS actuator is responsible for configuring a product instance from the so
files, declarations, definitions, and automata in a production line. For example, if th
actuator were applied to the Ford product definition in Figure 3, the automaton log
Figure 4 would be actuated to select the normal.java variant since the AutoLocator
value is defined as true. By actuating all automata in a production line, a complete pr
uct is configured.
Copyright  2001 BigLever Software, Inc. All Rights Reserved 5 of 14

FIGURE 2. GEARS Feature Declarations

FIGURE 3. GEARS Product Definition
6 of 14 Copyright  2001 BigLever Software, Inc. All Rights Reserved

RS

com-
ucts
of com-
ata
r in

s
quire-
 fea-

ft-
duc-
ct

d dur-
y

 com-
ctive
duc-

e
3.0 Models for Adopting Software Mass Customization

Organizations adopting software mass customization with BigLever Software GEA
can operate using one of three broad approaches. We have termed these as proactive,
reactive, and extractive.

With the proactive approach, the organization analyzes, designs and implements a
plete software mass customization production line to support the full scope of prod
needed on the foreseeable horizon. From the analysis and design, a complete set
mon and varying source code, feature declarations, product definitions, and autom
are implemented. This corresponds to the heavyweight approach discussed earlie
Section 1.1, “Challenges of Software Mass Customization,” on page 2, while at the
same time utilizing GEARS as the software mass customization infrastructure and
development environment.

With the reactive approach, the organization incrementally grows their software mas
customization production line when the demand arises for new products or new re
ments on existing products. The common and varying source code, along with the
ture declarations, product definitions, and automata, are incrementally extended in
reaction to new requirements. This incremental approach offers a quicker and less
expensive path into software mass customization.

With the extractive approach, the organization capitalizes on existing customized so
ware systems by extracting the common and varying source code into a single pro
tion line. Using the BigLever GEARS infrastructure, the feature declarations, produ
definitions, and automata are created as the commonality and variation is identifie
ing the extraction. This high level of software reuse enables an organization to ver
quickly adopt software mass customization.

Note that these approaches are not necessarily mutually exclusive. For example, a
mon approach is to bootstrap a software mass customization effort using the extra
approach and then move on to a reactive approach to incrementally evolve the pro
tion line over time.

The following sections provide more detail on the extractive, reactive, and proactiv
approaches to software mass customization using BigLever Software GEARS.

FIGURE 4. GEARS Automaton Logic
Copyright  2001 BigLever Software, Inc. All Rights Reserved 7 of 14

have
ropri-
lso

nce.
d ini-

ing

elec-

alues

the
comes
uc-
3.1 Extractive

The extractive approach to software mass customization is appropriate when you
an existing collection of customized systems that you want to reuse. It is most app
ate when the collection of systems has a significant amount of commonality and a
consistent differences among them.

It is not necessary to perform the extraction from all of the pre-existing systems at o
For example, a subset of the high-payoff, actively used systems might be extracte
tially and then the remainder incrementally extracted as needed.

The high level tasks for the extractive approach are as follows:

1. Identify commonality and variation in the existing systems

2. Factor into a single BigLever GEARS production line

• create a single copy of the common software

• create feature declarations that model the scope of variation among the exist
systems

• encapsulate variation points into automata

• program the automata logic to map declaration parameter values to variant s
tions in the automata

• create the product definitions for the desired product instances by selecting v
for each of the feature definition parameters

After the production line has been populated, product instances are created (with
push of a button) as needed via the actuator. Software mass customization now be
the mode of operation as focus shifts to maintaining and enhancing the single prod
tion line.

FIGURE 5. Extractive Model of Software Mass Cutomization

Before

Product 1

Product 2

Product 3

After

Product 1

Product 2

Product 3

Extract

Automaton

GEARS Production Line

Declarations

Definitions

Actuator
8 of 14 Copyright  2001 BigLever Software, Inc. All Rights Reserved

. It is
e-

mers
or
e

oach

up-

duc-

tion
ns in

f the
3.2 Reactive

The reactive approach to software mass customization is an incremental approach
appropriate when the requirements for new products in the production line are som
what unpredictable. For example, when unexpected requirements from new custo
are common, the reactive approach is appropriate. The reactive approach allows f
rapid adoption of mass customization since a minimum number of products must b
incorporated in advance.

The high level tasks for incrementally adding a new product using the reactive appr
are:

1. Characterize the requirements for the new product relative to what is currently s
ported in the production line

2. It is possible that the new product is currently within the scope of the current pro
tion line. If so, skip to step 4.

3. If the new product is not in scope, perform the “delta engineering” to the produc
line on any or all of the declarations, automata, common software, and definitio
order to extend the scope to include the new requirements

4. Create the product definition for the new product by selecting values for each o
feature declaration parameters

FIGURE 6. Reactive Model of Software Mass Cutomization

After

Product 1

Product 2

Product 3

React

Automaton

GEARS Production Line

Declarations

Definitions

Actuator

Before

Product 1

Product 2

Product 3

Automaton

GEARS Production Line

Declarations

Definitions

Actuator

Requirements for a
new product

instance
+ Product 4Iterate
Copyright  2001 BigLever Software, Inc. All Rights Reserved 9 of 14

 prod-
ve
e pro-

 the

ver

uct
he
sting

uc-
3.3 Proactive

The proactive approach to software mass customization is similar to the waterfall
approach for single systems. It is appropriate when the requirements for the set of
ucts needed, extending to the far horizon, are well defined and stable. The proacti
approach requires considerably more effort up front, but this drops sharply once th
duction line is complete. If the up front cost is prohibitive or if the risk of guessing
wrong is high, consider the reactive approach.

The high level tasks for the proactive approach are as follows:

1. Perform domain analysis and scoping to identify the variation to be supported in
production line

2. Model the product line architecture to support all products in the production line

3. Design the common and variant parts of the system

4. Finally, implement the common and variant parts of the system using the BigLe
GEARS declarations, definitions, automata and common source.

Once the production line has been implemented, all that remains is to create prod
instances (again, with only the push of a button) as needed via the actuator. With t
proactive approach, if new products are needed, most likely they are within the exi
scope and can be created by simply adding a new product definition in the GEARS
infrastructure. Maintenance and evolution are performed directly on the single prod
tion line.

FIGURE 7. Proactive Model of Software Mass Cutomization

Before After

Product 1

Product 2

Product 3

Proactive
Implementation

Automaton

GEARS Production Line

Declarations

Definitions

Actuator

Domain
Analysis

Architecture

Design
10 of 14 Copyright  2001 BigLever Software, Inc. All Rights Reserved

nd

is
 was

uct
n

 ini-

ions.
4.0 Example: Globalization & Localization using
Software Mass Customization

This section illustrates how to use software mass customization for globalization a
localization, or internationalization, of a US-centric software system. The reactive
approach with BigLever Software GEARS, as described in Section 3.2 on page 9,
particularly adept at this task since it does not assume that the US-centric product
designed or implemented with globalization in mind.

4.1 Step 1. Initializing the Production Line

Comparing the “Before” state of Figure 8 with that of Figure 6, the US-centric prod
can be viewed as a production line with no variants. That is, US-centric product ca
serve as the initial basis for the production line.

From BigLever GEARS, we select the “Create New Production Line” operation and
point to the root of the existing US-centric product source tree. GEARS creates the
tial infrastructure for the production line and creates empty declarations and definit
The US product is now a GEARS production line.

FIGURE 8. Globalization/Localization Production Line

Before

US Product

After

Globalize

Automaton

Globalized/Localized Production Line

Declarations

Definitions

Actuator
Germany Product

Japan Product

...

US-centric Product

Requirements for
globalization &

localization

+

Copyright  2001 BigLever Software, Inc. All Rights Reserved 11 of 14

may
analy-

ly a
ining

uct

, a

le is

nting

ual

ng in

d
rom

ature
 rela-

ct or

ively

s,
ppli-
4.2 Step 2: Declaring the Globalization Model

The key globalization dimensions for the production line are declared next. These
come from a combination of industry standards, company standards, and from an
sis that is specific to this product and its target customer base.

Figure 2 illustrated the GEARS editor for declaring dimensions of variation. Typical
system architect or someone in a similar role is responsible for creating and mainta
the declarations for a production line. In product line engineering terms, this role is
defined as a domain engineer.

Globalization variables that might be declared for this example include:

• an Enumeration of countries, from which exactly one will be selected for a prod
instance

• a Set of religions that potential users may belong to. When a product is defined
subset will be selected from the religion Set.

• a Boolean variable indicating whether to use Euros or local currency. This variab
used in conjunction with the country variable since it is only applicable for some
European countries.

• an Integer variable that expresses a taxation code that is dictated by the accou
department

• an Enumeration or String that models the language and/or dialect used for text
display

• a Character to model diplomatic status or immunity of the user group

• an Enumeration to model the citizenship of the users, such as US citizens worki
a foreign country

4.3 Step 3: Defining the Localized Product Instances

If the initial target collection of localized products is known up front, these can be
defined next using the product definition editor that was shown in Figure 3. A name
product definition is created for each product instance that we want to instantiate f
the production line.

The task of defining a product simply consists of selecting a value for each of the fe
declarations from the previous step. Figure 2 and Figure 3 clearly demonstrate this
tionship.

The task of creating a product definition is typically carried out by a system archite
similar role. In product line engineering terms, this role is defined as an application
engineer.

With GEARS, the domain engineer that creates declarations and the application engi-
neer that create definitions is likely to be the same person since the tasks are relat
simple and closely related.

It is interesting to note from this example that, in software mass customization term
globalization corresponds to domain engineering and localization corresponds to a
cation engineering.
12 of 14 Copyright  2001 BigLever Software, Inc. All Rights Reserved

 of
st be

using
lica-
r-
ours
hese
e

d Ger-
ction

plete
iffer-
efini-

 on
xed

lves as
 line
as
4.4 Step 4: Encapsulating Globalization and Localization points in the source
code

Next it is time for the developers to work their magic. Delving into the source base
the US-centric product, they identify US-specific areas in the source code that mu
generalized to support other locales.

The files that need to be globalized are converted from common files to automata
the GEARS development environment. For example, a timesheet form in a US app
tion may have an overflow area to compute overtime hours worked, whereas in Ge
many this same form must provide a warning when the legal maximum number of h
worked during a week is being approached rather than overflowing into overtime. T
two timesheet variants would be encapsulated in a single timesheet automaton. Th
logic description in this automaton is then programmed to select among the US an
man file variants using the declaration variables and values. Figure 4 illustrates sele
in the automaton logic.

4.5 Step 5: Actuating the Production Line to create the Product Instances

After the declarations, definitions, and automata have been created to form a com
software mass customization production line, the localized product instances for d
ent regions can be produced. The actuation operation of GEARS takes a product d
tion as input and creates a corresponding product instance as output.

4.6 Maintaining and enhancing the Production Line

After the production line is established, all maintenance and evolution is performed
the single production line rather than the individual products. For example, a bug fi
once in the common code is fixed for all product instances.

As requirements for new locales are introduced, the declarations, definitions, and
automata are incrementally extended as necessary. The entire production line evo
a whole in configuration management, so that we can always go to the production
state from two months ago in order to re-actuate and reproduce any product that w
shipped at that time.
Copyright  2001 BigLever Software, Inc. All Rights Reserved 13 of 14

he

e

References

1. Software Engineering Institute. The Product Line Practice (PLP) Initiative, Carn-
egie Mellon University, www.sei.cmu.edu/activities/plp/plp_init.html

2. Weiss, D., Lai, R. 1999. Software Product-line Engineering. Addison-Wesley, Read-
ing, MA.

3. Clements, P. and Northrop, L. 2001. Software Product Lines: Practices and Patterns,
Addison-Wesley, Reading, MA.

4. Bass, L., Clements, P., and Kazman, R. 1998. Software Architecture in Practice.
Addison-Wesley, Reading, MA.

5. Jacobson, I., Gris, M., Jonsson, P. 1997. Software Reuse: Architecture, Process and
Organization for Business Success, ACM Press / Addison-Wesley, New York, NY.

6. Software Product Lines. Experience and Research Directions. Proceedings of t
First Software Product Lines Conference (SPLC1). August 2000. Denver, Colorado.
Kluwer Academic Publishers, Boston, MA.

7. BigLever Software, Inc. Austin, TX. www.biglever.com

8. Krueger, C. Using Separation of Concerns to Simplify Software Product Family
Engineering. Proceedings of the Dagstuhl Seminar No. 01161: Product Family
Development. April 2001. Wadern, Germany.

9. Krueger, C. Easing the Transition to Software Mass Customization. Proceedings of
the 4th International Workshop on Product Family Engineering. October 2001. Bil-
bao, Spain. Springer-Verlag, New York, NY.

10.Krueger, C. Software Reuse. 1992. ACM Computing Surveys. 24, 2 (June), 131-183.

11.Krueger, C. 1997. Modeling and Simulating a Software Architecture Design Spac.
Ph.D. thesis. CMU-CS-97-158, Carnegie Mellon University, Pittsburgh, PA.
14 of 14 Copyright  2001 BigLever Software, Inc. All Rights Reserved

