

CS6202: Advanced Topics in Programming Languages and Systems

Lecture 6 : Type Reconstruction

- Type Variables and Susbtitutions
- Two View of Type Variables
- Constraint-Based Typing
- Unification
- Principal Types
- Let Polymorphism

CS6202

Lecture 7 : Type Reconstruction

Applying Substitutions to Types

 $\begin{aligned} \sigma \left(X \right) & = T \text{ if } \left(X \mapsto T \right) \in \sigma \\ & = X \text{ if } X \notin dom(\sigma) \end{aligned}$

- σ (Nat) = Nat
- σ (Bool) = Bool

$$\boldsymbol{\sigma} \left(\boldsymbol{T}_{1} \rightarrow \boldsymbol{T}_{2} \right) \ = \ \boldsymbol{\sigma} \ \boldsymbol{T}_{1} \rightarrow \ \boldsymbol{\sigma} \ \boldsymbol{T}_{2}$$

Type Variables and Substitutions

In this lecture, we treat *uninterpreted* base types as *type variables*.

A type X can stand for Nat \rightarrow Bool. We may need to substitute X by the desired type Nat \rightarrow Bool.

A type substitution is a *finite mapping* from type variables to types. Example:

 $\sigma = [X \mapsto T, Y \mapsto U]$

where

 $dom(\sigma) = \{X, Y\}$ range(σ) = {T, U}

CS6202

Lecture 7 : Type Reconstruction

2

Applying Substitutions to Contexts/Terms

Applying it to contexts:

 $\boldsymbol{\sigma} (\mathbf{x}_1:\mathbf{T}_1,\ldots,\mathbf{x}_n:\mathbf{T}_n) = (\mathbf{x}_1:\boldsymbol{\sigma} \mathbf{T}_1,\ldots,\mathbf{x}_n:\boldsymbol{\sigma} \mathbf{T}_n)$

Applying it to terms by applying it to all its types. E.g :

 $[X\mapsto Bool]\ (\lambda \ x{:}X{.}\ x)\ =\ \lambda \ x{:}Bool{.}\ x$

CS6202

3

1

Composing Substitutions

Preservation under Type Substitution

If	$\Gamma \vdash t:T$	
then	σΓ⊢σt:σΤ for any type substitution σ	
CS6202	Lecture 7 : Type Reconstruction	6

First View of Type Equation Solving

Let t be a term with type variables, and let Γ be a typing context with type variables.

First View:

For every σ there exists a T such that $\sigma \Gamma \vdash \sigma t : \sigma T$.

"Are all substitution instances of t well-typed?"

This view leads to parametric polymorphism.

Second View of Type Equation Solving

Let t be a term with type variables, and let Γ be a typing context with type variables.

Second View:

Is there a σ such that there is a T whereby $\sigma \Gamma \vdash \sigma t : \sigma T$.

"Is some substitution instance of t well-typed?"

This view leads to type reconstruction.

7

CS6202

Type Reconstruction : The Problem

Let t be a term and Γ be a typing context.

Example

Let $\Gamma = f:X$, a:Y and t = f a

Then the possible solutions for (Γ, t) include:

 $\begin{array}{ll} ([X \mapsto Y \to Nat], & Nat) \\ ([X \mapsto Y \to Z], & Z) \\ ([X \mapsto Y \to Z, Z \mapsto Nat], & Z) \\ ([X \mapsto Y \to Nat \to Nat], & Nat \to Nat) \\ ([X \mapsto Nat \to Nat, Y \mapsto Nat], & Nat) \end{array}$

CS6202	Lecture 7 : Type Reconstruction	9	CS6202	Lecture 7 : Type Reconstruction	10

Constraint-based Typing

Constraint-based typing is an algorithm that computes for (Γ, t) a set of *constraints* that must be satisfied by any solution for (Γ, t) .

A *constraint* set C is a set of solutions $\{S_i=T_i\}^{i \in 1..n}$. A substitution σ *unifies* an equation S=T if σ S and σ T are *identical*, namely σ S $\equiv \sigma$ T.

A substitution *unifies* (or *satisfies*) a constraint set C if it unifies every equation in C.

Constraint-based Typing

We define a relation

$\Gamma \ \vdash t:T \ \mid_X C$

The term t has type T under assumptions Γ whenever the constraint C are satisfied.

X is used to track variables that are introduced along the way.

Properties of Constraint-based Typing

Soundness:

Suppose that $\Gamma \vdash t : T \mid_X C$. If (σ,T) is a solution for (Γ,t,S,C) , then it is also a solution for (Γ,t) . That is $\sigma \Gamma \vdash \sigma t : \sigma T$.

Completeness:

Suppose that $\Gamma \vdash t : T \mid_X C$. If (σ,T) is a solution for (Γ,t) and $dom(\sigma) \cap X = \{\}$, then there is a solution (σ',T) for (Γ,t,S,C) such that $\sigma' \setminus X = \sigma$.

Note that $\sigma \setminus X$ is a substitution that is undefined for all variables in X, but otherwise behaves like σ .

CS6202	Lecture 7 : Type Reconstruction	17	CS6202	Lecture 7 : Type Reconstruction

More General Substitution

A substitution σ is *more general* (or *less specific*) than a substitution σ' , written as $\sigma \sqsubseteq \sigma'$, if $\sigma' = \gamma \circ \sigma$ for some substitution γ .

For example:

 $[X \mapsto V \to V, Y \mapsto W \to W] \text{ is } less specific \text{ than} \\ [X \mapsto (Nat \to Nat) \to [(Nat \to Nat), Y \mapsto Nat \to Nat] \end{bmatrix}$

```
Take \gamma = [V \mapsto Nat \rightarrow Nat, W \mapsto Nat].
```

Correctness of Constraint-based Typing

Suppose $\Gamma \vdash t : T \mid_X C$.

There is some solution for (Γ,t) *if and only if* there is some solution for (Γ,t,S,C) .

Correctness = Soundness + Completeness

Principal Unifier

A *principal unifier* for a constraint set C is a substitution σ such that:

- σ satisfies C, and
- for every σ ' that satisfies C, we have $\sigma \sqsubseteq \sigma$ '.

That is,

 σ is the most general substitution that satisfies C.

19

18

Examples

What is the principal unifier of the following?

 $\{X=Nat, Y=X \to X\}$ $\Rightarrow [X \mapsto Nat, Y \mapsto Nat \to Nat]$ $\{X \to Y=Y \to Z, Z=U \to W\}$ $\Rightarrow [X \mapsto U \to W, Y \mapsto U \to W, Z \mapsto U \to W]$ CS6202
Lecture 7: Type Reconstruction

Unification Algorithm

This derives principal unifier from a set of constraint

Unification Algorithm (Properties)

Let C be an arbitrary constraint set.

- unify(C) terminates, either with fail or by returning a substitution.
- If $unify(C)=\sigma$ then σ is a unifier for C.
- If δ is a unifier for C, then unify(C)= σ for some σ such that $\sigma \sqsubseteq \delta$.

Principal Types

A *principal solution* for (Γ ,t,S,C), is a solution (σ ,T), such that, whenever (σ ',T') is a solution for (Γ ,t,S,C), we have $\sigma \sqsubseteq \sigma$ '.

When (σ,T) is a principal solution, we call T a principal type for t under $\Gamma.$

21

Unification Finds Principal Solution

If (Γ,t,S,C) has any solution, then it has a principal one.

The unification algorithm can be used to determine whether (Γ,t,S,C) has a solution and, if so, to calculate a principal solution.

CS6202	Lecture 7 : Type Reconstruction	25	

Let-Polymorphism (Motivation)

Consider a function that applies the first argument twice to the second argument:

λ f. λ a. f(f(a))

This function has few assumptions on f and a.

Can we apply the function, whenever these conditions are met?

Lecture 7 : Type Reconstruction

Let-Polymorphism (Example)

We can use let construct to capture more generic code:

```
let double = \lambda f. \lambda a. f(f(a)) in
... double (\lambda x. succ(succ(x))) 1 ...
... double (\lambda x. not(x)) false ...
```

However, what type should double have?

Let-Polymorphism (Initial Idea)

```
Provide type variable for double:

let double = \lambda f : X \to X. \lambda a:X. f(f(a)) in

... double (\lambda x. succ(succ(x))) 1 ...

... double (\lambda x. not(x)) false ...
```

However, the let typing rule :

$$\frac{\Gamma \vdash t_1 : T_1 \qquad \Gamma, x: T_1 \vdash t_2 : T_2}{\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : T_2}$$
(T-Let)

generates the following contradiction!

 $\begin{array}{ll} X
ightarrow X \;=\; Nat
ightarrow Nat \ X
ightarrow X \;=\; Bool
ightarrow Bool \end{array}$

27

Lecture 7 : Type Reconstruction

26

CS6202

Let-Polymorphism (Second Idea) Let-Polymorphism (Problem 1) Use implicitly annotated lambda abstraction: let double = λ f . λ a. f(f(a)) in What if x is not used in t_2 ? ... double (λ x:Nat. succ(succ(x))) 1 double (λ x:Bool. not(x)) false ... Modify the type rule: Typing rule substitute all occurrences of double in body: $\frac{\Gamma \vdash t_1 : T_1 \qquad \Gamma \vdash [\mathbf{x} \mapsto t_1]t_2 : T_2}{\Gamma \vdash \text{let } \mathbf{x} = t_1 \text{ in } t_2 : T_2}$ $\Gamma \vdash [\mathbf{x} \mapsto \mathbf{t}_1]\mathbf{t}_2 : \mathbf{T}_2$ (T-LetPoly) $\Gamma \vdash \text{let } x=t_1 \text{ in } t_2 : T_2$ **Problems** (i) what if x not used in t_2 (ii) what if x occurs multiple times CS6202 Lecture 7 : Type Reconstruction CS6202 Lecture 7 : Type Reconstruction 30 29

Let-Polymorphism (Problem 2)

What if x occurs multiple times?

Explicit substitution of each occurrence of variable may result in slow type-checking.

<u>Solution</u> : use *type schemes*. Resulting implementations of type reconstruction run in *practice in linear time*.

In theory, they are exponential as shown by Kfoury, Tiuryn and Urzyczyn (1990) since types can be exponential in size to program!

Problem with References

Let-polymorphism does not work correctly with references:

let r=ref (λ x.x) in r:=(λ x:Nat. succ x); (!r) true

This results in run-time error even though it type-checks. Reason - mismatch between *evaluation rule* and *type rule*.

Solution : use polymorphism only if the RHS of let is a *value*.

31

CS6202

Unification Algorithm (Background)

- Unification is due to J Alan Robinson (1971), and is widely used in computer science.
- Logic programming is based on unification over first-order terms. It is a generalization of our language of types. Unification is built-in.
- Occurs check is justified because we consider only finite types (ie. non-recursive types).

CS6202	Lecture 7 : Type Reconstruction	33