Type Variables and Substitutions

In this lecture, we treat uninterpreted base types as type variables.

A type X can stand for Nat \rightarrow Bool. We may need to substitute X by the desired type Nat \rightarrow Bool.

A type substitution is a finite mapping from type variables to types. Example:

$$\sigma = [X \mapsto T, Y \mapsto U]$$

where

$$\text{dom}(\sigma) = \{X, Y\}$$
$$\text{range}(\sigma) = \{T, U\}$$

Applying Substitutions to Types

Applying it to types:

$$\sigma (X) = T \text{ if } (X \mapsto T) \in \sigma$$
$$= X \text{ if } X \notin \text{dom}(\sigma)$$

$$\sigma (\text{Nat}) = \text{Nat}$$
$$\sigma (\text{Bool}) = \text{Bool}$$

$$\sigma (T_1 \rightarrow T_2) = \sigma T_1 \rightarrow \sigma T_2$$

Applying Substitutions to Contexts/Terms

Applying it to contexts:

$$\sigma (x_1:T_1,\ldots,x_n:T_n) = (x_1: \sigma T_1,\ldots,x_n: \sigma T_n)$$

Applying it to terms by applying it to all its types. E.g :

$$[X \mapsto \text{Bool}] \ (\lambda \ x: \text{X}. \ x) = \lambda \ x: \text{Bool}. \ x$$
Composing Substitutions

Apply γ followed by σ, as follows:

$$\sigma \circ \gamma = X \mapsto \sigma(T) \text{ for each } (X \mapsto T) \in \gamma$$

$$= X \mapsto T \text{ for each } (X \mapsto T) \in \sigma \text{ with } X \not\in \text{dom}(\gamma)$$

Preservation under Type Substitution

If $\Gamma \vdash t : T$

then $\sigma \Gamma \vdash \sigma t : \sigma T$

for any type substitution σ

First View of Type Equation Solving

Let t be a term with type variables, and let Γ be a typing context with type variables.

First View:
For every σ there exists a T such that $\sigma \Gamma \vdash \sigma t : \sigma T$.

“Are all substitution instances of t well-typed?”

This view leads to parametric polymorphism.

Second View of Type Equation Solving

Let t be a term with type variables, and let Γ be a typing context with type variables.

Second View:
Is there a σ such that there is a T whereby $\sigma \Gamma \vdash \sigma t : \sigma T$.

“Is some substitution instance of t well-typed?”

This view leads to type reconstruction.
Type Reconstruction : The Problem

Let t be a term and Γ be a typing context.

A solution for (Γ, t) is a pair (σ, T) such that $\sigma \Gamma \vdash \sigma t : \sigma T$.

Example

Let $\Gamma = f: X, a: Y$ and $t = f a$

Then the possible solutions for (Γ, t) include:

- $([X \mapsto Y \rightarrow \text{Nat}], \text{Nat})$
- $([X \mapsto Y \rightarrow Z], Z)$
- $([X \mapsto Y \rightarrow Z, Z \mapsto \text{Nat}], Z)$
- $([X \mapsto Y \rightarrow \text{Nat} \rightarrow \text{Nat}], \text{Nat} \rightarrow \text{Nat})$
- $([X \mapsto \text{Nat} \rightarrow \text{Nat}, Y \mapsto \text{Nat}], \text{Nat})$

Constraint-based Typing

Constraint-based typing is an algorithm that computes for (Γ, t) a set of constraints that must be satisfied by any solution for (Γ, t).

A constraint set C is a set of solutions $\{S_i=\sigma T_i\}_{i \in 1..n}$. A substitution σ unifies an equation $S=\sigma T$ if σS and σT are identical, namely $\sigma S \equiv \sigma T$.

A substitution unifies (or satisfies) a constraint set C if it unifies every equation in C.

Constraint-based Typing

We define a relation

$$\Gamma \vdash t : T \mid_{X} C$$

The term t has type T under assumptions Γ whenever the constraint C are satisfied.

X is used to track variables that are introduced along the way.
Rules for Constraint-Based Typing

\[\Gamma \vdash x : T \mid \emptyset \{ \} \]
\(\text{(CT-Var)}\)

\[\Gamma \vdash 0 : \text{Nat} \mid \emptyset \{ \} \]
\(\text{(CT-Zero)}\)

\[\Gamma \vdash \text{suc} \, t : \text{Nat} \mid_\chi C \quad C' = C \cup \{ \text{T=Nat} \} \]
\(\Gamma \vdash \text{pred} \, t : \text{Nat} \mid_\chi C' \)
\(\text{(CT-Succ)}\)

\[\Gamma \vdash \text{if} \, t_1 \text{ then } t_2 \text{ else } t_3 : T \mid_{\chi} C \]
\(\Gamma \vdash t_1 : T_1 \mid_{\chi} C_1 \quad \Gamma \vdash t_2 : T_2 \mid_{\chi} C_2 \quad \Gamma \vdash t_3 : T_3 \mid_{\chi} C_3 \)
\(C' = C_1 \cup C_2 \cup C_3 \cup \{ T_1 = \text{Bool}, T_2 = T_3 \} \)
\(X' = X_1 \cup X_2 \cup X_3 \)
\(\Gamma \vdash \text{iszero} \, t : \text{Bool} \mid_\chi C' \)
\(\text{(CT-If)}\)

Note that \(X_1, X_2, \text{FV}(T_2), \text{FV}(T_1)\) are disjoint.

Rules for Constraint-Based Typing

\[\Gamma \vdash \text{true} : \text{Bool} \mid \emptyset \{ \} \]
\(\text{(CT-True)}\)

\[\Gamma \vdash \text{false} : \text{Bool} \mid \emptyset \{ \} \]
\(\text{(CT-False)}\)

\[\Gamma \vdash \lambda \, x : T_1 . \, t_2 : T_1 \rightarrow T_2 \mid_{\chi} C \]
\(\Gamma, x : T_1 \vdash t_2 : T_2 \mid_{\chi} C \)
\(\text{(CT-Abs)}\)

\[\Gamma \vdash \text{fresh} \, V \]
\(\text{C' = C' \cup \{ T_1 = T_2 \rightarrow V \} } \)
\(X' = X_1 \cup X_2 \cup \{ V \} \)
\(\Gamma \vdash t_1 \, \lambda x : T_1 . \, t_2 : T_1 \rightarrow T_2 \mid_{\chi} C' \)
\(\text{(CT-App)}\)

Constraint-based Typing (Solution)

Suppose that

\[\Gamma \vdash t : T \mid_{\chi} C \]

A solution for \((\Gamma, t, S, C)\) is a pair \((\sigma, T)\) such that \(\sigma\) satisfies \(C\) and \(\sigma \, S = T\).

Note that is is OK to omit \(X\) from discussion as it is simply a set of locally introduced type variables.
Properties of Constraint-based Typing

Soundness:

Suppose that \(\Gamma \vdash t : T \mid_X C \). If \((\sigma, T)\) is a solution for \((\Gamma, t, S, C)\), then it is also a solution for \((\Gamma, t)\). That is \(\sigma \Gamma \vdash \sigma t : \sigma T \).

Completeness:

Suppose that \(\Gamma \vdash t : T \mid_X C \). If \((\sigma, T)\) is a solution for \((\Gamma, t)\) and \(\text{dom}(\sigma) \cap X = \{\}\), then there is a solution \((\sigma', T)\) for \((\Gamma, t, S, C)\) such that \(\sigma' \setminus X = \sigma\).

Note that \(\sigma \setminus X\) is a substitution that is undefined for all variables in \(X\), but otherwise behaves like \(\sigma\).

Correctness of Constraint-based Typing

Suppose \(\Gamma \vdash t : T \mid_X C \).

There is some solution for \((\Gamma, t)\) if and only if there is some solution for \((\Gamma, t, S, C)\).

Correctness = Soundness + Completeness

More General Substitution

A substitution \(\sigma\) is more general (or less specific) than a substitution \(\sigma'\), written as \(\sigma \sqsubseteq \sigma'\), if \(\sigma' = \gamma \circ \sigma\) for some substitution \(\gamma\).

For example:

\[[X \mapsto V \mapsto V, Y \mapsto W \mapsto W] \text{ is less specific than } [X \mapsto (\text{Nat} \mapsto \text{Nat}) \mapsto [(\text{Nat} \mapsto \text{Nat}) \mapsto \text{Nat} \mapsto \text{Nat}]] \]

Take \(\gamma = [V \mapsto \text{Nat} \mapsto \text{Nat}, W \mapsto \text{Nat}]\).

Principal Unifier

A principal unifier for a constraint set \(C\) is a substitution \(\sigma\) such that:

- \(\sigma\) satisfies \(C\), and
- for every \(\sigma'\) that satisfies \(C\), we have \(\sigma \sqsubseteq \sigma'\).

That is,

\(\sigma\) is the most general substitution that satisfies \(C\).
Examples

What is the principal unifier of the following?

\{X=Nat, Y= X \rightarrow X\}

⇒ \{X \mapsto \text{Nat}, Y \mapsto \text{Nat} \rightarrow \text{Nat}\}

\{X \rightarrow Y= Y \rightarrow Z, Z= U \rightarrow W\}

⇒ \{X \mapsto U \rightarrow W, Y \mapsto U \rightarrow W, Z \mapsto U \rightarrow W\}

Unification Algorithm

This derives principal unifier from a set of constraint

\[
\text{unify}(C) = \begin{cases} [] & \text{if } C = \{} \\
\text{else let } \{S=T\} \cup C' = C \text{ in} \\
\text{if } S \equiv T \text{ then } \text{unify}(C') \\
\text{else if } S \equiv X \land X \not\in \text{FV}(T) \text{ then } \text{unify}([X \mapsto T]C') \odot [X \mapsto T] \\
\text{else if } T \equiv X \land X \not\in \text{FV}(S) \text{ then } \text{unify}([X \mapsto S]C') \odot [X \mapsto S] \\
\text{else if } S \equiv S_1 \rightarrow S_2 \land T \equiv T_1 \rightarrow T_2 \text{ then } \text{unify}(C' \cup \{S_1=T_1, S_2=T_2\}) \\
\text{else fail} \end{cases}
\]

Unification Algorithm (Properties)

Let C be an arbitrary constraint set.

- \text{unify}(C) \text{ terminates, either with fail or by returning a substitution.}
- If \text{unify}(C)=\sigma \text{ then } \sigma \text{ is a unifier for } C.
- If } \delta \text{ is a unifier for } C, \text{ then } \text{unify}(C)=\sigma \text{ for some } \sigma \text{ such that } \sigma \subseteq \delta.\]

Principal Types

A principal solution for \((\Gamma, t, S, C)\), is a solution \((\sigma, T)\), such that, whenever \((\sigma', T')\) is a solution for \((\Gamma, t, S, C)\), we have \(\sigma \subseteq \sigma'\).

When \((\sigma, T)\) is a principal solution, we call \(T\) a principal type for \(t\) under \(\Gamma\).
Unification Finds Principal Solution

If \((\Gamma, t, S, C) \) has any solution, then it has a principal one.

The unification algorithm can be used to determine whether \((\Gamma, t, S, C) \) has a solution and, if so, to calculate a principal solution.

Let-Polymorphism (Motivation)

Consider a function that applies the first argument twice to the second argument:

\[
\lambda f. \lambda a. f(f(a))
\]

This function has few assumptions on \(f \) and \(a \).

Can we apply the function, whenever these conditions are met?

Let-Polymorphism (Example)

We can use let construct to capture more generic code:

\[
\text{let double } = \lambda f. \lambda a. f(f(a)) \text { in } \ldots\text{ double } (\lambda x. \text{succ} (\text{succ}(x))) \text { 1 }\ldots \text{ double } (\lambda x. \text{not}(x)) \text { false } \ldots
\]

However, what type should double have?

Let-Polymorphism (Initial Idea)

Provide type variable for double:

\[
\text{let double } = \lambda f : X \rightarrow X. \lambda a : X. f(f(a)) \text { in } \ldots\text{ double } (\lambda x. \text{succ} (\text{succ}(x))) \text { 1 }\ldots \text{ double } (\lambda x. \text{not}(x)) \text { false } \ldots
\]

However, the let typing rule:

\[
\Gamma \vdash t_1 : T_1 \quad \Gamma, x : T_1 \vdash t_2 : T_2 \quad \text{(T-Let)}
\]

generates the following contradiction!

\[
X \rightarrow X = \text{Nat} \rightarrow \text{Nat} \\
X \rightarrow X = \text{Bool} \rightarrow \text{Bool}
\]
Let-Polymorphism (Second Idea)

Use implicitly annotated lambda abstraction:

```plaintext
let double = \f. \a. f(f(a)) in
... double (\x:Nat. succ(succ(x))) 1 ...
... double (\x:Bool. not(x)) false ...
```

Typing rule substitute all occurrences of double in body:

\[
\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : T_2 \\
\Gamma \vdash t_1 : T_1 \\
\Gamma \vdash [x \mapsto t_1] t_2 : T_2
\]

Problems:
(i) what if \(x \) not used in \(t_2 \)
(ii) what if \(x \) occurs multiple times

Let-Polymorphism (Problem 1)

What if \(x \) is not used in \(t_2 \)?

Modify the type rule:

\[
\Gamma \vdash t_1 : T_1 \\
\Gamma \vdash [x \mapsto t_1] t_2 : T_2 \\
\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : T_2
\]

Let-Polymorphism (Problem 2)

What if \(x \) occurs multiple times?

Explicit substitution of each occurrence of variable may result in slow type-checking.

Problem with References

Let-polymorphism does not work correctly with references:

```plaintext
let r=ref (\x.x) in
r:= (\x:Nat. succ x); (!r) true
```

This results in run-time error even though it type-checks.
Reason - mismatch between evaluation rule and type rule.

Solution: use polymorphism only if the RHS of let is a *value*.

In theory, they are exponential as shown by Kfoury, Tiuryn and Urzyczyn (1990) since types can be exponential in size to program!
Unification Algorithm (Background)

- Unification is due to J Alan Robinson (1971), and is widely used in computer science.

- Logic programming is based on unification over first-order terms. It is a generalization of our language of types. Unification is built-in.

- Occurs check is justified because we consider only finite types (i.e., non-recursive types).