 CS6202: Advanced Topics in Programming Languages and Systems Lecture 7 : Universal/Existential Types Motivation for Universal Types System F & Examples Properties Type Reconstruction & Parametricity Existential Types 	 Properties of Let Polymorphism allows for easy type reconstruction restricted to the let construct problems with references (restricted to values on the RHS of =).
CS6202 Universal & Existential Types 1	CS6202 Universal & Existential Types 3
Motivation for Universal Types Lack of code reuse!	Idea of Universal Types
Example: doubleNat = λ f: Nat \rightarrow Nat. λ x:Nat. f (f (x)) doubleBool = λ f: Bool \rightarrow Bool. λ x:Bool. f (f (x)) doubleFun = λ f: (Nat \rightarrow Nat) \rightarrow (Nat \rightarrow Nat). λ x: Nat \rightarrow Nat. f (f (x))	Abstract over type! double = $\lambda \mathbf{X}$. $\lambda \mathbf{f}$: $\mathbf{X} \to \mathbf{X}$. $\lambda \mathbf{x}$: \mathbf{X} . \mathbf{f} (\mathbf{f} (\mathbf{x})) > double : $\forall \mathbf{X}$. ($\mathbf{X} \to \mathbf{X}$) $\to \mathbf{X} \to \mathbf{X}$ double [Nat] > $\langle fun \rangle$: (Nat \to Nat) \to Nat \to Nat double [Bool] > $\langle fun \rangle$: (Rool \to Rool) \to Pool \to Pool

2

CS6202

Universal & Existential Types

4

CS6202

Universal & Existential Types

Example : Polymorphic List

Assume that type constructor List is given with the following primitives:

nil	:	∀ X. List X
cons	:	$\forall X. X \rightarrow List X \rightarrow List X$
isnil	:	$\forall X. List X \rightarrow Bool$
head	:	$\forall X. List X \rightarrow X$
tail	:	$\forall X. List X \rightarrow List X$

CS6202

Universal & Existential Types

Example : Map

With the help of fix, we can write a polymorphic map operation, as follows:

```
\begin{split} map &= \lambda \: X. \: \lambda \: Y. \: \lambda \: f: \: X \to \: Y. \\ & \text{fix} \: (\lambda \: m: \: (List \: X) \to (List \: Y). \\ & \: \lambda \: l: List \: X. \\ & \text{if isnil} \: [X] \: l \: then \: nil \: [Y] \\ & \text{else cons} \: [Y] \: (f \: (head \: [X] \: l)) \\ & \: (m \: (tail \: [X] \: l))) \: ) \end{split}
```

 $> map : \forall X. \forall Y. (X \rightarrow Y) \rightarrow List X \rightarrow List Y$

System F : Soundness Properties

Preservation Theorem:

If	$\Gamma \vdash t : T$	and	$t \rightarrow t'$
then	$\Gamma \vdash t': T$		

Progress Theorem

If t is a closed well-typed term, then either t is a value or else there is some t' with $t \rightarrow t'$.

Universal & Existential Types

11

System F: Normalisation

A term is normalizing if there is no infinite evaluation

 $t \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \dots$

Well-typed System F terms (without the fix-point operator) are normalizing.

9

System F: Historical Background

- Discovered by Jean-Yves Girard in 1972 for proof theory.
- Independently developed by John Reynolds 1974 as *polymorphic lambda calculus*.
- Normalization : quite innovative inductive proof technique due to Tait (1968) and Girard (1972).

Universal & Existential Types

• Type reconstruction : was open problem until 1994!

What to do with Undecidability?

Restrict the language :

let polymorphism of ML, rank-2 polymorphism, etc.

Partial Type Reconstruction:

correct but incomplete approaches such as local type inference, greedy type inference, etc.

CS6202	
--------	--

Universal & Existential Types

15

Undecidability of Type Reconstruction for System F.

Wells 1994 : it is *undecidable* when given a closed term m of the untyped lambda calculus, if there is some well-typed term t in System F such that erase(t)=m.

The type erasure operation is defined as:

 $\begin{array}{ll} erase(x) &= x \\ erase(\lambda x:T. t) &= \lambda x. \ erase(t) \\ erase(t_1 t_2) &= erase(t_1) \ erase(t_2) \\ erase(\lambda x:X. t) &= erase(t) \\ erase(t \ [T]) &= erase(t) \end{array}$

Parametricity

Polymorphic programs operate uniformly over any input, independently of their type.

Language implementations benefit from this *parametricity* by generating only one machine code version for polymorphic functions. Also, certain theorems come for free.

At runtime, type application does not result in any computation. This is exemplified by OCaml's let polymorphism, where no type application is needed.

CS6202

13

CS6202

Motivation for Existential Type

We emphasize the operational reading, supported by the notation:

$\{\exists X,T\}$

Terms of such type have the form:

$\{*S,t\}$

We call such terms "modules" with the *hidden* type S and the term component t.

CS6202	Universal & Existential Types	17	CS6202	Universal & Existential Types

Example

The term	
{*Nat,	$\{a=5, f=\lambda x: Nat. succ(x)\}\}$
has type	
{∃X, {	a:X,f:X \rightarrow X}

but it may also have type: $\{\exists X, \{a:X, f:X \rightarrow Nat\}$

Solution : use ascription to force a unique type for module.

 $\{*Nat, \{a=5, f=\lambda x:Nat. succ(x)\}\}\$ as $\{\exists X, \{a:X, f:X \rightarrow X\}\$

Elements of Existential Types

The hidden type of different elements can be different.

 $\begin{aligned} \mathsf{p4} &= \{* \mathsf{Nat}, \{\mathsf{a=5}, \mathsf{f=}\lambda \; x: \mathsf{Nat.} \; \mathsf{succ}(x)\} \} \; \mathsf{as} \; \{\exists X, \{\mathsf{a:X}, \mathsf{f:}X \to \mathsf{Nat}\} \\ &> p4 : \{\exists X, \{a:X, f:X \to \mathsf{Nat}\} \end{aligned}$

 $\begin{array}{l} p5 = \{*\text{Bool}, \{a{=}\text{true}, f{=}\lambda \; x{:}\text{Bool}. \; 0\}\} \text{ as } \{\exists X, \{a{:}X, f{:}X \rightarrow \text{Nat}\} \\ > p5 : \{\exists X, \{a{:}X, f{:}X \rightarrow Nat\} \end{array}$

In effect, the module type is *parameterised* over the internal type. Elements of existential types use internal types, but these are not visible where the elements are used.

Violations of Abstraction

We must not make assumption about internal type, nor could it be exposed to a location out of its scope.

let {X,x}=p4 in succ(x.a)
> Error : argument of succ is not a number.

let {X,x}=p4 in x.a
> Error : scoping error!

```
where:
 p4 = \{*Nat, \{a=5, f=\lambda x:Nat. succ(x)\}\} as \{\exists X, \{a:X, f:X \rightarrow Nat\}\}
```

CS6202

18

CS6202

Universal & Existential Types

19

Syntax of Existential Types

Evaluation Rules

 t ::= v ::= T ::= 	 {*T,t} as T let {X,x}=t in t {*T,v) as T {∃X,T}	terms packing unpacking values package value values existential type	$\frac{1}{ \text{let } \{X,x\} = t_1}$ $ \text{let } \{X,x\} = \{*T, x\} = \{*T, x$	$\frac{t \rightarrow t'}{*U, t\} \text{ as } T \rightarrow \{*U, t'\} \text{ as } T}$ $\frac{t_1 \rightarrow t_1'}{\text{ in } t_2 \rightarrow \text{ let } \{X, x\} = t_1' \text{ in } t_2}$ $v\} \text{ in } t \rightarrow [X \mapsto T, x \mapsto v] t$	(E-Pack) (E-UnPack) (E-UnpackPack)
C\$6202	Universal & Existential Types	21	CS6202	Universal & Existential Types	23
Typing Γ Γ +	$\Gamma \vdash t : [X \mapsto U] T$ $\vdash \{*U, t\} \text{ as } \{\exists X, T\} : \{\exists X, T\}$ $\underbrace{t_1 : \{\exists X, T_1\}}_{\Gamma \vdash \text{ let } \{X, x\} = t_1 \text{ in } t_2 : T_2}$	_ (T-Pack)	Abstract ADT cou type repro sign	Data Types hter = Counter esentation Nat ature new : Counter, get : Counter \rightarrow Nat, inc : Counter \rightarrow Nat, inc : Counter \rightarrow Counter; ations new = 1; get = λ i:Nat. i inc = λ i:Nat. succ(i)	
CS6202	Universal & Existential Types	22	CS6202	Universal & Existential Types	24

Translation using Existential Types

ounterADT =
{*Nat,
$\{new = 1,$
get = λ i:Nat. i
inc = λ i:Nat. succ(i) }}
as {∃ Counter,
{new : Counter,
get : Counter \rightarrow Nat,
inc : Counter \rightarrow Counter}}

> counterADT : { \exists Counter, {new : Counter, get : Counter \rightarrow Counter, inc : Counter \rightarrow Counter}}

CS6202

C

Universal & Existential Types

Using Abstract Data Types

let {Counter,ctr} = counterADT in
ctr.get (ctr.inc ctr.new)
> 2 : Nat

Structure of Programs using ADTs

Ead	ch ADT can use all previously declared ADTs.
	let {ADT,m1} = <adt1 package=""> in</adt1>
	let {ADT,m2} = <adt2 package=""> in</adt2>
	let {ADT,mn} = <adtn package=""> in</adtn>
	<main program=""></main>
CS6202	Universal & Existential Types

Representation Independence

Abstract data type enjoy *representation independence*. They can be replaced by alternative implementations without affecting the rest of the programs, as long as the existential type is not modified. Example:

```
counterADT = 

{* {x:Nat},

{new = {x=1},

get = <math>\lambda i: {x:Nat}. i.x

inc = \lambda i: {x:Nat}. {x=succ(i.x)} }}

as {\exists Counter,

{new : Counter,

get : Counter,

inc : Counter \rightarrow Nat,

inc : Counter \rightarrow Counter}}
```

CS6202

25

CS6202

27

Motivate Arises when Consider: f = f:	ion for Bounded Quantificat a subtyping is combined with polymorp $\lambda x: \{a:Nat\}. x$ $\{a:Nat\} \rightarrow \{a:Nat\}$	t ion phism.	Solutio Quantified to For exampl f =	n : Bounded Quantification type may be <i>bounded</i> by a subtyping re le: λ X<::{a:Nat}.λ x: X. {x.a, x}	elation:
Now, what 1 f {a= > {a= f {a= > {a=	s the type of? =0} =0} : {a:Nat} =1, b=4} =1,b=4} : {a:Nat}		> f This is the c	: $\forall X <: \{a:Nat\} . X \rightarrow \{Nat, X\}$ core of System $F_{<:}$. More details in Pier	ce's book!
CS6202	Universal & Existential Types	29	CS6202	Universal & Existential Types	31
ProblemNote that be let $c = c.b$ One solution $f = 2i$ But how to h $f = 2f$ Certainly no $f = 2i$	N low is ill-typed! Why? = f {a=1, b=4} in h is to use universal type: $\lambda X . \lambda x: X. x$ $\forall X. X \to X$ handle: $\lambda x: {a:Nat}. {x.a, x}$ $(a:Nat] \to (a:Nat]$ ht ! $\lambda X . \lambda x: X. {x.a, x}$				
CS6202	Universal & Existential Types	30			