
Proc. ESEC-FSE'03, European Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ACM Press, September 2003, Helsinki, pp. 237-246
Paper received ACM SIGSOFT distinguished paper award

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE’03, September 1–9, 2003, Helsinki, Finland
Copyright 2003 ACM 1-58113-743-5/03/0009…$5.00.

Eliminating Redundancies with a “Composition with
Adaptation” Meta-programming Technique

Stan Jarzabek
Department of Computer Science, School of Computing,

National University of Singapore
Lower Kent Ridge Road

Singapore 117543
Tel: (65) 6874 2863

stan@comp.nus.edu.sg

Li Shubiao
Department of Banking Information Engineering

School of Economics and Finance
Xi'an Jiaotong University

Xi'an 710061, China
Tel: (86) 295276949

li_shubiao@163.net

ABSTRACT
Redundant code obstructs program understanding and contributes
to high maintenance costs. While most experts agree on that,
opinions - on how serious the problem of redundancies really is
and how to tackle it - differ. In this paper, we present the study of
redundancies in the Java Buffer library, JDK 1.4.1, which was
recently released by Sun. We found that at least 68% of code in
the Buffer library is redundant in the sense that it recurs in many
classes in the same or slightly modified form. We effectively
eliminated that 68% of code at the meta-level using a technique
based on “composition with adaptation” called XVCL. We argue
that such a program solution is easier to maintain than buffer
classes with redundant code. In this experiment, we have
designed our meta-representation so that we could produce buffer
classes in exactly the same form as they appear in the original
Buffer library. While we have been tempted to re-design the
buffer classes, we chose not to do so, in order to allow for the
seamless integration of the XVCL solution into contemporary
programming methodologies and systems. This decision has not
affected the essential results reported in this paper.

Categories and Subject Descriptors
D.2.2 [SOFTWARE ENGINEERING]: Design Tools and
Techniques - Software libraries; D.2.13 [SOFTWARE
ENGINEERING]: Reusable Software - Reusable libraries

General Terms
Performance, Design, Languages

Keywords
meta-programming, generative programming, class libraries,
Object-Oriented methods

1. INTRODUCTION
As early as in 1993, Batory et al. [2] described the “feature
combinatorics” problem hampering the scalability of
class/component libraries, reuse and programmers’ productivity

in general. Batory studied C++ data structure class libraries,
where typical features relate to data structure, memory allocation
scheme, access mode, concurrency, etc. In general, features may
relate to any characteristic of a program such as functionality,
design solution, platform, etc. The problem manifests itself as
follows: Features may appear in classes in many different
combinations. As we need a unique class for each legal
combination of features, we must develop and maintain a large
number of similar classes. Batory concludes that “today’s method
of constructing libraries is inherently unscalable… Libraries
should not enumerate complex components with numerous
features… to be scalable, libraries must offer much more
primitive building blocks and be accompanied by generators that
compose blocks to yield the data structures needed by application
programmers.” In the same paper, Batory applied a generation
technique of GenVoca [3] to produce classes with required
combination of features from a much simpler set of primitive
building blocks than the original classes. In 1994, Biggerstaff
further analyzed the library scaling problem and limits of
concrete component reuse caused by “feature combinatorics” [4].

The “feature combinatorics” problem also contributes to high
maintenance cost. As the number of feature combinations
increases, classes in a library not only grow in number, but also
become polluted with numerous redundant code fragments.
Redundant code obstructs program understanding during the
maintenance in at least, two ways: (1) a programmer must
maintain more code than he/she would have to maintain should
the redundancies be removed, and (2) when one logical source of
change affects many replicated code fragments scattered
throughout a program, to implement a change, a programmer
must find and update all the instances of the replicated fragment.
The situation is further complicated if an affected fragment must
be changed in slightly different ways, depending on the context.

The above arguments apply to components and programs in
general, as well as classes. As components usually contain more
functionality than classes, the number of feature combinations in
components is even larger than in classes. Therefore, we shall see
an explosion of look-alike components that, despite similarities,
have to be implemented and maintained as separate products
containing much redundancy.

In this paper, we address one specific symptom of the “feature
combinatorics” problem, namely that of the redundant code. In
the first part of the paper, we present results of the redundant code
analysis in the Java Buffer library, JDK 1.4.1, pointing to
common sources of redundancies. In the second part of the paper,
we describe an alternative way of building a class library, with a

 2

meta-programming technique called XVCL1. We developed
XVCL to facilitate building flexible, adaptable and reusable
software. The XVCL solution consists of class building blocks
(meta-components) and an automated class construction process
during which meta-components are composed incorporating
possible adaptations. Our experiment shows that at least 68% of
the executable code in the Buffer library is redundant and can be
eliminated at the meta-level. If we count both executable code
and comments, then we can eliminate 72% of code. Due to the
smaller base of non-redundant code and better traceability from
features to code, the Buffer library in XVCL meta-representation
is easier to maintain than the original Buffer library in the source
form.

In the experiment, we produced buffer classes in exactly the same
form as they appear in the original Buffer library. While we have
been tempted to re-design the buffer classes, we chose not to do
so, to allow for seamless integration of the XVCL solution into
contemporary programming methodologies and systems. Our
solution can serve those who develop and maintain libraries,
without affecting programmers using libraries. The fact that we
produced classes in their original form did not affect essential
results reported in this paper.

It seems that some of the design concerns, such as the reuse or
handling of scattered code, are much easier to deal with at the
program meta-level rather than at the level of concrete programs.
In recent years, a number of approaches have been proposed to
address such design concerns [3][8][10][14]. These approaches
can also be applied to alleviate some of the effects of the “feature
combinatorics” problem. Many of these approaches are described
in [5] as “generative programming techniques”. A common
motivation for these approaches may be phrased as follows: The
number of concrete classes (or components) is potentially large
and we cannot help it. But we can ease the problem by providing
a suitable construction-time mechanism to synthesize concrete
classes on demand from a relatively simpler base of generic meta-
components. While feature combinations are inevitable in
concrete classes, at the meta-level we can strive to separate
different feature dimensions (also called aspects or concerns) and
provide a meta-level mechanism to produce classes/components
with the required combination of features on demand. In this
paper, we show that, along those lines of thinking, interesting
results can be achieved with a simple “composition with
adaptation” technique.

Being a modern and versatile version of Bassett’s frames [1], a
technology that has achieved substantial productivity
improvements in industry, the underlying principles of XVCL
have been thoroughly tested in practice. Unlike the original
frames, however, XVCL blends with contemporary programming
and design paradigms, offering an effective reuse mechanism on
top of mechanisms supported by those paradigms. XVCL works
on the principle of adapting generic, reusable meta-components
into concrete components. Any location or structure in a meta-
component can be a designated variation point, available for
adaptation by ancestor meta-components. Program generation is
100% transparent to the programmer, who can fine-tune and re-

1 XVCL: XML-based Variant Configuration Language, is a public domain

method and tool available at: fxvcl.sourceforge.net

generate code without losing prior customizations. We developed
and experimented with XVCL in a collaborative project involving
two universities and two industrial partners2. We applied XVCL
in two medium-size product line projects [16] and a number of
smaller case studies [6][13]. In earlier papers, we described
experimentation with the original frame technology in the context
of product line architectures and component-based systems.

This paper is organized as follows: In Sections 2-4, we provide
statistics of the redundant code in the Buffer library and discuss
the reasons why the redundancies arose. In Section 5, we describe
the XVCL solution. In Section 6, we compare the original Buffer
library with the XVCL solution and in Section 7, we discuss the
results. In the remaining sections, we discuss related work and
conclude the paper.

2. AN OVERVIEW OF THE BUFFER
LIBRARY

A buffer contains data in a linear sequence for reading and
writing. The Buffer class library in our case study is a part of the
java.nio.* packages JDK 1.4.1. Buffer classes differ in features
such as the buffer element type, memory allocation scheme, byte
ordering and access mode (Table 1). Each legal combination of
features yields a unique buffer class. That is why, even though all
the buffer classes play essentially the same role, there are 74
classes in the Buffer library.

Table 1. Features in the Buffer library

Level in class
hierarchy Feature dimension Features

Level 1 buffer data element
type

byte, char, int, float
double, long, short

memory allocation
scheme direct, nondirect

Level 2 byte ordering native, non-native,
Big_endian, Little_endian

Level 3 access mode writable, read-only

Figure 1 shows a part of the Buffer library with 49 classes that we
discuss in detail in the paper. Class sub-hierarchies for classes
DoubleBuffer, FloatBuffer, LongBuffer, ShortBuffer are
analogical to sub-hierarchies for classes CharBuffer and
IntBuffer, so for the sake of brevity we do not depict them in
Figure 1. Below, we briefly describe features addressed in the
Buffer library and explain how those features are reflected in
classes.

At Level 1 in the class hierarchy, we see seven classes that differ
in buffer element data types. A programmer can directly use only
Level 1 classes. Therefore, these classes contain many methods
providing access to functionalities implemented in the classes
below them.

Classes at Level 2 address two memory allocation schemes and
two byte orderings. The direct memory allocation scheme
allocates a contiguous memory block for a buffer and uses native

2 Project funded by Singapore National Science and Technology Board

and Canadian Ministry of Energy, Science and Technology, involving
National University of Singapore, SES Systems Pte Ltd, University of
Waterloo and Netron, Inc. (Toronto).

 3

access methods to read and write buffer elements, using a native
or non-native byte ordering scheme. On the other hand, in the
nondirect memory allocation scheme, we access a buffer through
Java array accessor methods.

Byte ordering matters for buffers whose elements consist of
multiple bytes, that is all the element types but byte. For a variety

of historical reasons, different CPU architectures use different
native byte ordering conventions. For example, Intel
microprocessors put the least significant byte into the lowest
memory address (which is called Little_Endian ordering), while
Sun UltraSPARC processors put the most significant byte first
(which is called Big_Endian ordering).

Buffer

DoubleBufferByteBuffer CharBuffer IntBuffer FloatBuffer LongBuffer ShortBuffer

MappedByteBuffer

HeapByteBuffer

DirectByteBuffer

HeapCharBuffer

DirectCharBufferS

DirectCharBufferU

HeapIntBuffer

DirecIntBufferS

DirectIntBufferU

HeapByteBuffeR

DirectByteBufferR

HeapCharBufferR

DirectCharBufferRS

DirectCharBufferRU

HeapIntBufferR

DirecIntBufferRS

DirectIntBufferRU

Level 1

Level 2

Level 3

Figure 1. A fragment of the Buffer library

When using the direct memory access scheme, we must know if
buffer elements are stored using native or non-native byte
ordering. Twenty new classes at Level 2 in Figure 1 result from
combining memory access and byte ordering features. (We do not
count MappedByteBuffer which is just a helping class.) For each
buffer class at Level 1, we have one Heap* class at Level 2 that
implements the nondirect memory access scheme for that buffer.
Classes with suffixes ‘U’ and ‘S’ implement direct memory
access scheme with native and non-native byte ordering,
respectively. We have only one class DirectByteBuffer, as byte
ordering does not matter for byte buffers.

The buffers discussed so far are writable. Twenty classes at Level
3 implement read-only variants of buffers.

3. STATISTICS OF REDUNDANCIES IN
BUFFER CLASSES

Code fragments that we studied typically contain definitions of
classes, class attributes, constructors or methods. Redundancy
occurs among similar code fragments. It is difficult to define
redundancy in general and descriptive terms. Therefore, we shall
accept the following pragmatic definition of redundancy for the
purpose of this paper: Redundancy occurs in a group of similar
code fragments whenever we can unify all the differences among
those fragments at the meta-level. We also require that the result
is beneficial for maintenance, that is, such a unified meta-
representation should be easier to understand and maintain than
the original program with redundant code fragments.

 Among the classes at Level 1, we identified 30 code fragments,
recurring in either the same form or with slight changes. In Figure
2, circles marked with (a), (b) and (c) represent classes as
indicated in the diagram. Notice that Circle (b) represents five
classes. In the overlapping areas, we indicate fragments recurring
in the respective classes. We refer to the overlapping areas by

listing the circles involved such as (ab), (abc), etc. In Figures 2
and 3, ‘A’ refers to class attributes, ‘C’ – to constructors and ‘M’
– to methods. Symbol ‘s’ denotes fragments recurring in the same
form, ‘c’ - fragments recurring with slight changes.

For example, Area (ab) contains one method recurring in the same
form (short form M:1s) in all classes but CharBuffer. The central
Area (abc) contains 28 fragments that recur in all seven classes.
These fragments include:
o 2 attribute definition sections recurring in the same form and 1

attribute definition section recurring with slight change (in
short notation: A:2s, 1c)

o 2 constructor definitions recurring with slight change (in short
notation: C:2c)

o 23 method definitions recurring in the same form or with slight
change (in short notation: M:4s, 19c).

A:0
C:0
M:0

A:2s,1c
C:2c
M:4s,19c
(abc)

A:0
C:0
M:1s
(bc)

A:0
C:0
M:0
(ac)

A:0
C:0
M:1s
(ab)

A:0
C:0
M:9

ByteBuffer

CharBuffer

A:2
C:0
M:35

IntBuffer
FloatBuffer
LongBuffer
ShortBuffer
DoubleBuffer

 (a)

(b) (c)

Figure 2. Distribution of code fragments in classes at Level 1

Non-overlapping areas represent unique fragments in the
respective classes. For example, ByteBuffer class has 37 unique
fragments including two attribute definition sections and 35
method definitions (A:2 C:0 M:35), while IntBuffer class has no
unique fragments.

 4

The five classes in Circle (b) are very similar, in the sense, that
they are built from virtually the same group of fragments, with
only slight differences among fragments recurring in different
classes. The reader should refer to relevant entries in Table 2 for
statistics of classes at Level 1.

Classes at Level 2 address memory allocation schemes and byte
ordering, as well as the buffer element type. This new
combination of features brings in two new sub-classes of
ByteBuffer and three new sub-classes for each of the remaining
classes at Level 1.

Figure 3 shows the distribution of both unique and redundant code
fragments in classes implementing the nondirect memory
allocation scheme (seven classes named Heap* in Figure 1). In
the central Area (abc), there are three constructor definitions
recurring in all seven classes with small changes. Also, there are
seven methods recurring in all the classes without any change,
one method recurring in six classes except HeapByteBuffer (Area
(bc)), and seven methods recurring with small changes in all
seven classes.

A:0
C:0
M:0

A:0
C:3c
M:7s,7c
(abc)
A:0
C:0
M:1s
(bc)

A:0
C:0
M:0
(ac)

A:0
C:0
M:0
(ab)

A:0
C:0
M:2

HeapByteBuffer

HeapCharBuffer

A:0
C:0
M:32

HeapIntBuffer
HeapFloatBuffer
HeapLongBuffer
HeapShortBuffer
HeapDoubleBuffer

 (a)

 (c)
 (b)

Figure 3. Distribution of code fragments in Heap* classes at

Level 2
Classes implementing the direct memory allocation scheme
(named Direct* in Figure 1) also contain many redundant code
fragments. Due to the lack of space, we skip the details of the
analysis of the remaining classes. Table 2 shows the distribution
of the redundant code fragments across the different slices of the
Buffer library and the frequency in which they recur.

4. WHY DO REDUNDANCIES ARISE?
To simplify the use of the Buffer library, the designers decided to
reveal to programmers only the top eight classes (Figure 1).
Functionalities related to lower-level concrete classes can be
accessed via methods provided in these classes. While this and
other concerns related to usability and performance affected the
design of the buffer classes and introduced some extra code, we
did not find evidence that those concerns led to redundant code.
On the other hand, we found that addressing feature combinations
led to redundancies in the respective classes. As features cannot
be implemented independently of each other in separate
implementation units (e.g., class methods), code fragments related
to specific features appear with many variants in different classes,
depending on the context. Whenever such code cannot be
parameterized to unify the variant forms, and placed in some
upper-level class for reuse via inheritance, a redundancy arises.

Table 2. Buffer library statistics

Fragments
Recurring fragments Classes

times
types 2 6 7 12 13 Unique LOC

same form 2 6 level 1
(7 classes) small changes 22 46 4534

same form 1 7 level 2 Heap*
(7 classes) small changes 10 34 1151

same form 1 8level 2 Direct *
(13 classes) small changes 1 2 11 50 2320

same form 1 1 level 3 Heap*
read-only
(7 classes) small changes 11

22 704

same form 1 2level 3 Direct *
read-only

(13 classes) small changes 1 2 8 30 1207

same form 2 4 14 10subtotal for
47 classes small changes 2 43 4 19 182 9916

same form 1 4 other classes
at level 2

(12 classes) small changes 1 12 0 1244

same form 1 2 other classes
at level 3

(12 classes) small changes 1 9 0 764

same form 2 6 subtotal for
other classes small changes 2 21 0 2008

same form 4 4 14 6 10total small changes 4 43 25 19 182 11924

To observe the impact of feature combinations on redundancies,
we compared a number of classes that differed in one feature
only. For example, we compared classes that differed in element
type (e.g., DirectCharBufferS and DirectIntBufferS), in byte
ordering (e.g., DirectIntBufferS and DirectIntBufferU) and in
access mode (e.g., DirectIntBufferS and DirectIntBufferRS).

A typical situation that leads to redundant code is when some
classes derived from the same parent, say class A, need a certain
method (or data), and other classes derived from A do not need
that method. We could create a new abstract parent class just to
make that method available to classes that need it. Creating many
such classes would, however, complicate the class hierarchy and
hinder performance. We could also place such a method in the
parent class A. But this solution would either be error-prone or
require us to write extra code to disable the method in the classes
that do not need it. In yet another situation, a certain method is
needed in all the classes derived from class A, but in some of
those classes the method requires different parameters, return type
or implementation that in other classes. Furthermore,
implementations of such a method in different classes may refer
to non-local attributes defined in the context of different classes.
In the above cases, designers often choose to place a method into
each class that needs it creating redundant code.

Method hasArray() shown in Figure 4 illustrates a simple yet
interesting case. This method is repeated in each of the seven
classes at Level 1. Although method hasArray() recurs in all
seven classes, it cannot be implemented in the parent class Buffer,
as variable hb must be declared with a different type in each of

 5

the seven classes. For example, in class ByteBuffer the type of
variable hb is byte and in class IntBuffer – int.

Figure 4. Recurring method hasArray()

Many redundancies arise due to the inability to specify small
variations in otherwise identical code fragments. For example,
some attributes, methods or even classes may differ only in data
types or constants. Such situations are easily handled by
templates. For example, 15 classes represented as Circles (b) in
Figure 2 and 3 can be implemented by templates. The current
release of Java does not support templates, but JSR-14 is likely to
become a part of Java soon (http://www.jcp.org/en/jsr/). In the
related project, we built JSR-14 templates for classes that differed
only in the buffer element type, eliminating 27% of code.
However, we found it impossible to integrate template-based
classes with the rest of the buffer classes because of tight coupling
among classes across the library.

Figure 5. Method slice()

In some situations, to unify similar fragments, we would need
parameters representing algorithmic elements rather than data
types. In yet other situations, we have to do with many small
differences across implementations of the same method in
different classes. We observe this in the classes in Circles (a) and
(b) in Figure 2 and 3. For example, method slice() recurs 13 times
in all the Direct* classes with small changes highlighted in bold
(Figure 5). This happens when the impact of various features
overlaps in code fragments, affecting data type names, constant
values or details of algorithms. Template mechanism supported
by JSR-14 is not meant to unify this kind of differences in classes.
In JSR-14, template parameters cannot be primitive types such as
int or char. This is a serious limitation, as one has to create
wrapper classes just for the purpose of parameterization. Wrapper
classes introduce extra complexity and hamper performance, so it
is unlikely that we shall see the implementation of the Buffer
library using JSR-14. Templates in other languages, for example,
C++ are free of these limitations.

It is interesting to note that small variations appear in otherwise
the same code fragments across classes at the same level of
inheritance hierarchy, as well as in classes at different levels of

inheritance hierarchy. Programming languages do not have a
proper mechanism to handle such variations at adequate (that is a
sufficiently small) granularity level. Therefore, the impact of a
small variation on a program solution is often not proportional to
the size of the variation.

5. CONSTRUCTION OF BUFFER
CLASSES WITH XVCL

We shall now show how the Buffer library can be produced from
a much smaller base of meta-code using XVCL. Our objective in
this experiment is to construct classes in the same form as they
appear in the original Buffer library.

Based on the analysis of redundancies described in the previous
sections, we identified seven groups of similar classes, namely:

1. [T]Buffer: 7 classes at Level 1 that differ in buffer element
type, T: Byte, Char, Int, Double, Float, Long, Short

2. Heap[T]Buffer: 7 classes at Level 2, that differ in buffer
element type, T

3. Heap[T]BufferR: 7 read-only classes at Level 3

4. Direct[T]Buffer[S|U]: 13 classes at Level 2 for combinations
of buffer element type, T, with byte orderings: S – non-native
or U – native byte ordering (notice that byte ordering is not
relevant to buffer element type ‘byte’)

5. Direct[T]BufferR[S|U]: 13 read-only classes at Level 3 for
combinations of parameters T, S and U, as above

6. ByteBufferAs[T]Buffer[B|L]: 12 classes at Level 2 for
combinations of buffer element type, T, with byte orderings: B
– Big_Endian or L – Little_Endian

7. ByteBufferAs[T]BufferR[B|L]: 12 read-only classes at Level 3
for combinations of parameters T, B and L, as above.

For each of the above groups, we designed meta-components to
generate classes in a given group. The overall structure of meta-
components is outlined in Figure 6. The top-most meta-
component, called SPC, specifies how to construct all the buffer
classes. Below, we see a layer of meta-components called meta-
classes. Meta-classes correspond by name to seven groups of
similar classes and each meta-class facilitates generation of
classes in its group. (In Figure 6, we showed only three out of
seven meta-classes.)

The rest of the meta-components, called meta-fragments, are class
building blocks, “normalized” to eliminate redundancies. Meta-
fragments represent both unique and recurring fragments of class
definitions, related to various features.

Meta-components contain Java code inter-mixed with XVCL
commands. XVCL commands indicate how a meta-component
can adapt meta-components below it (Figure 6), and how a meta-
component can be adapted by meta-components above it. After
adaptation, a child meta-component is included into the parent
meta-component (as indicated by <adapt> arrows). For example,
the SPC includes after possible adaptations meta-classes
[T]Buffer, Heap[T]Buffer and Direct[T]Buffer[S|U].

/*Creates a new byte buffer containing a shared
 subsequence of this buffer's content. */

public ByteBuffer slice() {
 int pos = this.position();
 int lim = this.limit();
 assert (pos <= lim);
 int rem = (pos <= lim ? lim - pos : 0);
 int off = (pos << 0);
 return new

DirectByteBuffer(this, -1, 0, rem, rem, off);
}

/* Tells whether or not this buffer is backed by
an accessible byte array. */

public final boolean hasArray() {
return (hb != null) && !isReadOnly; }

 6

SPC

[T]Buffer Heap[T]Buffer Direct[T]Buffer[SU]

unique
attributes

recurring
attributes

unique
constructors

recurring
constructors

unique
methods

recurring
methods

meta-
fragments

meta-
fragments

meta-
fragments

meta-
fragments

meta-
fragments

meta-
fragments

meta-
fragments

SPC

meta-classes

meta-fragments

Legend:
<adapt>

Figure 6. A fragment of meta-component architecture for the Buffer library

The XVCL processor traverses the meta-component architecture
as indicated by <adapt> commands in depth-first order, starting
with the SPC. (For readability, we enclose XVCL commands in
angle brackets.) For each visited meta-component, the processor
interprets XVCL commands embedded in that meta-component
and generates source code for classes (Figure 7).

XVCL Processor

SPC

meta-classes

meta-fragments

adapt

Composition
&

Adaptation

input output

classes

Figure 7. Class construction with XVCL
Code fragments that recur in buffer classes without changes, such
as method hasArray() in Figure 4, are included “as is”. However,
other meta-fragments must be adapted for reuse in a given
context. Adaptations are achieved by means of parameterization
via meta-variables and meta-expressions, insertions of code and
specifications at designated break points, selection among given
options based on conditions, code generation by iterating over
sections of meta-components, etc.

meta-fragment name: slice

text

/*Creates a new byte buffer containing a shared
subsequence of this buffer's content. */

public @elmtTypeBuffer slice() {
 int pos = this.position();
 int lim = this.limit();
 assert (pos <= lim);
 int rem = (pos <= lim ? lim - pos : 0);
 int off = (pos << @elmtSize);
 return new Direct@elmtTypeBuffer@byteOrder
 (this, -1, 0, rem, rem, off); }

Figure 8. Meta-fragment slice.xvcl
Parameterization via meta-variables and meta-expressions plays
an important role in building generic, reusable programs. It
provides the means for creating generic names and controlling the
traversal and adaptation of a meta-component architecture. For
example, we parameterized method slice() (Figure 5) with meta-
variables as shown in Figure 8.

A reference to a meta-variable, such as @elmtType, is replaced
by the meta-variable’s value during processing. The value of
meta-variable elmtType may be <set> to Byte, Int, Char, etc., as
required at the adaptation point. For example, to produce method
slice() for class DirectByteBuffer, we <set> the value of meta-
variable elmtType to “Byte”, and for classes DirectIntBufferS
and DirectIntBufferU - to “Int”. A meta-expression
Direct@elmtTypeBuffer@byteOrder in Figure 8 allows us to
generate names for all the Direct* classes at Level 2 (Figure 1).

meta-class name: [T]Buffer

text
package @packageName;
public abstract class @elmtTypeBuffer extends

 Buffer implements Comparable
text { // attributes and methods here

toString break
 public String toString() {
 StringBuffer sb = new StringBuffer();
 sb.append(getClass().getName());
 sb.append("[pos="+ position());
 sb.append(" lim="+ limit());
 sb.append(" cap="+ capacity());
 return sb.toString(); }

text }
Figure 9. Meta-class [T]Buffer

Meta-class [T]Buffer facilitates generation of all the 7 buffer
classes at Level 1 (Figure 1). As the reader may recall from
Section 4, class CharBuffer requires different implementation of
method toString() than the remaining 6 classes at Level 1. This
situation is handled by a <break> point and <insert> command.
The <break> point toString contains default implementation of
method toString() that is used in 6 classes. When generating class
CharBuffer, we override the default implementation of method
toString(). This is done in the SPC (Figure 10) - <adapt>
command for option “Char” contains a proper <insert> command.
In general, higher-level meta-components can replace the default
code or insert extra code after/before the <break> points in
<adapt>ed meta-components.

The SPC of Figure 10 controls the overall process of generating
all the buffer classes. First, the SPC <set>s the value of meta-
variable packageName to “java.nio” and the value of meta-
variable elmtType to <Byte,Char,Double,Float,Int,Long,Short>.
Values of those meta-variables are propagated down to the
<adapt>ed meta-components.

 7

name : SPC
set packageName = “java.nio”
set elmtType=<Byte,Char, Double, Float, Int, Long, Short>
while using-items-in=elmtType
 select option=”elmtType”
 Byte adapt [T]Buffer
 adapt [T]Buffer
 insert toString

Char

 text

Public String toString()
{ return toString(
 position(),limit());
}

 otherwis
e adapt [T]Buffer

Figure 10. SPC to construct classes at Level 1
The value of elmtType is a list. Command <while> iterates over
its body seven times. In each iteration, elmtType accepts one
value from the list, in the left-to-right order. Based on that value,
the processor <select>s a suitable option (such as Byte, Char or
otherwise) and generates code for appropriate class(es)
(ByteBuffer, CharBuffer and all the remaining classes,
respectively). Generation is done by <adapt>ing the meta-class
[T]Buffer. To generate class CharBuffer, we override the default
implementation of method toString(). Class ByteBuffer requires
extra methods that are <insert>ed at the adaptation point (details
not shown in Figure 10). All the remaining classes at Level 1
require the same adaptations, as shown in otherwise option of
<select>.

Due to space limitation, we only highlighted the structure of the
solution and basic concepts of the XVCL’s “composition with
adaptation” mechanism. In XVCL, meta-components are encoded
as XML files, with XVCL commands expressed as XML tags
[15]. In the above examples, for readability, we showed XML-
free, tabular views of meta-components as produced by the XVCL
Workbench, a productivity tool being developed at NUS.

The reader may find a description of the XVCL and its
implementation in [15]. Full specifications of XVCL and its
processor’s source code can be downloaded from
fxvcl.sourceforge.net. A tutorial paper [13] gives a friendly
introduction to XVCL concepts. Complete documentation and
code for the Buffer library case study can be found at
fxvcl.sourceforge.net in “Case Studies”.

We would like to end this section by summarizing the process of
designing the meta-component architecture for buffer classes. We
started by analyzing types of the redundant code fragments in
buffer classes, which led us to identifying seven major groups of
similar classes. We designed meta-components for each group of
classes, eliminating redundant code fragments as follows: For
each group of similar fragments, we created a suitable meta-
fragment. As for meta-fragments that appeared in different
contexts with changes, we parameterized them with meta-
variables, <break> points, <select>, <insert>, <adapt> and other
XVCL commands to cater for required variations. Finally, we
incorporated suitable adaptation commands to the corresponding
meta-classes and SPC.

6. THE ORIGINAL BUFFER LIBRARY
VERSUS THE XVCL SOLUTION

Table 3 and Figure 11 show the results of comparing the original
Buffer classes with the XVCL solution.

Table 3. Original Buffer library vs. XVCL solution
original Buffer library Buffer library in XVCL

classes fragments LOC1 Java Code2 meta-components LOC3 Java Code4

level 1
(7 classes) 254 4534 1108 76 1008 308

level 2 Heap*
(7 classes) 159 1151 948 52 399 364

level 2 Direct *
(13 classes) 325 2320 2104 73 753 729

level 3
Heap* read-only

(7 classes)
112 704 578 35 306 282

level 3
Direct * read-only

(13 classes)
188 1207 1113 44 503 494

subtotal
(47 classes) 1038 9916 5851 280 2969 2177

other classes at
 level 2 (12 classes) 196 1244 1146 18 193 184

other classes at
level 3 (12 classes) 136 764 666 13 153 144

subtotal for others
(24 classes) 332 2008 1812 31 346 328

total 1370 11924 7663 311 3315 2505
1 including Java code and comments. 2 only including Java code
3 including Java code, comments, and XVCL instructions
4 including Java code, and XVCL instructions

0

2000

4000

6000

8000

10000

12000

14000

Java code Java code with
comments

LOC in XVCL LOC in original classes

Figure 11. Buffer library: summary chart
The XVCL solution eliminates 68% of the code as compared to
the original buffer classes. As both code and comments are
needed to understand a program, and both must be maintained, the
size of code with comments is a better indicator of maintenance
effort than code alone. It is possible and useful to manage both
executable code and comments with XVCL. If we count
executable code with comments, the XVCL solution eliminates
72% of the code.

 8

7. DISCUSSION OF THE RESULTS
The XVCL solution described in this paper is meant for
developers and maintainers of complex, evolving class libraries.
As a class library produced from meta-components is no different
from the original class library, programmers reusing the library
need not be concerned or even aware that the library is managed
with XVCL. On the other hand, some programmers may also wish
to incorporate elements of the XVCL technique into their main-
stream programming work. Especially, programmers working in
unstable domains, where change is pervasive, may see good
reasons to do so. In such cases, meta-components of the class
library can be neatly integrated with programs reusing those
libraries at the meta-level. This option also opens the possibility
of re-designing concrete classes, as we have done in another
project (we discuss this in more details below).

The main return on investment in applying XVCL is from savings
in program maintenance. The principle of XVCL design is clean
separation of various sources of change affecting a program. Each
source of change (e.g., variation of the features listed in Table 1)
can be traced to codes affected by this change. Lack of the
redundant code reduces the number of points at which affected
classes must be modified. Changes done to one meta-fragment
consistently propagate to all the contexts into which the meta-
fragment is adapted. If the impact of change is not uniform in all
such contexts, the exceptions can be handled at the specific
adaptation point, without directly modifying the code fragment
involved. The meta-component architecture explicitly reflects the
impact of change on program elements. From each meta-class we
can trace how different feature combinations affect the code.

Despite those benefits, design in terms of meta-components is not
easy and different from the inheritance-based program design. For
a skilled OO programmer familiar with the application domain
(e.g., buffer classes), the development of an XVCL meta-
component architecture takes longer than the development of pure
OO class library. The development of a meta-component
architecture starts by designing a program runtime architecture
and developing a default, simplified program. A meta-component
architecture is then developed in iterations, starting with the
default program. Each iteration applies XVCL to extend the meta-
component architecture with new features, refine existing meta-
components and create new generic, reusable meta-components. It
takes some time to adjust to this way of thinking about a program.
But as this perspective so well addresses concerns that matter in
maintenance, eventually this shift of the viewpoint pays off.

To better understand the results of this study, we conducted two
related experiments:

1. In the first experiment, we produced buffer classes with the
same functionality as the original ones, but optimized for memory
consumption and speed. Each concrete class implementing a
specific feature combination is complete in the sense that it can be
used without any other classes. Therefore, each class includes all
the required methods and classes are not related by means of
inheritance. We envision application of this Buffer library
solution in time-critical and embedded systems. As in the
experiment described in this paper, we eliminated redundant code
at the meta-level, obtaining above 60% reduction of the code size
as compared to the original Buffer library. At least in those two

experiments, we observed similar code reduction at the meta-level
independently of the structure of generated classes.

2. In the second experiment, we studied JSR-14, Java with
templates, in the context of the Buffer library. Templates are
meant mainly for defining generic containers. We re-designed 15
template-friendly buffer classes with JSR-14, eliminating 27% of
the code. However, we found it impossible to integrate the re-
designed, template-based classes with the rest of the buffer classes
because of tight coupling among classes. The reader may find
more details about the template solution in section 4. On the
overall, we think that the practical value of templates in
elimination of redundant code in tightly coupled classes is rather
limited.

It would be interesting to compare our results with the results
obtained with other techniques applied to the same Buffer library.
We believe template-based generative techniques [5], GenVoca
[3], Aspect-Oriented Programming [8] and multi-dimensions
hyperspaces [14] may be effective in eliminating redundancies.
Some redundancies could be eliminated with multiple inheritance,
delegation, design patterns and other design techniques. But how
effective would be these solutions in reducing program
complexity and improving program maintainability? Another
interesting problem, suggested by one of the reviewers, is to study
how much redundancy is induced by the limitations of the
underlying programming language. We are planning to address
the above open problems in future research. We hope this paper
will encourage others to conduct similar studies using their
favorite techniques.

8. RELATED WORK
To address the unwanted symptoms of the “feature
combinatorics” problem, a suitable technique must achieve some
degree of “separation of concerns” in software design and
implementation. It is easier to achieve separation of concerns at
the meta-level rather than at the level of concrete program
components. Using meta-level techniques, custom components
with the required combination of features are synthesized from a
set of primitive meta-components. The techniques differ in the
nature of meta-components and in how synthesis is done to
produce a concrete component. Below, we briefly contrast XVCL
with other meta-techniques.

Generators [11] produce custom programs from problem
specifications in domain-specific languages. Domain-specific
languages can be developed in well-understood and stable
domains. As problem specifications can be very compact,
generators yield higher productivity gains than XVCL. Generators
are also more effective than XVCL when we require sophisticated
domain-specific optimizations [3][10][11]. On the other hand,
XVCL is an application domain-independent language, method
and tool. XVCL performs best in immature, poorly understood
and evolving domains and in domains where frequent changes
occur at both large and small granularity levels. Unlike in many
generators, a programmer can modify any detail of the program
solution and the required code changes are always proportional to
the change in the problem domain.

Macro systems are probably the oldest form of meta-
programming. Macros handle variant features only at the
implementation level, which causes well-known problems with

 9

understanding programs instrumented with macros [7]. Even
though XVCL commands, like macros, instrument programs for
change, capabilities of XVCL in handling variants reach far
beyond the capabilities of macro systems. XVCL is a full-fledged
design method, in which variant features are directly addressed at
both program design and implementation levels. Over time, an
XVCL meta-component architecture emerges as a well-organized
architecture that explicates the impact of variant features on
components and automates production of custom components.
XVCL has unique features to support reuse and evolution such as
propagation of meta-variables across meta-components, meta-
variable scoping rules that allow us to adapt generic meta-
components at inclusion points, meta-expressions to formulate
generic names, code selection or insertion at designated
breakpoints and a while loop construct to implement generators.

Configuration Management (CM) systems have been applied to
handle variant features in software. Like an OO library, for each
legal combination of features, a CM system maintains a separate
component version. CM systems are strong in handling variants at
the file level but weak in handling small, inter-dependent variants,
spreading over many components. In XVCL, we capture
component variability specifications at the meta-level separately
from the components themselves, and we can configure variants
at any level of granularity.

In Aspect-Oriented Programming (AoP) [8], each computational
aspect is programmed separately and weaved into the base code.
AoP composition rules are specified in a descriptive, easy to grasp
way, but compositions can occur only at join points supported by
the AoP system. XVCL composition rules are defined in an
operational way, and therefore more difficult to grasp, but
compositions may occur at arbitrary break points. AoP was
designed to deal with reasonably big chunks of functionality
(aspects) and lacks a mechanism to handle small variations. While
it is possible to define an aspect within another aspect, probably
the result would be rather complicated. XVCL, on the other hand,
can deal with variations at any granularity level, using a uniform,
yet simple mechanism.

In the hyperspace approach [14], hyperslices encapsulating
computational aspects can be composed in various configurations
to form specific programs. In XVCL, we achieve separation of
concerns by placing code related to different computational
aspects into different meta-component layers [16].

9. CONCLUSION
It is well known that redundant code obstructs program
understanding and maintenance. Yet, programs are often polluted
by such code. In some cases, redundancy is created on purpose,
for example, to increase the robustness of life-critical systems or
to minimize dependencies among developers in large projects
[12]. In other cases, redundancies do not play any positive role
and are created during maintenance, new development (due to
inadequacy of programming languages and design techniques) or
generated by tools. Whatever the reason, redundancy obstructs
program understanding and maintenance.

While we may not be able to eliminate all the redundancies in
executable programs, the good news is that redundancy can be
effectively dealt with at the meta-level. In this paper, we
described the results of the study of the redundant code in the

Java Buffer library, JDK 1.4.1. We found that more than 68% of
code in the Buffer library is redundant in the sense that it recurs in
many classes in the same or slightly modified form. We
effectively eliminated that 68% of code at the meta-level, using a
technique based on “composition with adaptation”, called XVCL.
We argued that such a program solution is easier to maintain than
the buffer classes with redundant code. In this experiment, we
designed our meta-representation so that we could produce buffer
classes in exactly the same form as they appear in the original
Buffer library. While we have been tempted to re-design the
buffer classes, we chose not to do so, to allow for seamless
integration of the XVCL solution into contemporary programming
methodologies and systems. This decision did not affect essential
results reported in this paper.

In other experiments, XVCL achieved code reductions of:
o 60% when generating buffer classes optimized for memory

consumption and speed,
o 68% in n-tier application (C#), and
o 61% in Data Access component of an n-tier application,

developed using MS ADO in MS VC++.

In XVCL, we produce classes by composing meta-components
with possible adaptations. In the paper, we described both the
general concepts of the “composition with adaptation” technique
and its realization with XVCL.

Strengths: XVCL allows us to develop and maintain class libraries
from a small, non-redundant base of meta-components. The meta-
component architecture provides a clear view on how feature
combinations and other changeable requirements affect the code.
We can eliminate redundancies at the meta-level, thus simplifying
maintenance, and still keep redundant code in executable
programs, if it is so required. One of the reasons for many
redundant code fragments in class libraries is that inheritance does
not support fine-grain reuse – small change in requirements may
lead to many changes in code. XVCL supports reuse at any level
of granularity that is needed - small changes in requirements
trigger equally small amounts of re-work in meta-components.
The XVCL solution is simple and transparent - all the codes that
we see in the final Java classes also appear in meta-components.
A programmer can intervene in any details of the transition from
the meta-level to programs. We can re-design classes or produce
classes in the same form as in the original library. XVCL
complements rather than competes with programming languages
and other design paradigms. A developer can switch from the OO
paradigm to XVCL to deal with certain problems in a more
efficient way. Therefore, the XVCL solution can be neatly
integrated into other programming methodologies and
environments. XVCL is a comprehensive design method, leading
to compact program solutions that are structured to maximize
flexibility, reuse and ease of change.

Weaknesses: There are well-known problems with understanding
programs heavily instrumented with macros [7] and meta-
programs in general. XVCL meta-components also contain code
instrumented with commands. This problem is mitigated by the
fact that, unlike macros that merely complement a programming
language, XVCL is a full-fledged design method supported by
tools. XVCL meta-components are first-class design concepts that
facilitate change. Meta-components are organized into a layered
architecture that strives to achieve separation of concerns. XVCL
is supported by tools that produce adaptation traces and help

 10

debug meta-component architectures: For a given SPC, one can
follow the sequence of adapted meta-components and analyze
detailed adaptations. We implemented a tool for “round trip”
engineering that helps a programmer propagate changes which are
made directly to the generated program, back to the affected
meta-components. A big challenge in meta-programming is how
to validate code generated from meta-components. Correctness of
produced code is not guaranteed by XVCL. This problem is
mitigated by the fact that lower levels of the meta-component
architecture get pretty stable and reliable over time. Potential
errors tend to be located only in top-most, context-specific and
still fragile meta-components. In the project described in this
paper, we manually analyzed code to find similar fragments. It
was a tedious process. We plan to explore existing techniques in
duplicated code detection in order to automate the search of
groups of similar code fragments as candidates for meta-
components.

Redundant code obstructs program understanding and contributes
to high maintenance costs - the evidence abounds but is mostly
anecdotal. We did not find recent studies on redundancies. A
study conducted in 1984 reports that redundancy ranges from
50% to 85% [9]. Re-engineering experts say that around 40% of
code in systems they examine is redundant [12]. In future work,
we plan to conduct a systematic study on redundancies in
programs written in different programming languages, using
different design techniques, and for different types of
applications. Such a study should include both newly written and
old programs. We also plan to conduct comparative studies to
evaluate the effectiveness of various techniques in handling
redundancies. We hope that others will conduct studies applying
their favorite techniques to problems such as the Buffer library.

Meta-techniques based on “composition with adaptation”, such as
XVCL, complement rather than compete with the design
techniques offered by programming languages. We believe that
“composition with adaptation” is a simple yet powerful
programming technique whose potentials have yet to be
discovered. Our research group is strongly committed to
exploring this potential.

10. ACKNOWLEDGEMENTS
Thanks are due to the following NUS students: Hong Ruiling who
developed XVCL solution for optimized buffer classes; Damith
Chatura Rajapakse, Pavel Korshunov and Hamid Abdul Basit who
re-designed the Buffer library with JSR-14. We are grateful to
reviewers who have given us insightful suggestions and pointed to
interesting and important open problems related to our work. This
research was supported by National University of Singapore
Research Grant R-252-000-066-112.

REFERENCES
[1] Bassett, P. 1997. Framing software reuse - lessons from real

world, Yourdon Press, Prentice Hall

[2] Batory, D., Singhai, V., Sirkin, M. and Thomas, J. “Scalable
software libraries,”, ACM SIGSOFT’93: Symp. on the
Foundations of Software Engineering, Los Angeles,
California, Dec. 1993, pp. 191-199

[3] Batory, D. and Geraci, B.J. “Validating component
compositions and subjectivity in GenVoca generators,” Trans.
on Software Engineering, 23, 2, 1997, pp. 67-82

[4] Biggerstaff, T. “The library scaling problem and the limits of
concrete component reuse, “ 3rd Int. Conf. on Software Reuse,
ICSR’94, 1994, pp. 102-109

[5] Czarnecki, K. and Eisenecker, U. Generative Programming:
Methods, Tools, and Applications,” Addison-Wesley, 2000

[6] Jarzabek, S. and Zhang, H. “XML-based Method and Tool for
Handling Variant Requirements in Domain Models”, 5th
IEEE International Symposium on Requirements Engineering,
August 2001, Toronto, Canada, pp. 166-173

[7] Karhinen, A., Ran, A. and Tallgren, T. “Configuring designs
for reuse,” Proc. International Conference on Software
Engineering, ICSE’97, Boston, MA., 1997, pp. 701-710.

[8] Kiczales, G, Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J-M., Irwin, J. Aspect-Oriented Programming,”
European Conference on Object-Oriented Programming,
Finland, Springer-Verlag LNCS 1241, 1997, pp. 220-242

[9] Maginnis, N. “Specialist: Reusable code helps increase
productivity,” in Computerworld, Nov. 1986

[10] Neighbours, J. 1984. The Draco Approach to Constructing
Software from Reusable Components. IEEE Trans. on
Software Eng., SE-10(5), September 1984, pp. 564-574

[11] Smaragdakis, Y. and Batory, D. “Application generators,” in
Software Engineering volume of the Encyclopedia of
Electrical and Electronics Engineering, J. Webster (ed.),
John Wiley and Sons, 2000

[12] Sneed, H. private communication
[13] Soe, M.S., Zhang, H. and Jarzabek, S. “XVCL: A Tutorial,”

Proc. of 14th Int. Conf. on Software Engineering and
Knowledge Engineering,SEKE’02, ACM Press, July 2002,
Italy, pp. 341-349

[14] Tarr, P., Ossher, H., Harrison, W. and Sutton, S. “N Degrees
of Separation: Multi-Dimensional Separation of Concerns”,
Proc. International Conference on Software Engineering,
ICSE’99, Los Angeles, 1999, pp. 107-119

[15] Wong, T.W., Jarzabek, S., Soe, M.S., Shen, R. and Zhang,
H.Y. “XML Implementation of Frame Processor,”
Symposium on Software Reusability, SSR’01, Toronto,
Canada, May 2001, pp. 164-172

[16] Zhang, H.Y., Jarzabek, S. and Soe, M. S., 2001. XVCL
Approach to Separating Concerns in Product Family Assets,
Proc. Generative and Component-based Software
Engineering (GCSE 2001), Erfurt, Germany, September
2001, pp. 36-47

