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ABSTRACT 
Redundant code obstructs program understanding and contributes 
to high maintenance costs. While most experts agree on that, 
opinions - on how serious the problem of redundancies really is 
and how to tackle it - differ. In this paper, we present the study of 
redundancies in the Java Buffer library, JDK 1.4.1, which was 
recently released by Sun. We found that at least 68% of code in 
the Buffer library is redundant in the sense that it recurs in many 
classes in the same or slightly modified form. We effectively 
eliminated that 68% of code at the meta-level using a technique 
based on “composition with adaptation” called XVCL. We argue 
that such a program solution is easier to maintain than buffer 
classes with redundant code. In this experiment, we have 
designed our meta-representation so that we could produce buffer 
classes in exactly the same form as they appear in the original 
Buffer library. While we have been tempted to re-design the 
buffer classes, we chose not to do so, in order to allow for the 
seamless integration of the XVCL solution into contemporary 
programming methodologies and systems. This decision has not 
affected the essential results reported in this paper. 

Categories and Subject Descriptors 
D.2.2 [SOFTWARE ENGINEERING]: Design Tools and 
Techniques - Software libraries; D.2.13 [SOFTWARE 
ENGINEERING]: Reusable Software - Reusable libraries 

General Terms 
Performance, Design, Languages 

Keywords 
meta-programming, generative programming, class libraries, 
Object-Oriented methods 

 
1. INTRODUCTION 
As early as in 1993, Batory et al. [2] described the “feature 
combinatorics” problem hampering the scalability of 
class/component libraries, reuse and programmers’ productivity 

in general. Batory studied C++ data structure class libraries, 
where typical features relate to data structure, memory allocation 
scheme, access mode, concurrency, etc. In general, features may 
relate to any characteristic of a program such as functionality, 
design solution, platform, etc. The problem manifests itself as 
follows: Features may appear in classes in many different 
combinations. As we need a unique class for each legal 
combination of features, we must develop and maintain a large 
number of similar classes. Batory concludes that “today’s method 
of constructing libraries is inherently unscalable… Libraries 
should not enumerate complex components with numerous 
features… to be scalable, libraries must offer much more 
primitive building blocks and be accompanied by generators that 
compose blocks to yield the data structures needed by application 
programmers.” In the same paper, Batory applied a generation 
technique of GenVoca [3] to produce classes with required 
combination of features from a much simpler set of primitive 
building blocks than the original classes. In 1994, Biggerstaff 
further analyzed the library scaling problem and limits of 
concrete component reuse caused by “feature combinatorics” [4]. 

The “feature combinatorics” problem also contributes to high 
maintenance cost. As the number of feature combinations 
increases, classes in a library not only grow in number, but also 
become polluted with numerous redundant code fragments. 
Redundant code obstructs program understanding during the 
maintenance in at least, two ways: (1) a programmer must 
maintain more code than he/she would have to maintain should 
the redundancies be removed, and (2) when one logical source of 
change affects many replicated code fragments scattered 
throughout a program, to implement a change, a programmer 
must find and update all the instances of the replicated fragment. 
The situation is further complicated if an affected fragment must 
be changed in slightly different ways, depending on the context.  

The above arguments apply to components and programs in 
general, as well as classes. As components usually contain more 
functionality than classes, the number of feature combinations in 
components is even larger than in classes. Therefore, we shall see 
an explosion of look-alike components that, despite similarities, 
have to be implemented and maintained as separate products 
containing much redundancy. 

In this paper, we address one specific symptom of the “feature 
combinatorics” problem, namely that of the redundant code. In 
the first part of the paper, we present results of the redundant code 
analysis in the Java Buffer library, JDK 1.4.1, pointing to 
common sources of redundancies. In the second part of the paper, 
we describe an alternative way of building a class library, with a 
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meta-programming technique called XVCL1. We developed 
XVCL to facilitate building flexible, adaptable and reusable 
software. The XVCL solution consists of class building blocks 
(meta-components) and an automated class construction process 
during which meta-components are composed incorporating 
possible adaptations. Our experiment shows that at least 68% of 
the executable code in the Buffer library is redundant and can be 
eliminated at the meta-level. If we count both executable code 
and comments, then we can eliminate 72% of code. Due to the 
smaller base of non-redundant code and better traceability from 
features to code, the Buffer library in XVCL meta-representation 
is easier to maintain than the original Buffer library in the source 
form.  

In the experiment, we produced buffer classes in exactly the same 
form as they appear in the original Buffer library. While we have 
been tempted to re-design the buffer classes, we chose not to do 
so, to allow for seamless integration of the XVCL solution into 
contemporary programming methodologies and systems. Our 
solution can serve those who develop and maintain libraries, 
without affecting programmers using libraries. The fact that we 
produced classes in their original form did not affect essential 
results reported in this paper.  

It seems that some of the design concerns, such as the reuse or 
handling of scattered code, are much easier to deal with at the 
program meta-level rather than at the level of concrete programs. 
In recent years, a number of approaches have been proposed to 
address such design concerns [3][8][10][14]. These approaches 
can also be applied to alleviate some of the effects of the  “feature 
combinatorics” problem. Many of these approaches are described 
in [5] as “generative programming techniques”. A common 
motivation for these approaches may be phrased as follows: The 
number of concrete classes (or components) is potentially large 
and we cannot help it. But we can ease the problem by providing 
a suitable construction-time mechanism to synthesize concrete 
classes on demand from a relatively simpler base of generic meta-
components. While feature combinations are inevitable in 
concrete classes, at the meta-level we can strive to separate 
different feature dimensions (also called aspects or concerns) and 
provide a meta-level mechanism to produce classes/components 
with the required combination of features on demand. In this 
paper, we show that, along those lines of thinking, interesting 
results can be achieved with a simple “composition with 
adaptation” technique.  

Being a modern and versatile version of Bassett’s frames [1], a 
technology that has achieved substantial productivity 
improvements in industry, the underlying principles of XVCL 
have been thoroughly tested in practice. Unlike the original 
frames, however, XVCL blends with contemporary programming 
and design paradigms, offering an effective reuse mechanism on 
top of mechanisms supported by those paradigms. XVCL works 
on the principle of adapting generic, reusable meta-components 
into concrete components. Any location or structure in a meta-
component can be a designated variation point, available for 
adaptation by ancestor meta-components. Program generation is 
100% transparent to the programmer, who can fine-tune and re-

                                                                 
1 XVCL: XML-based Variant Configuration Language, is a public domain 

method and tool available at: fxvcl.sourceforge.net 

generate code without losing prior customizations. We developed 
and experimented with XVCL in a collaborative project involving 
two universities and two industrial partners2. We applied XVCL 
in two medium-size product line projects [16] and a number of 
smaller case studies [6][13]. In earlier papers, we described 
experimentation with the original frame technology in the context 
of product line architectures and component-based systems.  

This paper is organized as follows: In Sections 2-4, we provide 
statistics of the redundant code in the Buffer library and discuss 
the reasons why the redundancies arose. In Section 5, we describe 
the XVCL solution. In Section 6, we compare the original Buffer 
library with the XVCL solution and in Section 7, we discuss the 
results. In the remaining sections, we discuss related work and 
conclude the paper. 

2. AN OVERVIEW OF THE BUFFER 
LIBRARY 

A buffer contains data in a linear sequence for reading and 
writing. The Buffer class library in our case study is a part of the 
java.nio.* packages JDK 1.4.1. Buffer classes differ in features 
such as the buffer element type, memory allocation scheme, byte 
ordering and access mode (Table 1). Each legal combination of 
features yields a unique buffer class. That is why, even though all 
the buffer classes play essentially the same role, there are 74 
classes in the Buffer library.   

Table 1. Features in the Buffer library 

Level in class
hierarchy Feature dimension Features 

Level 1 buffer data element 
type 

byte, char, int, float 
double, long, short 

memory allocation 
scheme direct, nondirect 

Level 2 byte ordering native, non-native, 
Big_endian, Little_endian

Level 3 access mode writable, read-only 

Figure 1 shows a part of the Buffer library with 49 classes that we 
discuss in detail in the paper. Class sub-hierarchies for classes 
DoubleBuffer, FloatBuffer, LongBuffer, ShortBuffer are 
analogical to sub-hierarchies for classes CharBuffer and 
IntBuffer, so for the sake of brevity we do not depict them in 
Figure 1. Below, we briefly describe features addressed in the 
Buffer library and explain how those features are reflected in 
classes. 

At Level 1 in the class hierarchy, we see seven classes that differ 
in buffer element data types. A programmer can  directly use only 
Level 1 classes. Therefore, these classes contain many methods 
providing access to functionalities implemented in the  classes 
below them. 

Classes at Level 2 address two memory allocation schemes and 
two byte orderings. The direct memory allocation scheme 
allocates a contiguous memory block for a buffer and uses native 
                                                                 
2 Project funded by Singapore National Science and Technology Board 

and Canadian Ministry of Energy, Science and Technology, involving 
National University of Singapore, SES Systems Pte Ltd, University of 
Waterloo and Netron, Inc. (Toronto). 
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access methods to read and write buffer elements, using a native 
or non-native byte ordering scheme. On the other hand, in the 
nondirect memory allocation scheme, we access a buffer through 
Java array accessor methods.  

Byte ordering matters for buffers whose elements consist of 
multiple bytes, that is all the element types but byte. For a variety 

of historical reasons, different CPU architectures use different 
native byte ordering conventions. For example, Intel 
microprocessors put the least significant byte into the lowest 
memory address (which is called Little_Endian ordering), while 
Sun UltraSPARC processors put the most significant byte first 
(which is called Big_Endian ordering).  

Buffer

DoubleBufferByteBuffer CharBuffer IntBuffer FloatBuffer LongBuffer ShortBuffer

MappedByteBuffer

HeapByteBuffer

DirectByteBuffer

HeapCharBuffer

DirectCharBufferS

DirectCharBufferU

HeapIntBuffer

DirecIntBufferS

DirectIntBufferU

HeapByteBuffeR

DirectByteBufferR

HeapCharBufferR

DirectCharBufferRS

DirectCharBufferRU

HeapIntBufferR

DirecIntBufferRS

DirectIntBufferRU

Level 1

Level 2

Level 3

 
Figure 1. A fragment of the Buffer library 

When using the direct memory access scheme, we must know if 
buffer elements are stored using native or non-native byte 
ordering. Twenty new classes at Level 2 in Figure 1 result from 
combining memory access and byte ordering features. (We do not 
count MappedByteBuffer which is just a helping class.) For each 
buffer class at Level 1, we have one Heap* class at Level 2 that 
implements the nondirect memory access scheme for that buffer. 
Classes with suffixes ‘U’ and ‘S’ implement direct memory 
access scheme with native and non-native byte ordering, 
respectively. We have only one class DirectByteBuffer, as byte 
ordering does not matter for byte buffers. 

The buffers discussed so far are writable. Twenty classes at Level 
3 implement read-only variants of buffers.  

3. STATISTICS OF REDUNDANCIES IN 
BUFFER CLASSES 

Code fragments that we studied typically contain definitions of 
classes, class attributes, constructors or methods. Redundancy 
occurs among similar code fragments. It is difficult to define 
redundancy in general and descriptive terms. Therefore, we shall 
accept the following pragmatic definition of redundancy for the 
purpose of this paper: Redundancy occurs in a group of similar 
code fragments whenever we can unify all the differences among 
those fragments at the meta-level. We also require that the result 
is beneficial for maintenance, that is, such a unified meta-
representation should be easier to understand and maintain than 
the original program with redundant code fragments.      

 Among the classes at Level 1, we identified 30 code fragments, 
recurring in either the same form or with slight changes. In Figure 
2, circles marked with (a), (b) and (c) represent classes as 
indicated in the diagram. Notice that Circle (b) represents five 
classes. In the overlapping areas, we indicate fragments recurring 
in the respective classes. We refer to the overlapping areas by 

listing the circles involved such as (ab), (abc), etc. In Figures 2 
and 3, ‘A’ refers to class attributes, ‘C’ – to constructors and ‘M’ 
– to methods. Symbol ‘s’ denotes fragments recurring in the same 
form, ‘c’ - fragments recurring with slight changes. 

For example, Area (ab) contains one method recurring in the same 
form (short form M:1s) in all classes but CharBuffer. The central 
Area (abc) contains 28 fragments that recur in all seven classes. 
These fragments include: 
o 2 attribute definition sections recurring in the same form and 1 

attribute definition section recurring with slight change (in 
short notation: A:2s, 1c) 

o 2 constructor definitions recurring with slight change (in short 
notation: C:2c) 

o 23 method definitions recurring in the same form or with slight 
change (in short notation: M:4s, 19c). 

 

A:0
C:0 
M:0 

A:2s,1c 
C:2c 
M:4s,19c 
(abc) 

A:0 
C:0 
M:1s 
(bc) 

A:0
C:0 
M:0 
(ac) 

A:0 
C:0 
M:1s 
(ab) 

A:0
C:0 
M:9 
 

ByteBuffer

CharBuffer

A:2 
C:0 
M:35 

IntBuffer
FloatBuffer 
LongBuffer 
ShortBuffer 
DoubleBuffer

 (a) 

(b) (c)

 
Figure 2. Distribution of code fragments in classes at Level 1 

Non-overlapping areas represent unique fragments in the 
respective classes. For example, ByteBuffer class has 37 unique 
fragments including two attribute definition sections and 35 
method definitions (A:2 C:0 M:35), while IntBuffer class has no 
unique fragments.  
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The five classes in Circle (b) are very similar, in the sense, that 
they are built from virtually the same group of fragments, with 
only slight differences among fragments recurring in different 
classes. The reader should refer to relevant entries in Table 2  for 
statistics of classes at Level 1. 

Classes at Level 2 address memory allocation schemes and byte 
ordering, as well as the buffer element type. This new 
combination of features brings in two new sub-classes of 
ByteBuffer and three new sub-classes for each of the remaining 
classes at Level 1.  

Figure 3 shows the distribution of both unique and redundant code 
fragments in classes implementing the nondirect memory 
allocation scheme (seven classes named Heap* in Figure 1). In 
the central Area (abc), there are three constructor definitions 
recurring in all seven classes with small changes. Also, there are 
seven methods recurring in all the classes without any change, 
one method recurring in six classes except HeapByteBuffer (Area 
(bc)), and seven methods recurring with small changes in all 
seven classes.    

 

A:0 
C:0 
M:0 

A:0 
C:3c 
M:7s,7c 
(abc) 
A:0 
C:0 
M:1s 
(bc) 

A:0 
C:0 
M:0 
(ac) 

A:0 
C:0 
M:0 
(ab) 

A:0 
C:0 
M:2 

HeapByteBuffer 

HeapCharBuffer

A:0 
C:0 
M:32 
 

HeapIntBuffer 
HeapFloatBuffer 
HeapLongBuffer 
HeapShortBuffer 
HeapDoubleBuffer 

 (a) 

 (c)
 (b) 

 
Figure 3. Distribution of code fragments in Heap* classes at 

Level 2 
Classes implementing the direct memory allocation scheme 
(named Direct* in Figure 1) also contain many redundant code 
fragments. Due to the lack of space, we skip the details of the 
analysis of the remaining classes. Table 2 shows the distribution 
of the redundant code fragments across the different slices of the 
Buffer library and the frequency in which they recur. 

4. WHY DO REDUNDANCIES ARISE? 
To simplify the use of the Buffer library, the designers decided to 
reveal to programmers only the top eight classes (Figure 1). 
Functionalities related to lower-level concrete classes can be 
accessed via methods provided in these classes. While this and 
other concerns related to usability and performance affected the 
design of the buffer classes and introduced some extra code, we 
did not find evidence that those concerns led to redundant code. 
On the other hand, we found that addressing feature combinations 
led to redundancies in the respective classes. As features cannot 
be implemented independently of each other in separate 
implementation units (e.g., class methods), code fragments related 
to specific features appear with many variants in different classes, 
depending on the context. Whenever such code cannot be 
parameterized to unify the variant forms, and placed in some 
upper-level class for reuse via inheritance, a redundancy arises.  

Table 2. Buffer library statistics 

Fragments 
Recurring fragments Classes 

times 
types 2 6 7 12 13 Unique LOC

same form  2 6   level 1 
(7 classes) small changes   22   46 4534

same form  1 7   level 2 Heap* 
(7 classes) small changes   10   34 1151

same form 1    8level 2 Direct *
(13 classes) small changes 1   2 11 50 2320

same form  1 1   level 3 Heap* 
read-only 
(7 classes) small changes   11   

22 704 

same form 1    2level 3 Direct *
read-only 

(13 classes) small changes 1   2 8 30 1207

same form 2 4 14  10subtotal for 
47 classes small changes 2  43 4 19 182 9916

same form 1   4  other classes 
at level 2 

(12 classes) small changes 1   12  0 1244

same form 1   2  other classes 
at level 3 

(12 classes) small changes 1   9  0 764 

same form 2   6  subtotal for 
other classes small changes 2   21  0 2008

same form 4 4 14 6 10total small changes 4  43 25 19 182 11924

To observe the impact of feature combinations on redundancies, 
we compared a number of classes that differed in one feature 
only. For example, we compared classes that differed in element 
type (e.g., DirectCharBufferS and DirectIntBufferS), in byte 
ordering (e.g., DirectIntBufferS and DirectIntBufferU) and in 
access mode (e.g., DirectIntBufferS and DirectIntBufferRS). 

A typical situation that leads to redundant code is when some 
classes derived from the same parent, say class A, need a certain 
method (or data), and other classes derived from A do not need 
that method. We could create a new abstract parent class just to 
make that method available to classes that need it. Creating many 
such classes would, however, complicate the class hierarchy and 
hinder performance. We could also place such a method in the 
parent class A. But this solution would either be error-prone or 
require us to write extra code to disable the method in the classes 
that do not need it. In yet another situation, a certain method is 
needed in all the classes derived from class A, but in some of 
those classes the method requires different parameters, return type 
or implementation that in other classes. Furthermore, 
implementations of such a method in different classes may refer 
to non-local attributes defined in the context of different classes. 
In the above cases, designers often choose to place a method into 
each class that needs it creating redundant code.  

Method hasArray() shown in Figure 4 illustrates a simple yet 
interesting case. This method is repeated in each of the seven 
classes at Level 1. Although method hasArray() recurs in all 
seven classes, it cannot be implemented in the parent class Buffer, 
as variable hb must be declared with a different type in each of 
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the seven classes. For example, in class ByteBuffer the type of 
variable hb is byte and in class IntBuffer – int. 

 
Figure 4. Recurring method hasArray()  

Many redundancies arise due to the inability to specify small 
variations in otherwise identical code fragments. For example, 
some attributes, methods or even classes may differ only in data 
types or constants. Such situations are easily handled by 
templates. For example, 15 classes represented as Circles (b) in 
Figure 2 and 3 can be implemented by templates. The current 
release of Java does not support templates, but JSR-14  is likely to 
become a part of Java soon (http://www.jcp.org/en/jsr/). In the 
related project, we built JSR-14 templates for classes that differed 
only in the buffer element type, eliminating 27% of code. 
However, we found it impossible to integrate template-based 
classes with the rest of the buffer classes because of tight coupling 
among classes across the library.  

 
Figure 5. Method slice()  

In some situations, to unify similar fragments, we would need 
parameters representing algorithmic elements rather than data 
types. In yet other situations, we have to do with many small 
differences across implementations of the same method in 
different classes. We observe this in the classes in Circles (a) and 
(b) in Figure 2 and 3. For example, method slice() recurs 13 times 
in all the Direct* classes with small changes highlighted in bold 
(Figure 5). This happens when the impact of various features 
overlaps in code fragments, affecting data type names, constant 
values or details of algorithms. Template mechanism supported 
by JSR-14 is not meant to unify this kind of differences in classes. 
In JSR-14, template parameters cannot be primitive types such as 
int or char. This is a serious limitation, as one has to create 
wrapper classes just for the purpose of parameterization. Wrapper 
classes introduce extra complexity and hamper performance, so it 
is unlikely that we shall see the implementation of the Buffer 
library using JSR-14. Templates in other languages, for example, 
C++ are free of these limitations. 

It is interesting to note that small variations appear in otherwise 
the same code fragments across classes at the same level of 
inheritance hierarchy, as well as in classes at different levels of 

inheritance hierarchy. Programming languages do not have a 
proper mechanism to handle such variations at adequate (that is a 
sufficiently small) granularity level. Therefore, the impact of a 
small variation on a program solution is often not proportional to 
the size of the variation.  

5. CONSTRUCTION OF BUFFER 
CLASSES WITH XVCL 

We shall now show how the Buffer library can be produced from 
a much smaller base of meta-code using XVCL. Our objective in 
this experiment is to construct classes in the same form as they 
appear in the original Buffer library. 

Based on the analysis of redundancies described in the previous 
sections, we identified seven groups of similar classes, namely: 

1. [T]Buffer: 7 classes at Level 1 that differ in buffer element 
type, T: Byte, Char, Int, Double, Float, Long, Short 

2. Heap[T]Buffer: 7 classes at Level 2, that differ in buffer 
element type, T 

3. Heap[T]BufferR: 7 read-only classes at Level 3 

4. Direct[T]Buffer[S|U]: 13 classes at Level 2 for combinations 
of buffer element type, T, with byte orderings: S – non-native 
or U – native byte ordering (notice that byte ordering is not 
relevant to buffer element type ‘byte’) 

5. Direct[T]BufferR[S|U]: 13 read-only classes at Level 3 for 
combinations of parameters T, S and U, as above 

6. ByteBufferAs[T]Buffer[B|L]: 12 classes at Level 2 for 
combinations of buffer element type, T, with byte orderings: B 
– Big_Endian or L – Little_Endian 

7. ByteBufferAs[T]BufferR[B|L]: 12 read-only classes at Level 3 
for combinations of parameters T, B and L, as above. 

For each of the above groups, we designed meta-components to 
generate classes in a given group. The overall structure of meta-
components is outlined in Figure 6. The top-most meta-
component, called SPC, specifies how to construct all the buffer 
classes. Below, we see a layer of meta-components called meta-
classes. Meta-classes correspond by name to seven groups of 
similar classes and each meta-class facilitates generation of 
classes in its group. (In Figure 6, we showed only three out of 
seven meta-classes.) 

The rest of the meta-components, called meta-fragments, are class 
building blocks, “normalized” to eliminate redundancies. Meta-
fragments represent both unique and recurring fragments of class 
definitions, related to various features. 

Meta-components contain Java code inter-mixed with XVCL 
commands. XVCL commands indicate how a meta-component 
can adapt meta-components below it (Figure 6), and how a meta-
component can be adapted by meta-components above it. After 
adaptation, a child meta-component is included into the parent 
meta-component (as indicated by <adapt> arrows). For example, 
the SPC includes after possible adaptations meta-classes 
[T]Buffer, Heap[T]Buffer and Direct[T]Buffer[S|U].  

/*Creates a new byte buffer containing a shared  
   subsequence of this buffer's content. */ 

public ByteBuffer slice() { 
 int pos = this.position(); 
 int lim = this.limit(); 
 assert (pos <= lim); 
 int rem = (pos <= lim ? lim - pos : 0); 
 int off = (pos << 0); 
 return new  

DirectByteBuffer(this, -1, 0, rem, rem, off); 
} 

/* Tells whether or not this buffer is backed by 
an accessible byte array. */ 

public final boolean hasArray() { 
return (hb != null) && !isReadOnly; } 
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[T]Buffer Heap[T]Buffer Direct[T]Buffer[SU]

unique
attributes
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Figure 6. A fragment of meta-component architecture for the Buffer library 

The XVCL processor traverses the meta-component architecture 
as indicated by <adapt> commands in depth-first order, starting 
with the SPC. (For readability, we enclose XVCL commands in 
angle brackets.) For each visited meta-component, the processor 
interprets XVCL commands embedded in that meta-component 
and generates source code for classes (Figure 7). 

XVCL Processor

SPC

meta-classes

meta-fragments

adapt

Composition
&

Adaptation

input output

classes

Figure 7. Class construction with XVCL 
Code fragments that recur in buffer classes without changes, such 
as method hasArray() in Figure 4, are included “as is”. However, 
other meta-fragments must be adapted for reuse in a given 
context. Adaptations are achieved by means of parameterization 
via meta-variables and meta-expressions, insertions of code and 
specifications at designated break points, selection among given 
options based on conditions, code generation by iterating over 
sections of meta-components, etc. 

meta-fragment name: slice        

text 

/*Creates a new byte buffer containing a shared  
subsequence of this buffer's content. */ 

public @elmtTypeBuffer slice() { 
 int pos = this.position(); 
 int lim = this.limit(); 
 assert (pos <= lim); 
 int rem = (pos <= lim ? lim - pos : 0); 
 int off = (pos << @elmtSize); 
  return new Direct@elmtTypeBuffer@byteOrder 
     (this, -1, 0, rem, rem,  off); } 

Figure 8. Meta-fragment slice.xvcl 
Parameterization via meta-variables and meta-expressions plays 
an important role in building generic, reusable programs. It 
provides the means for creating generic names and controlling the 
traversal and adaptation of a meta-component architecture. For 
example, we parameterized method slice() (Figure 5) with meta-
variables as shown in Figure 8. 

A reference to a meta-variable, such as @elmtType, is replaced 
by the  meta-variable’s value during processing. The value of 
meta-variable elmtType may be <set> to Byte, Int, Char, etc., as 
required at the adaptation point. For example, to produce method 
slice()  for class DirectByteBuffer, we <set> the value of meta-
variable elmtType to “Byte”, and for classes DirectIntBufferS 
and DirectIntBufferU -  to “Int”. A meta-expression 
Direct@elmtTypeBuffer@byteOrder in Figure 8 allows us to 
generate names for all the Direct* classes at Level 2 (Figure 1). 

meta-class name: [T]Buffer 

text 
package @packageName; 
public abstract class @elmtTypeBuffer extends 

       Buffer implements Comparable 
text {    // attributes and methods here 

toString break 
  public String toString() { 
         StringBuffer sb = new StringBuffer(); 
         sb.append(getClass().getName()); 
         sb.append("[pos="+ position()); 
         sb.append(" lim="+ limit()); 
         sb.append(" cap="+ capacity()); 
         return sb.toString();   } 

text } 
Figure 9. Meta-class [T]Buffer 

Meta-class [T]Buffer facilitates generation of all the 7 buffer 
classes at Level 1 (Figure 1). As the reader may recall from 
Section 4, class CharBuffer requires different implementation of 
method toString() than the remaining 6 classes at Level 1. This 
situation is handled by a <break> point and <insert> command. 
The <break> point toString contains default implementation of 
method toString() that is used in 6 classes. When generating class 
CharBuffer, we override the default implementation of method 
toString(). This is done in the SPC (Figure 10) - <adapt> 
command for option “Char” contains a proper <insert> command. 
In general, higher-level meta-components can replace the default 
code or insert extra code after/before the <break> points in 
<adapt>ed meta-components. 

The SPC of Figure 10 controls the overall process of generating 
all the buffer classes. First, the SPC <set>s the value of meta-
variable packageName to “java.nio” and the value of meta-
variable elmtType to <Byte,Char,Double,Float,Int,Long,Short>. 
Values of those meta-variables are propagated down to the 
<adapt>ed meta-components. 
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name : SPC 
set packageName = “java.nio” 
set elmtType=<Byte,Char, Double, Float, Int, Long, Short>
while using-items-in=elmtType 
 select option=”elmtType” 
  Byte adapt [T]Buffer 
  adapt [T]Buffer 
   insert  toString 

  
Char 

  text 

Public String  toString() 
{  return toString( 
      position(),limit()); 
} 

  otherwis
e adapt [T]Buffer 

Figure 10. SPC to construct classes at Level 1 
The value of elmtType is a list. Command <while> iterates over 
its body seven times. In each iteration, elmtType accepts one 
value from the list, in the left-to-right order. Based on that value, 
the processor <select>s a suitable option (such as Byte, Char or 
otherwise) and generates code for appropriate class(es) 
(ByteBuffer, CharBuffer and all the remaining classes, 
respectively). Generation is done by <adapt>ing the meta-class 
[T]Buffer. To generate class CharBuffer, we override the default 
implementation of method toString(). Class ByteBuffer requires 
extra methods that are <insert>ed at the adaptation point (details 
not shown in Figure 10). All the remaining classes at Level 1 
require the same adaptations, as shown in otherwise option of 
<select>.  

Due to space limitation, we only highlighted the structure of the 
solution and basic concepts of the XVCL’s “composition with 
adaptation” mechanism. In XVCL, meta-components are encoded 
as XML files, with XVCL commands expressed as XML tags 
[15]. In the above examples, for readability, we showed XML-
free, tabular views of meta-components as produced by the XVCL 
Workbench, a productivity tool being developed at NUS.  

The reader may find a description of the XVCL and its 
implementation in [15]. Full specifications of XVCL and its 
processor’s source code can be downloaded from 
fxvcl.sourceforge.net. A tutorial paper [13] gives a friendly 
introduction to XVCL concepts. Complete documentation and 
code for the Buffer library case study can be found at 
fxvcl.sourceforge.net in “Case Studies”. 

We would like to end this section by summarizing the process of 
designing the meta-component architecture for buffer classes. We 
started by analyzing types of the redundant code fragments in 
buffer classes, which led us to identifying seven major groups of 
similar classes. We designed meta-components for each group of 
classes, eliminating redundant code fragments as follows: For 
each group of similar fragments, we created a suitable meta-
fragment. As for meta-fragments that appeared in different 
contexts with changes,  we parameterized them with meta-
variables, <break> points, <select>, <insert>, <adapt> and other 
XVCL commands to cater for required variations. Finally, we 
incorporated suitable adaptation commands to the corresponding 
meta-classes and SPC. 

6. THE ORIGINAL BUFFER LIBRARY 
VERSUS THE XVCL SOLUTION 

Table 3 and Figure 11 show the results of comparing the original 
Buffer classes with the XVCL solution.  

Table 3. Original Buffer library vs. XVCL solution  
original Buffer library Buffer library in XVCL 

classes fragments LOC1 Java Code2 meta-components LOC3 Java Code4

level 1 
(7 classes) 254 4534 1108 76 1008 308 

level 2 Heap* 
(7 classes) 159 1151 948 52 399 364 

level 2 Direct * 
(13 classes) 325 2320 2104 73 753 729 

level 3 
Heap* read-only 

(7 classes) 
112 704 578 35 306 282 

level 3 
Direct * read-only

(13 classes) 
188 1207 1113 44 503 494 

subtotal  
(47 classes) 1038 9916 5851 280 2969 2177 

other classes at 
 level 2 (12 classes) 196 1244 1146 18 193 184 

other classes at   
level 3 (12 classes) 136 764 666 13 153 144 

subtotal for others
(24 classes) 332 2008 1812 31 346 328 

total 1370 11924 7663 311 3315 2505 
1 including Java code and comments.   2 only including Java code 
3 including Java code, comments, and XVCL instructions 
4 including Java code, and XVCL instructions  

0

2000

4000

6000

8000

10000

12000

14000

Java code Java code with
comments

LOC in XVCL LOC in original classes
 

Figure 11. Buffer library: summary chart 
The XVCL solution eliminates 68% of the code as compared to 
the original buffer classes. As both code and comments are 
needed to understand a program, and both must be maintained, the 
size of code with comments is a better indicator of maintenance 
effort than code alone. It is possible and useful to manage both 
executable code and comments with XVCL. If we count 
executable code with comments, the XVCL solution eliminates 
72% of the code.  
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7. DISCUSSION OF THE RESULTS 
The XVCL solution described in this paper is meant for 
developers and maintainers of complex, evolving class libraries. 
As a class library produced from meta-components is no different 
from the original class library, programmers reusing the library 
need not be concerned or even aware that the library is managed 
with XVCL. On the other hand, some programmers may also wish 
to incorporate elements of the XVCL technique into their main-
stream programming work. Especially, programmers working in 
unstable domains, where change is pervasive, may see good 
reasons to do so. In such cases, meta-components of the class 
library can be neatly integrated with programs reusing those 
libraries at the meta-level. This option also opens the possibility 
of re-designing concrete classes, as we have done in another 
project (we discuss this in more details below). 

The main return on investment in applying XVCL is from savings 
in program maintenance. The principle of XVCL design is clean 
separation of various sources of change affecting a program. Each 
source of change (e.g., variation of the features listed in Table 1) 
can be traced to codes affected by this change. Lack of the 
redundant code reduces the number of points at which affected 
classes must be modified. Changes done to one meta-fragment 
consistently propagate to all the contexts into which the meta-
fragment is adapted. If the impact of change is not uniform in all 
such contexts, the exceptions can be handled at the specific 
adaptation point, without directly modifying the code fragment 
involved. The meta-component architecture explicitly reflects the 
impact of change on program elements. From each meta-class we 
can trace how different feature combinations affect the code.  

Despite those benefits, design in terms of meta-components is not 
easy and different from the inheritance-based program design. For 
a skilled OO programmer familiar with the application domain 
(e.g., buffer classes), the development of an XVCL meta-
component architecture takes longer than the development of pure 
OO class library. The development of a meta-component 
architecture starts by designing a program runtime architecture 
and developing a default, simplified program. A meta-component 
architecture is then developed in iterations, starting with the 
default program. Each iteration applies XVCL to extend the meta-
component architecture with new features, refine existing meta-
components and create new generic, reusable meta-components. It 
takes some time to adjust to this way of thinking about a program. 
But as this perspective so well addresses concerns that matter in 
maintenance, eventually this shift of the viewpoint pays off.  

To better understand the results of this study, we conducted two 
related experiments: 

1. In the first experiment, we produced buffer classes with the 
same functionality as the original ones, but optimized for memory 
consumption and speed. Each concrete class implementing a 
specific feature combination is complete in the sense that it can be 
used without any other classes. Therefore, each class includes all 
the required methods and classes are not related by means of 
inheritance. We envision application of this Buffer library 
solution in time-critical and embedded systems. As in the 
experiment described in this paper, we eliminated redundant code 
at the meta-level, obtaining above 60% reduction of the code size 
as compared to the original Buffer library. At least in those two 

experiments, we observed similar code reduction at the meta-level 
independently of the structure of generated classes.    

2. In the second experiment, we studied JSR-14, Java with 
templates, in the context of the Buffer library. Templates are 
meant mainly for defining generic containers. We re-designed 15 
template-friendly buffer classes with JSR-14, eliminating 27% of 
the code. However, we found it impossible to integrate the re-
designed, template-based classes with the rest of the buffer classes 
because of tight coupling among classes. The reader may find 
more details about the template solution in section 4. On the 
overall, we think that the practical value of templates in 
elimination of redundant code in tightly coupled classes is rather 
limited.    

It would be interesting to compare our results with the results 
obtained with other techniques applied to the same Buffer library. 
We believe template-based generative techniques [5], GenVoca 
[3], Aspect-Oriented Programming [8] and multi-dimensions 
hyperspaces [14] may be effective in eliminating redundancies. 
Some redundancies could be eliminated with multiple inheritance, 
delegation, design patterns and other design techniques. But how 
effective would be these solutions in reducing program 
complexity and improving program maintainability?  Another 
interesting problem, suggested by one of the reviewers, is to study 
how much redundancy is induced by the limitations of the 
underlying programming language. We are planning to address 
the above open problems in future research. We hope this paper 
will encourage others to conduct similar studies using their 
favorite techniques.   

8. RELATED WORK 
To address the unwanted symptoms of the “feature 
combinatorics” problem, a suitable technique must achieve some 
degree of “separation of concerns” in software design and 
implementation. It is easier to achieve separation of concerns at 
the meta-level rather than at the level of concrete program 
components. Using meta-level techniques, custom components 
with the required combination of features are synthesized from a 
set of primitive meta-components. The techniques differ in the 
nature of meta-components and in how synthesis is done to 
produce a concrete component. Below, we briefly contrast XVCL 
with other meta-techniques.  

Generators [11] produce custom programs from problem 
specifications in domain-specific languages. Domain-specific 
languages can be developed in well-understood and stable 
domains. As problem specifications can be very compact, 
generators yield higher productivity gains than XVCL. Generators 
are also more effective than XVCL when we require sophisticated 
domain-specific optimizations [3][10][11]. On the other hand, 
XVCL is an application domain-independent language, method 
and tool. XVCL performs best in immature, poorly understood 
and evolving domains and in domains where frequent changes 
occur at both large and small granularity levels. Unlike in many 
generators, a programmer can modify any detail of the program 
solution and the required code  changes are always proportional to 
the change in the problem domain.  

Macro systems are probably the oldest form of meta-
programming. Macros handle variant features only at the 
implementation level, which causes well-known problems with 
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understanding programs instrumented with macros [7]. Even 
though XVCL commands, like macros, instrument programs for 
change, capabilities of XVCL in handling variants reach far 
beyond the capabilities of macro systems. XVCL is a full-fledged 
design method, in which variant features are directly addressed at 
both program design and implementation levels. Over time, an 
XVCL meta-component architecture emerges as a well-organized 
architecture that explicates the impact of variant features on 
components and automates production of custom components. 
XVCL has unique features to support reuse and evolution such as 
propagation of meta-variables across meta-components, meta-
variable scoping rules that allow us to adapt generic meta-
components at inclusion points, meta-expressions to formulate 
generic names, code selection or insertion at designated 
breakpoints and a while loop construct to implement generators.  

Configuration Management (CM) systems have been applied to 
handle variant features in software. Like an OO library, for each 
legal combination of features, a CM system maintains a separate 
component version. CM systems are strong in handling variants at 
the file level but weak in handling small, inter-dependent variants, 
spreading over many components. In XVCL, we capture 
component variability specifications at the meta-level separately 
from the components themselves, and we can configure variants 
at any level of granularity.   

In Aspect-Oriented Programming (AoP) [8], each computational 
aspect is programmed separately and weaved into the base code. 
AoP composition rules are specified in a descriptive, easy to grasp 
way, but compositions can occur only at join points supported by 
the AoP system. XVCL composition rules are defined in an 
operational way, and therefore more difficult to grasp, but 
compositions may occur at arbitrary break points. AoP was 
designed to deal with reasonably big chunks of functionality 
(aspects) and lacks a mechanism to handle small variations. While 
it is possible to define an aspect within another aspect, probably 
the result would be rather complicated. XVCL, on the other hand, 
can deal with variations at any granularity level, using a uniform, 
yet simple mechanism. 

In the hyperspace approach [14], hyperslices encapsulating 
computational aspects can be composed in various configurations 
to form specific programs. In XVCL, we achieve separation of 
concerns by placing code related to different computational 
aspects into different meta-component layers [16]. 

9. CONCLUSION 
It is well known that redundant code obstructs program 
understanding and maintenance. Yet, programs are often polluted 
by such code. In some cases, redundancy is created on purpose, 
for example, to increase the robustness of life-critical systems or 
to minimize dependencies among developers in large projects 
[12]. In other cases, redundancies do not play any positive role 
and are created during maintenance, new development (due to 
inadequacy of programming languages and design techniques) or 
generated by tools. Whatever the reason, redundancy obstructs 
program understanding and maintenance.  

While we may not be able to eliminate all the redundancies in 
executable programs, the good news is that redundancy can be 
effectively dealt with at the meta-level. In this paper, we 
described the results of the study of the redundant code in the 

Java Buffer library, JDK 1.4.1. We found that more than 68% of 
code in the Buffer library is redundant in the sense that it recurs in 
many classes in the same or slightly modified form. We 
effectively eliminated that 68% of code at the meta-level, using a 
technique based on “composition with adaptation”, called XVCL. 
We argued that such a program solution is easier to maintain than 
the buffer classes with redundant code. In this experiment, we 
designed our meta-representation so that we could produce buffer 
classes in exactly the same form as they appear in the original 
Buffer library. While we have been tempted to re-design the 
buffer classes, we chose not to do so, to allow for seamless 
integration of the XVCL solution into contemporary programming 
methodologies and systems. This decision did not affect essential 
results reported in this paper.  

In other experiments, XVCL achieved code reductions of: 
o 60% when generating buffer classes optimized for memory 

consumption and speed, 
o 68% in n-tier application (C#), and 
o 61% in Data Access component of an n-tier application, 

developed using MS ADO in MS VC++. 

In XVCL, we produce classes by composing meta-components 
with possible adaptations. In the paper, we described both the 
general concepts of the “composition with adaptation” technique 
and its realization with XVCL. 

Strengths: XVCL allows us to develop and maintain class libraries 
from a small, non-redundant base of meta-components. The meta-
component architecture provides a clear view on how feature 
combinations and other changeable requirements affect the code. 
We can eliminate redundancies at the meta-level, thus simplifying 
maintenance, and still keep redundant code in executable 
programs, if it is so required. One of the reasons for many 
redundant code fragments in class libraries is that inheritance does 
not support fine-grain reuse – small change in requirements may 
lead to many changes in code. XVCL supports reuse at any level 
of granularity that is needed - small changes in requirements 
trigger equally small amounts of re-work in meta-components. 
The XVCL solution is simple and transparent - all the codes that 
we see in the final Java classes also appear in meta-components. 
A programmer can intervene in any details of the transition from 
the meta-level to programs. We can re-design classes or produce 
classes in the same form as in the original library. XVCL 
complements rather than competes with programming languages 
and other design paradigms. A developer can switch from the OO 
paradigm to XVCL to deal with certain problems in a more 
efficient way. Therefore, the XVCL solution can be neatly 
integrated into other programming methodologies and 
environments. XVCL is a comprehensive design method, leading 
to compact program solutions that are structured to maximize 
flexibility, reuse and ease of change. 

Weaknesses: There are well-known problems with understanding 
programs heavily instrumented with macros [7] and meta-
programs in general. XVCL meta-components also contain code 
instrumented with commands. This problem is mitigated by the 
fact that, unlike macros that merely complement a programming 
language, XVCL is a full-fledged design method supported by 
tools. XVCL meta-components are first-class design concepts that 
facilitate change. Meta-components are organized into a layered 
architecture that strives to achieve separation of concerns. XVCL 
is supported by tools that produce adaptation traces and help 
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debug meta-component architectures: For a given SPC, one can 
follow the sequence of adapted meta-components and analyze 
detailed adaptations. We implemented a tool for “round trip” 
engineering that helps a programmer propagate changes which are 
made directly to the generated program, back to the affected 
meta-components. A big challenge in meta-programming is how 
to validate code generated from meta-components. Correctness of 
produced code is not guaranteed by XVCL. This problem is 
mitigated by the fact that lower levels of the meta-component 
architecture get pretty stable and reliable over time. Potential 
errors tend to be located only in top-most, context-specific and 
still fragile meta-components. In the project described in this 
paper, we manually analyzed code to find similar fragments. It 
was a tedious process. We plan to explore existing techniques in 
duplicated code detection in order to automate the search of 
groups of similar code fragments as candidates for meta-
components. 

Redundant code obstructs program understanding and contributes 
to high maintenance costs - the evidence abounds but is mostly 
anecdotal. We did not find recent studies on redundancies. A 
study conducted in 1984 reports that redundancy ranges from 
50% to 85% [9]. Re-engineering experts say that around 40% of 
code in systems they  examine is redundant [12]. In future work, 
we plan to conduct a systematic study on redundancies in 
programs written in different programming languages, using 
different design techniques, and for different types of 
applications. Such a study should include both newly written and 
old programs. We also plan to conduct comparative studies to 
evaluate the effectiveness of various techniques in handling 
redundancies. We hope that others will conduct studies applying 
their favorite techniques to problems such as the Buffer library.  

Meta-techniques based on “composition with adaptation”, such as 
XVCL, complement rather than compete with the design 
techniques offered by programming languages. We believe that 
“composition with adaptation” is a simple yet powerful 
programming technique whose potentials have yet to be 
discovered. Our research group is strongly committed to 
exploring this potential. 
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