
Speeding up Search in Peer-to-Peer Networks with A
Multi-way Tree Structure

H. V. Jagadish ∗

University of Michigan, USA

jag@eecs.umich.edu

Beng Chin Ooi †

National University. of
Singapore, Singapore

ooibc@comp.nus.edu.sg

Kian-Lee Tan †

National University of
Singapore, Singapore

tankl@comp.nus.edu.sg

Quang Hieu Vu †

National University of
Singapore, Singapore

hieuvq@nus.edu.sg

Rong Zhang †

Fudan University, China

rongzh@fudan.edu.cn

ABSTRACT
Peer-to-Peer systems have recently become a popular means
to share resources. Effective search is a critical requirement
in such systems, and a number of distributed search struc-
tures have been proposed in the literature. Most of these
structures provide “log time search” capability, where the
logarithm is taken base 2. That is, in a system with N
nodes, the cost of the search is O(log2N).
In database systems, the importance of large fanout index
structures has been well recognized. In P2P search too, the
cost could be reduced considerably if this logarithm were
taken to a larger base. In this paper, we propose a multi-
way tree search structure, which reduces the cost of search
to O(logmN), where m is the fanout. The penalty paid is
a larger update cost, but we show how to keep this penalty
to be no worse than linear in m. We experimentally explore
this tradeoff between search and update cost as a function
of m, and suggest how to find a good trade-off point.
The multi-way tree structure we propose, BATON*, is de-
rived from the BATON structure that has recently been sug-
gested. In addition to multi-way fanout, BATON* also adds
support for multi-attribute queries to BATON.

1. INTRODUCTION
Peer-to-peer (P2P) systems have become very popular of

late, and are widely used for sharing resources, such as mu-
sic files. Search is a crucial operation in P2P systems, and
there has been considerable recent work in devising effective

∗Supported in part by the US National Science Foundation
grant IIS-0219513
†Supported in part by IDA CCC grant as part of Best-
Peer[17] project

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

distributed search techniques. The proposed structures in-
clude a ring as in Chord [13], a multiple dimensional grid as
in CAN [18], a multiple list as in SkipGraph [4], or a tree
as in BATON [11]. Most search structures, including all the
ones just mentioned, bound the cost of the search to a log-
arithm of the search space: for a system with N nodes, the
search cost is bounded at O(logN). However, upon closer
examination we see that this logarithm is to base 2. If we
could take the logarithm to a larger base, we could have a
substantially smaller cost.

The importance of having a large base for the logarithm
has been well-recognized in centralized database systems.
When tree structures are constructed for indexing, the fanout
is made as large as possible, within the limits of the page
size. We always use B-trees in database systems, and not
binary trees! An equivalent transformation, from the low
fanout structures currently proposed in the literature, to
practical high fanout distributed search structures, is the
topic of this paper.

At first glance, one may think that it is not too hard to
increase the fanout in any distributed search structure. For
instance, consider Chord. Rather than doubling successive
ranges, we can increase them by a factor of m; correspond-
ingly, in the finger table we would have m−1 entries at each
level, instead of just one entry. With this simple change, the
search cost (in number of hops required) has gone down by a
factor of log2m. The storage requirement, for the finger ta-
bles, has increased by a factor of m/log2m, but the amount
of storage for finger tables is usually not large enough that
this matters. So we appear to have won. The difficulty is
that the update cost has gone up by a factor of (m/log2m)2.
This quadratic dependence on m makes it difficult to in-
crease m very much. We seek a better solution, preferably
one in which the cost for updates increases no worse than
linearly with m.

The only existing distributed index that is notable in per-
mitting high fanout is the P-Tree [8]. In this proposal, each
P2P node maintains a leaf node in the B+-tree and a path of
virtual index nodes from the root to that leaf node. Search
is very effective, but updates are expensive, possibly requir-
ing substantial synchronization effort. In other words, this
technique too has the same weak spot as multi-way Chord
discussed above.

1

In this paper, we propose a new multi-way distributed
tree structure. We call it BATON*, since it is an exten-
sion of BATON[11], just as R*-trees are an extension of
R-trees. BATON* extends BATON to permit a fanout of
m > 2. With this, the cost of search becomes O(logmN), as
expected. Moreover, the cost of updating routing tables is
just O(m · logmN), as compared to O(log2N) in BATON –
a degradation that is better than linear in m, and therefore
a cost one may be willing to pay. Furthermore, BATON*
has better fault tolerance properties than BATON, and is
capable of quicker load balancing. In fact, the system’s fault
tolerance, measured as the number of nodes that must fail
before the network is partitioned, increases linearly with m.
Similarly, the expected cost of load balancing decreases lin-
early with m. We analyze the impact of m on both search
and maintenance cost, and derive an estimation model for
m that reduces the total cost given some composition of
queries and updates. Likewise, we analyze the impact of m
on fault tolerance of BATON*.

BATON* can also support queries over multiple attributes
in an effective way. In addition to permitting the use of
multiple attributes in a single index, BATON* further in-
troduces the notion of attribute classification, based on im-
portance of the attribute for querying, and the notion of at-
tribute groups. Another variation of BATON [12] has been
proposed for supporting multi-dimensional queries. How-
ever, as analyzed in Section 5, it cannot support multi-
attribute queries efficiently. Realizing that most of the time
users only query over a small number of attributes while oth-
ers are rarely queried, we propose a flexible method of index-
ing attributes in which only attributes, which are frequently
queried, should be indexed separately; other attributes can
be divided into small groups, and these groups are indexed
as in multi-dimensional space.

To sum up, in this paper, we have the following major
contributions:

• In Section 3, we introduce BATON*, a significant ex-
tension of BATON to multi-way tree structure. There-
fore, we can reduce the cost for search from O(log2N)
to O(logmN).

• We analyze BATON*’s resilience towards node failure
and network partitioning and its capability of load bal-
ancing.

• Using BATON*, we present a flexible method to sup-
port multi-attribute queries efficiently in Section 5.

• In Section 6, we show the experimental results of our
proposed system over PlanetLab [7], a testbed for large-
scale distributed systems.

In addition to the main sections mentioned above, this pa-
per includes necessary background information about BA-
TON in Section 2; in Section 4, there is a description of how
Chord can be extended to have a fanout of m; we present
related work in Section 7 and conclude in Section 8.

2. BACKGROUND
Since our proposed multi-way structure is adapted from

BATON (BAlanced Tree Overlay Network) [11], we present
here a brief review of the relevant features of BATON.

BATON is an overlay structure based on the binary bal-
anced tree in which each peer in the network maintains a

Adjacent link

Example node Parent node Child node Neighbor node

h i j l m n

b c

p q r s t

a

e f g

k o

d

Figure 1: BATON structure

node of the tree. A node may connect to other nodes by up
to four different kinds of links: parent links pointing to par-
ent nodes, children links pointing to child nodes, adjacent
links pointing to adjacent (in linear order) nodes that main-
tain adjacent ranges of values, and neighbor links pointing
to selected neighbor nodes at the same level and have a dis-
tance equal to a power of two from the node. In BATON,
each node in the tree, both leaf and internal, is assigned a
range of values in which the range of values directly man-
aged by a node is required to be greater than the range of
values managed by its left adjacent node while smaller than
the range of values managed by its right adjacent node. In
other words, if we travel from the left to the right of the
tree following adjacent links, data is in increasing order. An
example of BATON is shown in Figure 1.

In BATON, a tree is considered balanced if and only if at
any node in the tree, the height of its two subtrees differ by
at most one. There are two important results in BATON.
The first result shows that a tree is balanced if every node
in the tree that has a child also has both its left and right
routing tables full, i.e., none of the valid links in the routing
table is Null. The second result shows that if a node x
contains a link to another node y in its left or right routing
tables, the parent node of x must also contain a link to the
parent node of y unless the same node is parent of both x
and y. This result gives an efficient way to forward requests
among nodes in the network.

Based on these two key results, BATON keeps the tree
structure balanced by forcing every node in the tree that
has a child to have both its left and right routing tables
full. Therefore, when a node receives a Join request from
a new node, it can only accept the new node as its child
if its routing tables are full and it does not have two chil-
dren. Otherwise, the Join request is forwarded to either
(a) its parent if at least one of its routing tables is not full
or (b) one of its adjacent nodes if it has both routing tables
and children full. In case of node departure, if the depar-
ture of a node does not affect the tree balance, the node
can safely leave the network. This is the case where the
departing node is a leaf node and all of its neighbor nodes
have no children. Otherwise, the departing node has to find
a replacement node, which is a node satisfying the previ-
ous case, to take its place. The replacement node is found
by sending a FindReplacement request downward the tree.
Here, the cost of finding a position for a new node and the
cost of finding a replacement node in case of node departure
are all O(logN) while the costs of updating routing tables
to reflect changes are 6 · logN and 8 · logN for node join and
node departure respectively.

2

In BATON, when a node receives a query request, if the
searched value does not fall into its own range of values,
the request is always forwarded to a node in its left routing
table whose upper bound is still greater than the searched
value or a node in its right routing table whose lower bound
is still lower than the searched value if such a node exists.
Otherwise, the query request is forwarded to either its left
child/right child or its left adjacent/right adjacent node.
Note that a query request can only be forwarded to a higher
level node in two cases: (1) the higher level node contains
the searched value, and hence it is necessary, (2) the pro-
cessing node is a lower level leaf node without children and
there are insufficient neighbor nodes inside its routing tables
(in this case it is far from the root). As a result, BATON
can avoid a bottleneck at the root and nodes near it.

Two load balancing schemes are used in BATON. In the
first scheme, an overloaded/underloaded node performs load
balancing with its adjacent nodes. In the second scheme, an
overloaded/underloaded leaf node performs load balancing
with a far away leaf node (a lightly loaded node may forcibly
leave its current position and force-join as a child of the over-
loaded node to share the workload). The tree structure may
become unbalanced in this case, and network restructuring
becomes necessary. In BATON, network restructuring oper-
ations are akin to rotations in an AVL tree. Load balancing
is performed by shifting nodes via adjacent links towards
the place causing imbalance.

3. BATON*: A MULTI-WAY TREE STRUC-
TURE

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 m

es
sa

ge
s

Number of insertion (thousand)

Our proposal
The naive method

Figure 2: Average additional messages required for
doing load balancing

BATON creates a binary search tree structure. As we
attempt to increase the fanout, we find some challenges that
must be overcome:

• In BATON, all nodes, whether leaf or internal, are
responsible for a range of data values. There is an “in-
order” traversal linearization of these value ranges. If
a node has more than two children, this sort of in-order
linearization is no longer possible. This implies that
we no longer have a clean definition of adjacency of
value range for internal nodes, and it is not clear what
adjacent links should be kept. Even if we choose to be
generous and maintain multiple adjacencies, one has
to be chosen when needed for search traversal and for
load balancing. This choice is not clear when there are
multiple adjacent nodes.

For example, if an internal node is overloaded by just
one range of values, it also can only do load balancing
with two of its adjacent nodes (not with all 2 · (m −
1) adjacent nodes). All the above things bring back
the problem of propagating load balancing operations
when a node is overloaded, which is avoided in BA-
TON. Figure 2 shows a comparison between our pro-
posal and this method in doing load balancing. The
result shows that this naive method is very bad in solv-
ing load balancing problem.

• It appears straightforward to expand the neighbor rout-
ing tables to capture neighbors at distances that are
powers of m distant rather than powers of 2 distant.
This turns out to be the wrong answer since it leaves
the search network under-connected.

3.1 The BATON* Structure
In this section, we propose a new structure called BA-

TON*, which addresses the challenges listed above in ex-
tending BATON to a multi-way structure. The new struc-
ture is shown in Figure 3. There are three significant dif-
ferences between the multi-way BATON* and the binary
BATON.

• Each peer node in BATON* can have up to m children
instead of two as in the original structure. In addition
to maintaining links to children, the parent node also
has to keep track of the ranges of values managed by
their children.

• Neighbor routing tables at a node maintain links to
selected neighbor nodes at the same level which have
a distance equal to d · mi, where d = 1..m − 1 and
i ≥ 0, from the node itself. As shown in Figure 3,
left routing table of node o maintains links to nodes
n, m, l, k, g, which have a distance from node o re-
spectively 1 · 40, 2 · 40, 3 · 40, 1 · 41, and 2 · 41. Simi-
larly, the right routing table of node o maintains links
to nodes p, q, r, s. As a result, the maximum num-
ber of links in routing tables of a node at level L is
bounded at (m − 1) · logm(number of nodes at that
level)= (m−1) ·L. Note that if we increase the fanout
of a node to reduce the cost of search, we have to in-
crease the size of routing tables, and hence increase
the cost of update tables. Consequently, depending
on application requirements, an appropriate value of
fanout factor m should be chosen. We will show later
how to select such an m.

• For a system of order m, a range of values managed
by a node is greater than ranges of values managed by
the first �m/2� children nodes while less than ranges of
values managed by the last �m/2� children nodes. For
example, in Figure 3, range of values managed by o is
greater than those of y, x, n, but smaller than those
of z, d, p, q.

Note that in BATON*, a node manages only a range of
values and m links instead of (m-1) ranges of values and
m links as in the original multi-way tree structure. It also
does not look like a B-tree, where every internal node must
have a number of children between m/2 and m. Rather, in
BATON*, all internal nodes, except immediate parents of
leaf nodes, are required to have full m children. Immediate

3

f g h i

b

j k l m

c

n o p q

d

r s t u

e

x y zwv

a

Adjacent link Example node Parent node Child node Neighbor node

Figure 3: BATON* structure

parents of leaf nodes may have fewer children, and this is
where growth takes place.

3.2 Definition and Theorems
For an m-fanout tree, with m > 2, the definition of a

binary balanced tree is extended naturally to the form:
Definition 1: A tree is balanced if and only if at any

node in the tree, the height of any two subtrees of its children
differ by at most one. �

The two crucial results underpinning BATON continue to
apply to BATON*, with suitable extension in wording from
2 to m, in spite of all the changes described above. We
establish these extended results next.

Theorem 1: A tree is a balanced tree if every node in the
tree that has a child also has both its left and right routing
tables full.

Proof: Assume that there exists a subtree rooted at node
x, which is imbalanced. As a result, there must exist two
subtrees rooted at y and z, children of x, whose heights differ
by more than 1. Let Ny and Nz be numbers of y and z, Hy

and Hz be heights of their corresponding subtrees. Without
loss of generality suppose that z is a right sibling of y, and
Hy − 1 > Hz. Also let w be the farthest leaf node of the
subtree rooted at y, v be its parent, and Nv be number of
v. Since z is a right sibling of y, we have Nz = Ny + t,
where (1 ≤ t < m) (1). By the way nodes are numbered,
we have (Ny − 1) · mHy−1 + 1 ≤ Nv ≤ Ny · mHy−1 (2).
Since v has a child w, by the system requirement, it has
to have a full right routing table in which there must be a
node u with number Nu = Nv + d · mi, where 1 ≤ d ≤ m
and i ≥ 0. By choosing d = t, i = Hy − 1, we have Nu =
Nv +t·mHy−1 ⇒ Nv = Nu−t·mHy−1 (3). From (2) and (3),
we have (Ny−1) ·mHy−1+1 ≤ Nu−t ·mHy−1 ≤ Ny ·mHy−1

⇒ (Ny+t−1)·mHy−1+1 ≤ Nu ≤ (Ny+t)·mHy−1 (4). From
(1) and (4), we have (Nz−1)·mHy−1+1 ≤ Nu ≤ Nz ·mHy−1.
As a result, Nu has to belong to a descendant node at height
Hy − 1 of the subtree rooted at z. It means that the height
of the subtree rooted at z is at least Hy − 1. Since this
contradicts the assumption, there does not exist a subtree
that is unbalanced. The proof is illustrated in Figure 4. �

Theorem 2: If a node x contains a link to another node
y in its left or right routing tables, the parent node of x must
also contain a link to the parent node of y unless the same
node is parent of both x and y.

Proof: Let y be a neighbor node of x, w be the parent of
x, v be the parent of y, and Nx, Ny , Nw, Nv be the number
of x, y, w, v respectively. By the way nodes are numbered,
we have Nw = Nx div m and Nv = Ny div m. By the way
neighbor links are established, we have Ny = Nx±d·mi. Let

x

y z

v

w

…… ...

t
Hy ... … u… ……

…

… …

… Hz
= + tNz NyNy

t × m(Hy-1)

Nv Nu(Ny ×m(Hy-1)-1) +1 Ny×m(Hy-1)

Figure 4: Proof of theorem 1

us consider two cases. Case 1: if i = 0, then Ny = Nx ± d.
As a result, Nv = (Nx ± d) div m. Since 1 ≤ d ≤ m − 1,
Nw − 1 ≤ Nv ≤ Nw + 1 or Nw − 1 ·m0 ≤ Nv ≤ Nw + 1 ·m0.
Consequently, v has to be a neighbor of w or be w itself.
Case 2: if i ≥ 1, Nv = (Nx ± d · mi) div m = Nw ± d · mj ,
where j = i − 1. As a result, v has to be a neighbor of w.

In addition to the above theorems, we establish two new
theorems as below.

Theorem 3: The total number of nodes at level l is (m - 1)
times greater than the total number of nodes at all previous
levels, 0 through l − 1.

Proof: Let x be the total number of nodes at level l, and
y be the total number of nodes at all previous levels, then
x = ml, and y = 1+m1+m2+...+ml−1 = (ml−1)/(m−1).
As a result, y · (m − 1) = ml − 1 < x. �

This theorem implies that the vast majority of nodes in
the system have a high level number, and are possibly leaf
nodes. This dominance of leaf nodes will turn out to be
crucial for lowering the cost of load balancing as we shall
see shortly.

Theorem 4:The maximum size of a routing table of a
node at level l is m · l.

Proof: This theorem follows from the way we construct
routing tables. Since there are total ml nodes at level l,
and a node maintains neighbor nodes at distance d · mi,
where d = 1..m − 1, the maximum size of a routing table is
d · logmml = d · l. �

Corollary 4.1:The maximum size of a routing table of a
node in the network is m · logmN .

Proof: It is trivial since the maximum height of the tree
is logmN . �

This corollary provides us with the tools necessary for
efficient update. If we can restrict the cost of an update to
be that of the construction of a single neighbor routing table,
then we have the necessary sub-quadratic dependence.

Algorithms for various operations are adapted from BA-

TON to BATON* as described next.

4

3.3 Node Join and Node Departure

Algorithm 1 : Join (node n, node newNode)

If (Full(LeftRoutingTable(n)) and
Full(RightRoutingTable(n)) and Not Full(Children(n)))

n.AcceptChild(newNode)
If (Adjacent(newNode) = n)

SplitData(n, newNode)
Else

SplitData(AdjacentSibling(newNode), newNode)
Else

If ((Not Full(LeftRoutingTable(n))) or
(Not Full(RightRoutingTable(n))))

Join(Parent(n), newNode)
Else

m=SomeNodesNotHavingEnoughChildrenIn
(LeftRoutingTable(n), RightRoutingTable(n))

If (there exists such an m)
Join(m, newNode)

Else
a = one of its adjacent nodes
Join(a, newNode)

A node can only accept a new joining node as a child
if it has full neighbor routing tables but does not have m
children. Otherwise, it has to forward the join request to
either its parent, its lower level adjacent node or a neighbor
node that does not have enough children. A node can only
leave its current position if it does not cause the tree to
become unbalanced. Otherwise, it has to find a replacement
node by sending a request to its lower level adjacent node.

In BATON, the range of values managed by a newly in-
serted node is always obtained as a split from the range man-
aged by its parent. In BATON*, limiting the range assigned
to the new node thus would force newly inserted nodes to be
adjacent to their parent. Instead, we allow newly inserted
nodes to appear anywhere in the adjacency order (we can
actually choose this to maximize local load equalization).
The range of values managed by the new node is obtained
from one of its adjacent nodes, either the parent or a sibling.

In BATON*, the cost of finding a place for a new joining
node or finding a replacement node is O(logmN) since the
height of the tree is O(logmN). The cost of updating routing
table is O(m · logmN) for the neighbor routing tables since
the maximum number of neighbor nodes a node can have is
O(m · logmN), and each of these has to add a new entry,
or remove an entry from its routing tables. Also, a newly
inserted node has to construct its own routing tables, with
up to O(m · logmN) entries, each of which can be obtained
in constant time through its parent. In addition, there is a
parent link and two adjacency links to create/delete. There
can be no children links for a node being newly inserted
or deleted. Adding these up, the total cost of insertion or
deletion is O(m · logmN).

3.4 Query Processing, Data Insertion and Data
Deletion

The algorithms for query processing as well as data inser-
tion and data deletion are also a little different in BATON*

than in BATON. The basic operation in all of these is the
basic equality search. A node u receiving a search request
checks to see if there is a neighbor node it knows about who
is more appropriate to handle the search. If the searched
value is greater than the u’s own upper bound while there
is no right hand side neighbor node of u whose lower bound
is less than the searched value, the search has to be for-
warded to a suitable child. In BATON, this would simply
be the right child. In BATON*, the available information
regarding the bounds of the ranges maintained by the vari-
ous children are considered to find the rightmost child whose
lower bound is less than the searched value, and the search
request is forwarded to it. Similarly, if the searched value
is less than the node’s lower bound while there is no left
hand side neighbor node whose upper bound is greater than
the searched value, the node has to try to find the leftmost
child whose upper bound is greater than the searched value,
to forward the search request. The algorithm is described
as in Algorithm 2.

Algorithm 2 : Search-Exact (node n, query q)

If ((n.LowerBound<=q.Value) and
(q.Value<=n.UpperBound))

LocalSearch(n, q)
Else

If (n.UpperBound<q.Value)
m=TheFarthestNodeSatisfyingCondition

(m.LowerBound<=q.Value)
If (there exists such an m)

Search-Exact(m, q)
Else

l=TheFarthestChildSatisfyingCondition
(l.LowerBound<=q.Value)

If (there exists such an l)
Search-Exact(l, q)

Else
Search-Exact(RightAdjacentNode(n), q)

Else //(n.LowerBound>q.Value)
//A similar process is followed towards the left

Algorithms for range query, data insertion and data dele-
tion are modified from those in BATON in corresponding
ways.

3.5 Node Failure, Fault Tolerance, Network
Restructuring and Load Balancing

Algorithms for node failure, network restructuring and
load balancing are all the same in BATON* as in BATON.
Node failure is recovered via the node’s parent. Load balanc-
ing is done between two adjacent nodes or between a lightly
loaded leaf node and a heavily loaded leaf node. As needed
to achieve load balance, network restructuring is done by
shifting nodes via adjacency links. Details of these algo-
rithms are omitted here, since they can be looked up in [11]
and used with the obvious changes from 2 to m. Instead,
we focus here on fault tolerance, which has been greatly im-
proved due to higher fanout, and the load balancing that
has been made easier by the new design.

5

First, let us consider a case where a node is isolated from
the network. If a node has full routing tables, it is easy to re-
alize that the lower the level of a non-leaf node, the more the
number of links the node has because low level nodes always
have more neighbor links than high level nodes do while the
number of parent links, adjacent links, and children links
are approximately equal among nodes . As a result, high
level nodes (closer to the root) are easier separated from the
network than low level nodes are. As in BATON, there are
two special cases. In the first case, the root is a node, which
is easily isolated because it has no neighbor link. In this
case, if all of its m children and 2 adjacency links of the
root are broken, it is isolated from the remaining system. In
the second case, if a node’s routing tables are not full, it is
also easily isolated from the network. However, that node
is likely to be a newly joined node which can rejoin the net-
work at low cost. Note that in BATON*, the longer the
time a node in the system is, the higher the level it is in the
tree because new nodes always join as children of existing
nodes.

Now, let us consider a case where a group of connected
nodes is separated from the network. These nodes are iso-
lated if all of their links to nodes outside the isolated group
are broken. In other words, the minimum number of links
that has to be broken for a group of nodes to be separated
from the network is S =

�
links of all nodes in group -

�

intra-group links among nodes within group. Since high level
nodes always contain fewer links than low level nodes do, we
will analyze only the case where the network is separated by
low level nodes and high level nodes (in other cases, S always
has higher values). In other words, the network is separated
between the head of the tree and the base of the tree as
in Figure 5. Since the number of low level nodes (with a
large level number) dominates the system, the number of
high level nodes, which can be separated from the network,
is not considerable. Note that removal of nodes high in the
tree causes no more disruption than removal of nodes near
the leaf – they are no more important for purposes of search
and update. In particular, the root of the tree can be re-
moved and not cause the tree to fall apart into a disjoint
forest.

Figure 5: Network partition

For further analysis, let us try to make S as small as
possible. S has the minimum value when all nodes in the
first part are arranged so that all levels belonged to the
group since all neighbor links, which contribute the largest
number among all kinds of links, are inter-connected links.
In this case, the remaining links, which have to be broken,
are adjacency links of nodes to leaf nodes and children links
of nodes in the last level to their children. Let k be the
number of nodes in the first part, and k′ be the total number
of nodes in the last level of the first part, then S = 2·k+m·k′.
Following theorem 3, we have k′ > (m − 1) · (k − k′) or
k′ > k ·(m−1)/m. As a result S < 2 ·k+m ·k ·(m−1)/m =

2 · k + (m − 1) · k (1). In the worst case, if the last level of
the first part is just one level above the last level of the tree,
adjacency links may point to the same node, and hence 2 ·k
nodes may be double counted in the previous formula. As a
result, S is only less than (m − 1) · k (2).

(1) and (2) ⇒ S < [(m−1) ·k, (m+1) ·k]. In other words,
let f be the number of failed nodes in the system, then the
maximum number of nodes, which may be separated from
the network as a result of the failure is from f/(m + 1)
to f/(m − 1). We can easily realize that when m is large
enough, this rate is very small. In conclusion, our system is
highly fault tolerant.

3.5.2 Load Balancing
Local load balancing, with adjacent nodes, is easy to do,

and is the cheapest form of load balancing where it works.
However, such local balancing will not suffice where there
are global imbalances. For example, when data distribution
is skewed, using only local load balancing may lead to ripple
data migration, which is costly. A solution for this problem
is that we have to remove nodes from underloaded regions
and add them to overloaded regions. Since our system em-
ploys the tree structure, internal nodes are not easily to be
removed, this solution is only possible for leaf nodes. In spe-
cial, a workload can be adjusted between a heavily loaded
leaf node and a lightly loaded leaf node. As fanout increases
leads to an increasing number of leaf nodes, when the fanout
m is large, finding a leaf node satisfying condition to do load
balancing is easy.

In general, if a node is overloaded, it tries to do load bal-
ancing with its adjacent nodes first. If there is no lightly
loaded adjacent nodes, it then tries to find a lightly loaded
leaf node to do load balancing. Once such a node is found,
that node has to perform a forced leave at its current po-
sition and a forced join at the new position to share the
workload of the overloaded leaf node by leaving the current
position and joining in the new position. The tree struc-
ture may become imbalance after that. Thus, network re-
structuring is triggered if necessary. The cost of network
restructuring is comparable irrespective of fanout, and de-
pends solely on the number of nodes intervening between
the old and new positions of a moved node.

3.6 Tuning the Fanout m

The cost for search is decreased logarithmically as the
fanout is increased. The cost for a node insertion and dele-
tion goes up. Since, search is much more frequent than
node insertion and deletion in most systems, this is a good
tradeoff to have. Exactly how large a fanout to choose is de-
termined by the precise ratio of queries to node updates. In
this section, we provide a simple cost model for calculating
the optimum value of m.

Since search operations and update operations are domi-
nant operations in our system1, we just build a simple cost
model (C) based on them. Let α be the percentage of
search operations, and 1 − α be the percentage of update
operations in the system. Then C = α · S + (1 − α) · U ,
0 ≤ α ≤ 1, where S and U denote the search and update
cost respectively. Since the approximate costs of a search op-

1Insertions and deletions can be considered as search opera-
tions while node join operations and node departure opera-
tions can be considered as update operations since they will
trigger update operations.

3.5.1 Fault Tolerance

6

eration and an update operation are respectively O(logmN)
and O(m · logmN) (in term of routing messages), we have
C(m) = α · logmN +(1−α) ·m · logmN . Here, α can be con-
sidered as the tuning knob. If all operations in the network
involve search operations, α should be big, and vice versa.

Differentiating C(m), we have C′(m) = lnN
m·ln2m

· [(1−α) ·
m · (ln m− 1)−α]. Let F (m) = (1−α) ·m · (ln m− 1)−α.
Since F ′(m) = (1 − α) · ln m ≥ 0, F (m) is an increasing
function. Thus, F (m) = 0 has a unique solution m0. It
leads to the result C′(m) = 0 when m = m0, C′(m) < 0
when m < m0, and C′(m) > 0 when m > m0. As a result,
C(m) is minimum at m0.

Even though we cannot easily find a closed form solution
for F (m) = 0, it is not hard to find a numerical solution by
numerical methods such as Newton’s method [2]. Upon find-
ing m0, we calculate C(m1), m1 = �m0� and C(m2), m2 =
�m0�, and select the value corresponding to the smallest
cost. The result is a good value for fanout. For example, in a
system with 10, 000 nodes, α = 0.6, using Newton’s method
with initial value 2, iteration = 1,000, we have m0 = 3.9673.
By checking C(m1 = 3) and C(m2 = 4), we get a fanout
value of 4 because C(3) = 15.0905 > C(4) = 14.6165.

4. A NOTE ON MULTI-WAY STRUCTURES
It is straightforward to extend many well-known distributed

search structures to have a fanout of m rather than 2 at each
step, using techniques similar to those used in BATON*.
However, the cost of update will typically be quadratic in
fanout, unlike in BATON*. Here, we present a sketch of the
algorithm and the analysis for Chord. Arguments for other
distributed search structures are similar.

Let us call the extended structure of Chord for a higher
fanout Chord*. Similar to BATON*, we have to modify the
way to organize routing tables (or finger tables). Instead of
keeping links to nodes at distance 2i, a routing table now
keeps links to nodes at distance d · mi, where d = 1..m − 1.
In particular, the way to calculate finger[k].start is modified
as below: finger[k].start = (n + d · mk−1) mod N . Figure 6
shows two different routing tables corresponding to different
fanouts: m = 2, and m = 4. Except for changes in routing
tables, all Chord’s algorithms are unchanged in Chord*.

The problem with extending Chord is the cost of updating
routing tables. In the modified Chord*, the size of routing
table is (m − 1) · logmN . As a result, the cost of updating
routing table for a new joining node or a departure node
grows up to O(((m − 1) · logmN)2) now. Compared to the
previous cost of Chord O((log2N)2), the increasing factor is
((m − 1)/log2m)2 	 (m/log2m)2). This is expensive com-
pared to BATON* since BATON* only requires an increas-
ing factor of m·logmN/log2N = m/log2m (a linear cost with
m). Further, an overlay structure such as Chord that relies
on hashing cannot support range queries efficiently [11].

5. A FLEXIBLE METHOD FOR SUPPORT-
ING MULTI-ATTRIBUTE QUERIES

In applications that involve multiple attributes, it is not
uncommon for queries to involve only a small number of at-
tributes (instead of all the attributes). As a result, if we con-
sider multi-attribute queries as multi-dimensional queries
and use systems such as CAN [18] or [12] to support them,
it is not efficient because most of the time the queries will
involve a large search region. An alternative method pro-

0
1

2

3

4

5

6
7

10
9 8

11

13

15
14

12

start int succ

3
4
6

10

[3,4)
[4,6)
[6,10)
[10,2)

4
4
6

11

Fanout m = 2

start int succ

3
4
5
6

10
14

[3,4)
[4,5)
[5,6)
[6,10)

[10,14)
[14,2)

4
4
5
6

11
15

Fanout m = 4

Figure 6: A CHORD ring

data record
(v1,v2,...vn)

Hilbert
mapping
function

index
mapping
function

. BATON*
range of
values

single
indexed
attributes

group
indexed
attributes

.....

Figure 7: Data indexing

posed by MAAN [6] and Mercury [5] is to index each at-
tribute value separately. Therefore, multi-attribute queries
are solved by choosing one attribute for indexed search while
other attributes in the queries are used as post-filters. Even
though this method overcomes the problem of the previous
one, it is still not efficient when the number of attributes
increases.

To support multi-attribute queries over BATON*, we pro-
pose a method in which we divide the whole range of BA-
TON* attributes into several sections: each section is used
to index an attribute (if it frequently appears in queries) or
a group of attributes (if these attributes rarely appear in
queries). Since BATON* can only support queries over one
dimensional data, if we index a group of attributes, we have
to convert their values into one dimensional values: in our
system we choose Hilbert Space Filling Curve. For exam-
ple, if we have a system with 10 attributes: a1, a2,... a10 in
which only 4 attributes from a1 to a4 are frequently queried
(i.e. 90% of all queries), we will build 4 separate indexes for
them. The remaining attributes are divided equally into two
groups to index, three attributes in each group. In this way,
we can significantly reduce the number of replications from
10 down to 6. The index structure is described as Figure 7.

5.1 Multi-attribute Query Processing
Generally, a multi-attribute query Q can be defined as a

set of subqueries qi, in which each subquery involves an
attribute. The result of the query Q is an intersection of
all results from all subqueries. As a result, we can find the
final result of the query Q by just finding results satisfying
an arbitrary subquery, and using other subqueries as filters.
We call the selected subquery a dominant subquery. After
taking an arbitrary subquery as the dominant subquery, we
have to convert it into queries, which can be executed over
BATON* overlay network since the domain of values of a
subquery is just a section in the overlay network. To do
converting we need to consider two cases. If the dominant
subquery involves an attribute that is indexed separately,

7

it is transformed into a BATON* query in a straightfor-
ward way – using the mapping function. However, if the
dominant subquery involves an attribute that is indexed to-
gether with other attributes (multi-dimensional index), it
has to be mapped first into smaller subqueries by using the
Hilbert Space Filling Curve. After that, these subqueries are
converted into BATON* queries. Finally, these converted
subqueries are forwarded in parallel over BATON*.

5.2 Data Insertion and Deletion
When data is inserted, it has to be indexed in each in-

dex structure. Since inserted data can be considered as a
multi-attribute query in which subqueries are exact match
queries corresponding to the attribute values, the data inser-
tion algorithm is similar to the query processing algorithm
described above except that all sub queries have to be con-
sidered to index data in all index structures.

To delete existing data, all of its replications have to be
deleted. Like the data insertion algorithm, nodes that keep
index values are found by a corresponding multi-attribute
query. After that, the data index is removed from those
nodes.

5.3 Heuristics to Enhance Performance
In this section, we introduce several techniques that can

help to achieve a better performance by reducing the number
of search steps as well as the number of messages in query
processing.

First, for a multi-attribute query involving many attributes,
if we can choose a query that has only a few of the satis-
fied results or results are stored in a small number of nodes,
the query processing just needs a few steps to complete as
well as to filter unwanted results. As a result, we propose
some heuristics that can be applied to select the dominant
subquery as follows. (1) If there is a subquery involving an
attribute that is indexed separately, it is a candidate for se-
lection because searching over a single index is always faster
than searching over a group index. (2) If there is a subquery
that is an exact match query, it is a candidate for selection
because an exact match query always returns fewer results
than a range query. (3) If there are multiple subqueries
involving attributes that are indexed together, instead of
selecting only one dominant subquery, we should take all
these subqueries as dominant subqueries to search since we
can filter the region of the search over multi-dimensional
space.

Second, in some applications, there exist attributes that
are always queried together. In such a case, we should group
them together into a group to index no matter whether they
are frequently queried or rarely queried. As discussed above,
subqueries involving attributes that are indexed together
can be used as dominant subqueries for searching. Thus, we
can always reduce the cost of search in this kind of query.

Third, from the experiments, we realize that the system
can achieve better performance if we make the structure
more flexible. It means that we do not need to define only
two kinds of attributes and divide rarely attributes equally
into groups as discussed above. Depending on the frequency
of attributes in queries, we can group them into groups with
different number of attributes.

Fourth, for some attributes, their values can only fall in a
small range of values while for others, their values can fall in
a large range of values. As a result, if we divide the whole

 0

 20

 40

 60

 80

 100

 120

1098765432

C
os

t

Fanout

α=0.9
α=0.7
α=0.5
α=0.3
α=0.1

 0

 20

 40

 60

 80

 100

 120

1098765432

C
os

t

Fanout

α=0.9
α=0.7
α=0.5
α=0.3
α=0.1

Figure 9: Optimal values of fanout

range of values of BATON* into equal sections, those at-
tributes with small range of values will have a sparse index
whereas those attributes with large range of values will have
a dense index. This leads to the problem of skewed data dis-
tribution. Even though, BATON* can handle skewed data
distribution well, it takes some cost to do load balancing.
To avoid this problem, we propose that values of sections
are divided based on needs. It means that attributes with
bigger range of values have to be granted bigger index space.

Finally, as discussed in the previous section, subqueries,
which are created from converting a query in multi-dimensional
index, are forwarded in parallel. However, we realize that
most of the time these subqueries are forwarded to only one
node or a few nodes since they are all related to nearby range
of values. As a result, instead of sending multiple query mes-
sages to the same node, we can combine these messages into
one message. This technique can significantly reduce the
number of query messages which has to be forwarded.

6. EVALUATION
To evaluate the performance of our proposal, we imple-

mented a simulation system in Java and ran it over Planet-
lab [7], a testbed for large-scale distributed systems. In our
implementation, each peer node is identified both physically
by a pair of IP address and port number and logically by its
position in the tree structure. Each Planetlab node is used
to simulate hundreds of peer nodes. There is a fake server,
which creates events and sends them to peer nodes for pro-
cessing (it exists for experimental purpose only). Commu-
nication between nodes is via sockets.

To evaluate the performance of our system, we tested
the network with different numbers of nodes from 1,000 to
10,000 using different fanout values from 2 to 10. A number
of data equal to the network size multiplies 1000, which are
numbers from 1 to 1,000,000,000, are inserted to the net-
work in batches. For each test, 1,000 exact match queries
and 1,000 range queries are executed, and the average cost
of operations are taken. Searched ranges are created ran-
domly by getting the whole range of values divided by the
total number of nodes multiplies α, where α = 1..10. Note
that in some experiments, where it is not necessary to vary
the network size or the fanout, the default value of network
size is 10,000 nodes while the default value of fanout is 4.

6.1 Single-attribute Query
We can see that with the new BATON* structure the cost

of exact match query and range query is reduced when the
fanout is increased as in Figure 8(a) and 8(b). In particular,
increasing fanout brings greater benefit when the number of

8

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 r

ou
tin

g
ho

ps

Number of nodes (thousand)

fanout=2
fanout=4
fanout=6
fanout=8

fanout=10

(a) Cost of exact match query

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 r

ou
tin

g
ho

ps

Number of nodes (thousand)

fanout=2
fanout=4
fanout=6
fanout=8

fanout=10

(b) Cost of range query

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 m

es
sa

ge
s

Number of nodes (thousand)

fanout=2
fanout=4
fanout=6
fanout=8

fanout=10

(c) Cost of updating routing table

Figure 8: Effect of varying fanout values

Table 1: A comparison between an estimated and
the best experimental fanout

α m1 m2 C(m1) C(m2) Error
0.9 8 7 12.5145 12.3545 0.0128
0.7 5 5 23.6634 23.6634 0.0000
0.5 4 3 34.41 33.9298 0.0136
0.3 3 3 44.1678 44.1678 0.0000
0.1 3 2 54.4058 54.1764 0.0042

nodes in the system is big because the larger the number of
nodes, the more the height of the tree structure is reduced
when fanout is increased. However, a faster search process
always requires a bigger storage to keep index information,
and there is no exception in this case. Besides reducing cost
of search, increasing fanout also leads to increasing rout-
ing table size, and hence increasing cost of updating routing
table as shown in Figure 8(c). As a result, depending on
application, we should select a suitable fanout to tradeoff
between these costs as described in the cost model in Sec-
tion 3.6. Figure 9 shows the experimental results of using
different fanout values for different α or knob values. To-
gether with Table 1, the results show that the cost of our
estimated good fanout values are not much different from
the cost of the real best fanout values returned from the
experiment. In the table, m1 is the estimated good fanout,
m2 is the best experimental fanout, C(m1) is the cost of do-
ing experiment with fanout m1, C(m2) is the cost of doing
experiment with fanout m2, and Error is calculated by the
formula: E = |(C(m1) − C(m2))/C(m1)|.

6.2 Multi-attribute Query

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 m

es
sa

ge
s

Number of nodes (thousand)

Mapping based method
MAAN-like method

Our method

Figure 10: Cost of insertion

To evaluate the performance of multi-attribute query, we
used the same schema as in our previous example. There

are totally 10 attributes in which 4 attributes are frequently
queried while 6 others are rarely queried. For simplicity,
we just assume all attributes values are integers. We com-
pare our BATON* against two other methods. The first is a
straightforward mapping based method, which considers 10
attributes as 10 dimensions and maps the data points into
a single-dimensional space using Hilbert curve so that the
transformed values can be indexed using BATON*. Accord-
ingly, during query processing, the multi-attribute query is
transformed into a set of single-dimensional queries. Such
transformation approach has been adopted in various exist-
ing works such as [21]. The second method is similar to
those used in MAAN [6] and Mercury [5] where the data
is indexed separately for each attribute and an attribute is
randomly chosen among all the attributes appearing in the
query for searching. In more detail, 10 overlays of BATON*
were used, one for each attribute.

The queries used in this experiment is composed of 90
percent of queries involving 4 common attributes and 10
percent of queries involving rarely queried attributes. The
results are shown in Figure 10 and Figure 11(a), 11(b). We
observe that the insertion cost of the mapping based method
is the lowest since the data point is indexed only once. How-
ever, the search cost of the mapping based method is very
high. It is much higher than the other schemes, and is clearly
unacceptable. On the other hand, indexing 10 attributes as
in the MAAN-like method incurs high insertion cost as a
data item is indexed 10 times. Our proposed method strikes
a balance between the query cost and insertion cost, and
the attribute grouping could be tuned based on the query
patterns and loads. In fact, the experiment results show
that our method requires much less cost of insertion than
the MAAN-like method while doesn’t require much higher
search cost.

In the experiment above, 90 percent of queries involve
common attributes. In this experiment, we study the effect
of varying the percentage of queries involving common at-
tributes. Figure 11(c) shows the results as we vary the Per-
centages from 40 percent to 90 percent. The result shows
that the search performance decreases when the attributes,
indexed separately are queried less. In the worst case, if all
attributes are equally queried, the search cost is twice the
cost of the method which indexes all attributes. However,
it is still acceptable, if the main target of the system is to
reduce the cost of data indexing. It is the case where the
system consists of a huge number of attributes, and hence
indexing each attribute separately is impossible due to the
huge cost of data indexing.

9

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 m

es
sa

ge
s

Number of nodes (thousand)

Mapping based method
MAAN-like method

Our method

(a) Cost of exact match query

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 m

es
sa

ge
s

Number of nodes (thousand)

Mapping based method
MAAN-like method

Our method

(b) Cost of range query

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 m

es
sa

ge
s

Number of nodes (thousand)

MAAN-like method
90%
80%
70%
60%
50%
40%

(c) Effect of varying query distri-
bution on range query

Figure 11: Cost of searching multi-attribute queries

6.3 Load Balancing

 0

 500

 1000

 1500

 2000

 2500

108642

N
um

be
r

of
 ti

m
es

Fanout

Local load balancing
Major load balancing

(a) Number of times each load
balancing scheme is invoked

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 m

es
sa

ge
s

Number of insertion (thousand)

fanout=2
fanout=4
fanout=6
fanout=8

fanout=10

(b) Average additional messages
required for doing load balancing

Figure 12: Cost of load balancing

Increasing fanout not only helps to reduce the search cost
but also helps to achieve better load balancing. To verify
this claim, we test the network with a skewed data distri-
bution, which is generated using a Zipfian distribution with
parameter 1.0 and evaluate the cost of load balancing as we
vary fanout. For simplicity, in our system, we assume that
the query distribution follows the data distribution. As a
result, the workload of a node is solely determined by the
amount of data stored at that node. When a node joins the
network it is assigned a default upper and lower load limit
by its parent. If the number of stored data at the node is
greater than the upper bound boundary, it is considered as
an overloaded node and vice versa. If a node is overloaded
and it cannot find a lightly loaded leaf node, it is likely that
all other nodes also have the same work load, so it automat-
ically increases the boundaries of storage capability.

As we discussed above, increasing fanout leads to increas-
ing number of leaf nodes. As a result, nodes can often load
balance by sharing the work load between a heavily loaded
leaf node and a lightly loaded leaf node. When this is not

possible, a more expensive “major” load balancing operation
is required, involving the forced removal and forced reinser-
tion of a lightly loaded node elsewhere in the system. Fig-
ure 12(a) shows the number of times each load balancing
scheme is involved in a 10,000 nodes network with different
fanouts. The results show that when the fanout is increased,
the number of times when the local load balancing is invoked
is significantly decreased while the number of times when the
major load balancing is invoked is not increased much. This
may appear counter-intuitive at first, however it is because
many of the times when the local load balancing scheme is
invoked, it is due to ripple data migration between adjacent
nodes when a heavily loaded leaf node can’t find a lightly
loaded leaf node. With higher fanouts, a heavily loaded leaf
node can find a lightly loaded leaf node easier and hence can
avoid the problem of ripple data migration. This leads to
the result that the higher the fanout is, the fewer the number
of load balancing efforts is needed. The result is confirmed
in Figure 12(b), which shows the costs of load balancing in
different network sizes and different fanouts.

6.4 Fault Tolerance
To evaluate the system’s fault tolerance in case of massive

failure we initialized the system with 10,000 nodes. After
that, we let nodes randomly fail step by step without re-
covering. At each step, we check to see if the network is
partitioned or not. Figure 13(a) shows the average percent-
age of nodes that must fail before the network is partitioned.
The result confirms that our system is highly fault tolerant
since it is only partitioned when approximately one fourth of
nodes fails in case of fanout = 2. Increasing fanout leads to
increasing fault tolerance: more than half the nodes fail be-
fore network with fanout 10 is partitioned. Moreover, most
of time, only a small number of nodes is separated from the
majority as shown in Table 2.

The problem brought by massive failure is massive de-
struction of links connected to failed nodes. Since the search
process has to bypass the failure nodes, and there is no way
to know exactly which path can safely lead to the destination
node without interruption of failure nodes, the search query
has to be forwarded forth and back several times to find a
way to the destination node. Since the greater the number
of failed nodes, the greater the number of links is destroyed,
it is expected that the increasing number of failure nodes
will increase the search cost. Figure 13(b) shows such an ef-
fect. The results also further confirm that the higher fanout
not only improves the fault tolerance, but also reduces the
search cost for the same number of failure nodes. It is be-

10

Table 2: Sizes of the smaller partition in the seg-
mented network in case of massive node failure with
different fanouts (m)

Number of nodes
1→2 2→10 10→20 >20

Number of
occurrences
in all test
cases

m=2 12 8 0 0
m=4 13 6 1 0
m=6 18 2 0 0
m=8 11 9 0 0
m=10 16 3 1 0

cause higher fanout provides higher number of connection
paths among nodes. As a result, it is easier to find a con-
nected path between the search node and the destination
node. Note that in the figure, the “break points” are points
in which the network is segmented. We can notice that the
“break points” of network fanouts ranging from 2 to 10 oc-
cur from left to right, confirming the resilience of trees with
higher fanout.

 0

 20

 40

 60

 80

 100

108642

P
er

ce
nt

ag
e

(%
)

Fanout

(a) Percentage of failed nodes be-
fore network is partitioned

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000

S
ea

rc
h

ho
ps

Number of failure nodes

Break pointsBreak points
fanout=10

fanout=8
fanout=6
fanout=4
fanout=2

(b) Search cost in case of massive
failure

Figure 13: Effect of massive failure

7. RELATED WORK
Extensive work has been done to support search in the

area of distributed data. Most of them are based on scal-
able and distributed data structures (SDDS) such as [16].
However, these structures cannot be used in P2P systems
where there is neither global index nor centralized servers.
Since our paper focuses on search in P2P systems, we only
discuss related work in P2P systems.

7.1 Single-attribute Query
Existing structured P2P systems can be classified into

three categories: distributed hash table based systems, skip
list based systems, and tree based systems.

Distributed hash table based systems use distributed hash
tables to index data. As a result, they can support ex-

act match queries well. Moreover, distributed hash tables
help these systems to distribute the workload among nodes
equally. Some of the better known P2P systems that be-
long to this category are Chord [13], which utilizes a ring
structure, CAN [18], which utilizes a multi-dimensional grid
structure, Tapestry [22] and Pastry [19], which utilize the
Plaxton mesh. Unfortunately, these systems cannot sup-
port range queries since distributed hash tables destroy the
ordering of data. It means that they cannot support com-
mon queries such as “find all research papers published from
1995 to 2000”. To support range queries, variants of the
distributed hash method are proposed. A locality sensitive
hashing, which allows similar ranges to be hashed to the
same peer with high probability is proposed in [9]. However,
this method can only provide approximate answers. Another
approach, which adds the ranges into hash functions, is pro-
posed in [20]. As a result, the system can always find a
superset of the range query. Even though this method can
provide exact answers, exact query search is not efficient. [3]
can also provide exact answers by using locality preserving
hashing. However, the load may not be balanced since the
workload distribution may be skewed if data is skewed.

Skip list based systems such as Skip Graph [4] and Skip
Net [10] are based on skip-list structure. They can support
both exact match queries and range queries by partitioning
data into ranges of values. However, they cannot guarantee
data locality and load balancing in the whole system.

Tree based systems also have their own problems. P-Grid
[1], which utilizes a binary prefix tree structure, cannot guar-
antee the bound of search steps since it cannot control the
height of the tree. The scheme proposed in [15] also suffers
from the same problem. There, an arbitrary multi-way tree
structure is used, in which each node maintains links to its
parent, children, sibling and neighbors. P-Tree [8] utilizes
the B+-tree structure on top of the CHORD overlay net-
work. In P-Tree, peer nodes are organized as a CHORD
ring in which each of them maintains a data leaf node and
a left most path from the root to that node of the B+-tree.
This leads to significant overhead in building and maintain-
ing consistency of the B+-tree. Specifically, a tree structure
has been built for each joining node, and periodically, peer
nodes have to exchange their stored B+-tree structure for
checking consistency. BATON [11], as mentioned, utilizes a
binary balanced tree structure. As a result, it can control
the height of the tree, and hence avoid the problem of P-
Grid. Nevertheless, similar to other P2P systems, BATON’s
search cost is bounded at O(log2N).

7.2 Multi-attribute Query
MAAN [6], which extends Chord [13], supports multi-

attribute queries by mapping each attribute value to a value
in the Chord identifier space via uniform locality preserving
hashing. Queries are processed by using single attribute-
dominated query resolution approach. It means that only
one dominated attribute is used to search while other at-
tributes are carried along the query for filter purpose. As
a result, it takes O(logN + N · sk) routing hops to resolve
the query, where sk is the selectivity of of the query on the
dominated attribute ak.

Unlike MAAN, which uses the same identifier space for
all attributes, Mercury [5] uses separate identifier spaces,
called routing hubs, for separate attributes. Each routing
hub is a collection of nodes connected with each other to

11

form an overlay structure. Similar to MAAN, inserted data
are indexed on all attributes and queries are processed by a
dominated attribute. Consequently, queries are passed to a
hub corresponding to the dominated attribute while inserted
data are replicated to all routing hubs.

DIM [14] supports multi-attribute queries in sensor net-
works by considering them as multi-dimensional range queries.
It employs a locality preserving geographic hash, which looks
like k-d tree, to map multi-dimensional space to two-dimensional
space. In fact, DIM is similar to CAN in many ways. The
problem of DIM is that the routing cost is bounded at O(

√
N),

which is quite expensive. Moreover, DIM is also not efficient
if the query only involves a small number of attributes since
the projected volume from higher dimensions to two dimen-
sions is rather large. It also suffers from load imbalance
when data is skewed.

8. CONCLUSION
In this paper, we proposed a balanced multi-way tree

structure, BATON*, which allows us to reduce the cost
of routing message to O(logmN). Additionally, by increas-
ing the fanout of the tree, we increase the number of links
among nodes, and hence increase the system’s fault toler-
ance. Moreover, increasing the fanout leads to an increase
in the number of leaf nodes, which facilitates better load
balancing. Over this structure, we proposed a method to
support multi-attribute queries efficiently. Our method re-
lies on the construction of multiple independent indices for
groups of one or more attributes. We suggest techniques for
partitioning attributes into such groups. A careful exper-
imental analysis, on the PlanetLab [7] infrastructure, con-
firms efficiency of our proposed system.

We have incorporated BATON* into BestPeer[17] and as a
future work, we shall evaluate BATON* as part of BestPeer
on data sharing applications.

9. REFERENCES
[1] K. Aberer. P-Grid: A self-organizing access structure

for p2p information systems. In Proceedings of the 6th
CoopIS Conference, 2001.

[2] F. S. Action. Numerical Methods that Work.
Harpercollins College Div, 1970.

[3] A. Andrzejak and Z. Xu. Scalable, efficient range
queires for grid information services. In Proceedings of
the 2nd International Conference on Peer-To-Peer
Computing, pages 33–40, 2002.

[4] J. Aspnes and G. Shah. Skip graphs. In Proceedings of
the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 384–393, 2003.

[5] A. R. Bharambe, M. Agrawal, and S. Seshan.
Mercury: supporting scalable multi-attribute range
queries. In Proceedings of the 2004 ACM SIGCOMM
Conference, 2004.

[6] M. Cai, M. Frank, J. Chen, and P. Szekely. Maan: A
multi-attribute addressable network for grid
information services. In Proceedings of the 2003
IPTPS, 2003.

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: An
overlay testbed for broad-coverage services. ACM
SIGCOMM Computer Communication Review, 33(3),
2003.

[8] A. Crainiceanu, P. Linga, J. Gehrke, and
J. Shanmugasundaram. Querying peer-to-peer
networks using P-Trees. In Proceedings of the 7th
WebDB, pages 25–30, 2004.

[9] A. Gupta, D. Agrawal, and A. El Abbadi.
Approximate range selection queries in peer-to-peer
systems. In Proceedings of the 1st Biennial Conference
on Innovative Data Systems Research, 2003.

[10] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer,
and A. Wolman. Skipnet: A scalable overlay network
with practical locality properties. In Proceedings of the
USENIX Symposium on Internet Technologies and
Systems, 2003.

[11] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. Baton: A
balanced tree structure for peer-to-peer networks. In
Proceedings of the 31st VLDB Conference, pages
661–672, 2005.

[12] H. V. Jagadish, B. C. Ooi, Q. H. Vu, R. Zhang, and
A. Zhou. Vbi-tree: A peer-to-peer framework for
supporting multi-dimensional indexing schemes. In
Proceedings of the 22nd ICDE Conference, 2006.

[13] D. Karger, F. Kaashoek, I. Stoica, R. Morris, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings
of the 2001 ACM SIGCOMM Conference, pages
149–160, 2001.

[14] X. Li, Y. J. Kim, R. Govindan, and W. Hong.
Multi-dimensional range queries in sensor networks. In
Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems, 2003.

[15] C. Y. Liau, W. S. Ng, Y. Shu, K.-L. Tan, and
S. Bressan. Efficient range queries and fast lookup
services for scalable p2p networks. In Proceedings of
the 2nd DBISP2P, pages 78–92, 2004.

[16] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* -
A scalable, distributed data structure. ACM
Transactions on Database Systems, 21(4):480–525,
1996.

[17] W. S. Ng, B. C. Ooi, and K.-L. Tan. Bestpeer: A
self-configurable peer-to-peer system. In Proceedings of
the 18th ICDE Conference, 2002.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable contentaddressable network. In
Proceedings of the 2001 ACM SIGCOMM Conference,
pages 161–172, 2001.

[19] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proceedings of the 18th
IFIP/ACM International Conference of Distributed
Systems Platforms, pages 329–350, 2001.

[20] O. D. Sahin, A. Gupta, D. Agrawal, and A. El
Abbadi. A peer-to-peer framework for caching range
queries. In Proceedings of the 20th ICDE, 2004.

[21] C. Schmidt and M. Parashar. Flexible information
discovery in decentralized distributed systems. In
Proceedings of the 2003 HPDC, pages 226–235, 2003.

[22] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report
CSD-01-1141, Univ. California, Berkeley, CA, Apr.
2001.

12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

