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CS6202: Advanced Topics in Programming Languages 
and Systems

Lecture 10/11 : Java Generics and Collections

• Overview
• Subtyping and Wildcard
• Comparison and Bounds
• Declaration and Erasure
• Reification and Reflection
• Collections

• Iterator, Iterable, Collection
• Set, Queues, List, Maps

• Design Patterns
• Other Issues
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MotivationMotivation

Generics is important for:

software reuse

type safety

optimization (fewer castings)

Important Principle :

“Everything should be as simple as possible but no simpler”
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Java 5Java 5

Some features in new language

boxing/unboxing

new form of loop

functions with variable number of arguments

generics

more concurrency features  



CS6202 Java Generics 4

Java 5 : ExampleJava 5 : Example

generic collection
unboxing/boxing

new
loop

function with variable
number of argumentsassert from Java 1.4
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Example in Java 1.4Example in Java 1.4

similar code with Array in Java 1.4
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Generics by ErasureGenerics by Erasure

Java Generics is implemented by erasure:
- simplicity
- small
- eases evolution (compatibility)

List<Integer>, List<String>, List<List<String>>

erases to just List

Anomaly :  array type very different from parametric type.
new String[size]
new ArrayList<String>()

with the latter losing info on element type.
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Boxing and Boxing and UnboxingUnboxing

Unboxed types can give better performance

Boxed type may be cached for frequent values.

60% slower
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ForeachForeach LoopLoop

Works with iterator and is more concise.
Kept simple – cannot use remove + multiple lists.

compiles to
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Iterator/IterableIterator/Iterable InterfacesInterfaces

Iterator supports iteration through a collection.

Iterable allows an Iterator object to be build.  



CS6202 Java Generics 10

Methods with Methods with VarargsVarargs

Packing argument for array is cumbersome.

Arrays can be used to accept a list of elements.
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Methods with Methods with VarargsVarargs

Syntactic sugar to support Varargs. varargs

The above is compiled to use array.
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SubtypingSubtyping and Substitutions Principleand Substitutions Principle

Subtyping Principle :
A variable of a given type may be assigned a value of any 
subtype of that type. The same applies to arguments.

However, it is not sound to have:
List<Integer> <: List<Number>

But arrays may be covariant:
Integer[] <: Number[]
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Covariant and Covariant and ContravariantContravariant SubtypingSubtyping

Covariant Subtyping :
List<Integer> <: List<? extends Number>

list of elements of any type that is a subtype of Number

Contravariant Subtyping :
List<Number> <: List<? super Integer>

list of elements of any type that is a supertype of Number

Get and Put Principle : use an extends wildcard when you 
only get values out of a structure, use a super wildcard 
when you put values into a structure. Don’t use wildcard 
when you both get and put.
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ExampleExample

Copy from one list to another :  

Getting elements :  
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ExampleExample

Putting elements :  

Two Bounds? Not legal though plausible.
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ArraysArrays

Array subtyping is covariant. 

This was designed before generics. 

Seems irrelevant now :
- unsound as it relies on runtime checks
- incompatible with Collection
- should perhaps deprecate over time.

One Solution : Use more of Collection rather than Array
- more flexibility
- more features/operations
- better generics
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Wildcard Wildcard vsvs Type ParameterType Parameter

Wildcards may be used if only Objects are being read.  
Collection<?> also stands for Collection<? extends Object>

Alternative (more restrictive but safer).  
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Wildcard CaptureWildcard Capture

We can reverse a list using parametric type or wildcard type? 
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Wildcard CaptureWildcard Capture

Solution is to use a wrapper function with wildcard capture : 

This solution is similar to a open/close capture of an
existential type.
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Restriction on WildcardsRestriction on Wildcards

Wildcards should not appear at
(i) top-level of class instance creation
(ii) explicit type parameters of generic method
(iii) in supertypes of extends/implements
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Restriction on WildcardsRestriction on Wildcards

Restriction on supertype of extends/implements

Restriction on explicit parameter of methods

permitted
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Outline

• Overview
• Subtyping and Wildcard
• Comparison and Bounds
• Declaration and Erasure
• Reification and Reflection
• Collections

• Iterator, Iterable, Collection
• Set, Queues, List, Maps

• Design Patterns
• Other Issues



CS6202 Java Generics 24

Comparison and BoundsComparison and Bounds
x.compareTo(y) method is based on natural ordering

x less_than y returns a negative value
x equal_to y returns zero
x more_than y returns a positive value 

Consistency with equal
x.equals(y) if and only if x.compareTo(y)==0

Main difference with null
x.equals(null) returns false 
x.compareTo(null) throws an exception
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Contract for ComparableContract for Comparable

Anti-symmetric :
sgn(x.compareTo(y)) == -sgn(y.compareTo(x))

Transitivity :
if x.compareTo(y)<0 and y.compareTo(z)<0 
then x.compareTo(z)<0

Congruence :
if x.compareTo(y)==0 then

forall z. sgn(x.compareTo(z)==sgn(x.compareTo(z))
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Implementing Integer as ComparableImplementing Integer as Comparable

Correct way :

Incorrect way - overflow problem :
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Maximum of a CollectionMaximum of a Collection

Generic code to find maximum :

A more general signature is based on get/put principle:

need to compare 
with its own type
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Fruity ExampleFruity Example

There is some control over what can be compared.

cannot compare apple with orange

can now compare between orange/apple
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Fruity ExampleFruity Example

Recall :

This works for List<Orange> and List<Fruit>, but old 
version works for only List<Fruit> .
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ComparatorComparator

Allows additional ad-hoc ordering to be specified :

Example : shorter string is smaller  
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ComparatorComparator

Implement max using Comparator :

Comparator from natural order :  
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Enumerated TypesEnumerated Types

Enumerated type corresponds to a class with a set of final static 
values. First, an abstract class :

compare within same
enumerated type only
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Enumerated TypeEnumerated Type

An instance of enumerated type.  
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Covariant OverridingCovariant Overriding

Java 5 can override another if arguments match exactly but the 
result of overriding method is a subtype of other method.

Useful for clone method : 
class Object {

:
public Object clone() { … }

}

class Point {
:

public Point clone() { return new Point(x,y);}
} 

covariant overriding
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ConstructorsConstructors

Actual type parameters should be provided :

Pair<String,Integer> p = new 
Pair<String,Integer>(“one”,2)

Pair<String,Integer> p = new Pair(“one”,2)

If you forget, it is a raw type with unchecked warning :
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Static MembersStatic Members

Static methods are independent of any type parameters :

Cell.getCount()   // ok

Cell<Integer>.getCount() // compile-time error

Cell<?>.getCount()       // compile-time error
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How Erasure WorksHow Erasure Works
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ReificationReification

Refers to an ability to get run-time type information.
This is a kind of concretization.  

Number[]  has reified type Number[] 

ArrayList<Number> has reified type ArrayList

Array is reified with its component type, but 
parameterized types is reified without its component type.  
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Reified TypesReified Types
Type that is reifiable.  

Type that is not reifiable.  
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ReificationReification

An incorrect code to convert a collection to an array.

not reifiable
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Reification Reification -- ArraysArrays

More problem :
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Reification Reification -- ArraysArrays

More problem :
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Reification Reification -- ArraysArrays

Alternative using another array + reflection! 
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Reification Reification -- ArraysArrays

Solution using a Class – runtime type! 
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ReflectionReflection

Reflection is a term to allow a program to examine its own 
definition.

Generics for reflection supports the process using new generic 
programming techniques.

Reflection for generics allow generic types (e.g. type vars, 
wildcard types) to be captured at runtime.
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Generics for Reflection Generics for Reflection 

A new generic type for Class
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Reflection for Primitive TypeReflection for Primitive Type

We cannot use Class<int> as type parameter must be reference 
type. Use Class<Integer> for int.class instead!   

Java.lang.reflect.array.newInstances(int.class,size)

returns  int[] and not Integer[] through a hack!

However, int[].class is correctly denoted by Class<int[]>
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Generic Reflection LibraryGeneric Reflection Library

newArray

newArray
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Reflection for GenericReflection for Generic

Non-generic reflection example :  

Output :  
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Reflection for GenericReflection for Generic

Generic reflection example :  

Output :  

Bytecode contains generic type information!
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Reflecting Generic TypesReflecting Generic Types

Type interface to describe generic type :


