
Designing a Super-Peer Network

Beverly Yang Hector Garcia-Molina
fbyang, hectorg@cs.stanford.edu

Computer Science Department, Stanford University

Abstract

A super-peeris a node in a peer-to-peer network that operates both as a server to a set of clients, and as an equal in

a network of super-peers. Super-peer networks strike a balance between the inherent efficiency of centralized search,

and the autonomy, load balancing and robustness to attacks provided by distributed search. Furthermore, they take

advantage of the heterogeneity of capabilities (e.g., bandwidth, processing power) across peers, which recent studies

have shown to be enormous. Hence, new and old P2P systems like KaZaA and Gnutella are adopting super-peers in

their design.

Despite their growing popularity, the behavior of super-peer networks is not well understood. For example, what

are the potential drawbacks of super-peer networks? How can super-peers be made more reliable? How many clients

should a super-peer take on to maximize efficiency? In this paper we examine super-peer networks in detail, gaining

an understanding of their fundamental characteristics and performance tradeoffs. We also present practical guidelines

and a general procedure for the design of an efficient super-peer network.

1 Introduction

Peer-to-peer (P2P) systems have recently become a popular medium through which to share huge amounts of data.

Because P2P systems distribute the main costs of sharing data – disk space for storing files and bandwidth for trans-

ferring them – across the peers in the network, they have been able to scale without the need for powerful, expensive

servers. In addition to the ability to pool together and harness large amounts of resources, the strengths of existing

P2P systems (e.g., [6, 7, 17, 11]) include self-organization, load-balancing, adaptation, and fault tolerance. Because of

these qualities, much research has been focused on understanding the issues surrounding these systems and improving

their performance (e.g., [5, 12, 21]).

There are several types of P2P systems that reflect varying degrees of centralization. Inpure systems such as

Gnutella [7] and Freenet [6], all peers have equal roles and responsibilities in all aspects: query, download, etc. In a

hybrid system such as Napster [17], search is performed over a centralized directory, but download still occurs in a

P2P fashion – hence, peers are equal in download only.Super-peer networkssuch as KaZaA [11] (one of the most

popular file-sharing system today) present a cross between pure and hybrid systems. Asuper-peeris a node that acts

as a centralized server to a subset of clients. Clients submit queries to their super-peer and receive results from it,

1

as in a hybrid system. However, super-peers are also connected to each other as peers in a pure system are, routing

messages over this overlay network, and submitting and answering queries on behalf of their clients and themselves.

Hence, super-peers are equal in terms of search, and all peers (including clients) are equal in terms of download. A

“super-peer network” is simply a P2P network consisting of these super-peers and their clients.

Although P2P systems have many strengths, each type of system also has its own weaknesses. Pure P2P systems

tend to be inefficient; for example, current search in Gnutella consists of flooding the network with query messages.

Much existing research has focused on improving the search protocol, as discussed in Section 2. Another important

source of inefficiency is bottlenecks caused by the very limited capabilities of some peers. For example, the Gnutella

network experienced deteriorated performance – e.g., slower response time, fewer available resources – when the size

of the network surged in August 2000. One study [24] found these problems were caused by peers connected by dial-

up modems becoming saturated by the increased load, dying, and fragmenting the network by their departure. Peers

on modems were dying because all peers in Gnutella are given equal roles and responsibilities, regardless of capability.

However, studies such as [22] have shown considerable heterogeneity (e.g., up to 3 orders of magnitude difference in

bandwidth) among the capabilities of participating peers. The obvious conclusion is that an efficient system should

take advantage of this heterogeneity, assigning greater responsibility to those who are more capable of handling it.

Hybrid systems also have their shortcomings. While centralized search is generally more efficient than distributed

search in terms of aggregate cost, the cost incurred on the single node housing the centralized index is very high.

Unless the index is distributed across several nodes, this single node becomes a performance and scalability bottleneck.

Hybrid systems are also more vulnerable to attack, as there are few highly-visible targets that would bring down the

entire system if they failed.

Because a super-peer network combines elements of both pure and hybrid systems, it has the potential to com-

bine the efficiency of a centralized search with the autonomy, load balancing and robustness to attacks provided by

distributed search. For example, since super-peers act as centralized servers to their clients, they can handle queries

more efficiently than each individual client could. However, since there are relatively many super-peers in a system,

no single super-peer need handle a very large load, nor will one peer become a bottleneck or single point of failure for

the entire system (though it may become a bottleneck for its clients, as described in Section 3).

For the reasons outlined above, super-peer networks clearly have potential; however, their design involves perfor-

mance tradeoffs and questions that are currently not well understood. For example, what is a good ratio of clients to

super-peers? Do super-peers actually make search more efficient (e.g., lower cost, faster response times), or do they

simply make the system more stable? How much more work will super-peers handle compared to clients? Compared

to peers in a pure system? How should super-peers connect to each other – can recommendations be made for the

topology of the super-peer network? Since super-peers introduce a single-point of failure for its clients, are there ways

to make them more reliable?

In this paper, our goal is to develop practical guidelines on how to design super-peer networks, answering questions

2

such as those presented above. In particular, our main contributions are:

� We present several “rules of thumb” summarizing the main tradeoffs in super-peer networks (Section 5.1).

� We formulate a procedure for the global design of a super-peer network, and illustrate how it improves the perfor-

mance of existing systems (Section 5.2).

� We give guidelines for local decision making to achieve a globally efficient network in anautomatic, adaptive

manner (Section 5.3).

� We introduce “k-redundancy”, a new variant of super-peer design, and show that is improves both reliability and

performance of the super-peer network.

By carefully studying super-peer networks and presenting our results here, our goal is to provide a better understanding

of these networks that can lead to improved systems. The design of current file-sharing networks using super-peers is

driven mostly by intuition; through analytical characterization and analysis of super-peer networks, we aim to provide

the science behind the intuition.

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3 gives a formal

description of the search problem, and outlines the different parameters describing a super-peer network. Section 4

describes the framework for analysis used to generate our results, and Section 5 presents these results in the form of

guidelines.

2 Related Work

There are several existing studies on the performance of hybrid and pure P2P systems. Reference [25] compares

the performance of hybrid systems with different replication and server organization schemes. Several measurement

studies over Gnutella, a pure system, include [1] and [22]. These studies conclude that an effective system must

1) prevent “freeloading”, where some nodes take from the community without contributing, and 2) distribute work

to peers according to their capabilities. In regards to the first point, systems such as MojoNation [15] and ongoing

research (e.g., [3, 9]) seek to develop incentives for users to contribute. In regards to the second point, reference [14]

proposes a pure system in which nodes can direct the flow of messages away from themselves, if they are overloaded,

and towards higher-capacity nodes. Super-peer networks also address this point.

Much research has also been focused on improving search efficiency by designing good search protocols; for

example, Chord [23], Pastry [20], CAN [19], and Tapestry [27] in the specific context of supporting point queries,

and [4, 26] in the context of supporting more expressive queries (e.g., keyword query with regular expressions). Each

of these search protocols can be applied to super-peer networks, as the use of super-peers and the choice of routing

protocol are orthogonal issues.

3

3 Problem Description

To describe how a super-peer network functions, we will first give background on pure P2P networks, and then describe

what changes when peers in the pure system are replaced by super-peers and clients.

3.1 Pure peer-to-peer networks

In a P2P system, users submit queries and receive results (such as actual data, or pointers to data) in return. Data

shared in a P2P system can be of any type; in most cases users share files. Queries can also take any appropriate form

given the type of data shared. For example, in a file-sharing system, queries might be unique identifiers, or keywords

with regular expressions. Each node has a collection of files or data to share.

Two nodes that maintain an open connection, oredge, between themselves are calledneighbors. The number of

neighbors a node has is called itsoutdegree. Messages are routed along these open connections only. If a message

needs to travel between two nodes that are not neighbors, it will travel over multiple edges. The length of the path

traveled by a message is known as itshopcount.

When a user submits a query, her node becomes the querysource. In the baseline search technique used by

Gnutella, the source node will send the query to all of its neighbors. Other routing protocols such as those described

in [4, 26] may send the query to a select subset of neighbors, for efficiency. When a node receives a query, it will

process it over its local collection. If any results are found, it will send a single Response message back to the source.

The total result set for a query is the bag union of results from every node that processes the query. The node may also

forward the query to its neighbors. In the baseline Gnutella search, query messages are given atime to live(TTL) that

specifies how many hops the message may take. When a node receives a query, it decrements the TTL, and if the TTL

is greater than 0, it forwards the query to all its neighbors. The number of nodes that process the query is known as

thereachof the query.

In some systems such as Gnutella, the location of the source is not known to the responding node. In this case, the

Response message will be forwarded back along the reverse path of the query message, which ultimately leads back

to the source. In the case where the source location is known, the responder can open a temporary connection to the

source and transfer results directly. While the first method uses more aggregate bandwidth than the second, it will not

bombard the source with connection requests, as will the second method, and it provides additional benefits such as

anonymity for the query source. Hence, in this paper, we assume the first method is used.

3.2 Super-peer networks

A super-peer network operates exactly like a pure P2P network, except that every “node” in the previous description is

actually a super-peer, and each super-peer is connected to a set of clients. Clients are connected to a single super-peer

only. Figure 1a illustrates what the topology of a super-peer network might look like. We call a super-peer and its

4

Figure 1:Illustration of a super-peer network (a) with no redundancy, (b) with 2-redundancy. Black nodes represent super-peers,
white nodes represent clients. Clusters are marked by the dashed lines.

clients acluster, wherecluster sizeis the number of nodes in the cluster, including the super-peer itself. A pure P2P

network is actually a “degenerate” super-peer network where cluster size is 1 – every node is a super-peer with no

clients.

When a super-peer receives a query from a neighbor, it will process the query on its clients’ behalf, rather than

forwarding the query to its clients. In order to process the query for its clients, a super-peer keeps an index over its

clients’ data. This index must hold sufficient information to answer all queries. For example, if the shared data are

files and queries are keyword searches over the file title, then the super-peer may keep inverted lists over the titles

of files owned by its clients. If the super-peer finds any results, it will return one Response message. This Response

message contains the results, and the address of each client whose collection produced a result.

In order for the super-peer to maintain this index, when a client joins the system, it will send metadata over its

collection to its super-peer, and the super-peer will add this metadata to its index. When a client leaves, its super-peer

will remove its metadata from the index. If a client ever updates its data (e.g., insertion, deletion or modification of

an item), it will send this update to the super-peer as well. Hence, super-peer networks introduce two basic actions in

addition to query:joins (with an associatedleave), andupdates.

When a client wishes to submit a query to the network, it will send the query to its super-peer only. The super-peer

will then submit the query to its neighbors as if it were its own query, and forward any Response messages it receives

back to the client. Outside of the cluster, a client’s query is indistinguishable from a super-peer’s query.

Since clients are shielded from all query processing and traffic, weak peers can be made into clients, while the

core of the system can run efficiently on a network of powerful super-peers. Hence, as mentioned earlier, super-

peer networks use the heterogeneity of peers to their advantage. Also, as we will see in Section 5, the overhead of

maintaining an index at the super-peer is small in comparison to the savings in query cost this centralized index allows.

Super-peer redundancy. Although clusters are efficient, a super-peer becomes a single point of failure for its cluster,

and a potential bottleneck. When the super-peer fails or simply leaves, all its clients become temporarily disconnected

until they can find a new super-peer to connect to.

5

To provide reliability to the cluster and decrease the load on the super-peer, we introduce redundancy into the

design of the super-peer. We say that a super-peer isk-redundantif there arek nodes sharing the super-peer load,

forming a single “virtual” super-peer. Every node in the virtual super-peer is apartnerwith equal responsibilities: each

partner is connected to every client and has a full index of the clients’ data, as well as the data of other partners. Clients

send queries to each partner in a round-robin fashion1; similarly, incoming queries from neighbors are distributed

across partners equally. Hence, the incoming query rate on each partner is a factor ofk less than on a single super-peer

with no redundancy, though the cost of processing each query is higher due to the larger index.

A k-redundant super-peer has much greater availability and reliability than a single super-peer. Since all partners

can respond to queries, if one partner fails, the others may continue to service clients and neighbors until a new partner

can be found. The probability that all partners will fail before any failed partner can be replaced is much lower than

the probability of a single super-peer failing.

However, super-peer redundancy comes at a cost. In order for each partner to have a full index with which to

answer queries, a client must send metadata to each of these partners when it joins. Hence, the aggregate cost of

a client join action isk times greater than before. Also, neighbors must be connected to each one of the partners,

so that any partner may receive messages from any neighbor. Assuming that every super-peer in the network isk-

redundant, the number of open connections amongst super-peers increases by a factor ofk2. Because the number

of open connections increases so quickly ask increases, in this paper we will only consider the case wherek = 2.

Henceforth, we will use the term “super-peer redundancy” to refer to the 2-redundant case only. Figure 1b illustrates

a super-peer network topology with redundancy.

At first glance, super-peer redundancy seems to trade off reliability for cost. Cost-wise (disregarding the loss in

reliability), a more effective policy might be to simply make each partner into a super-peer with half the clients –

that is, have twice the number of clusters at the half the original size and no redundancy. In this way, the individual

query load on each super-peer will be halved as with 2-redundancy, and the index will be half the size. However,

in Section 5.1, we will see how super-peer redundancy actually has the surprising effect ofreducingload on each

super-peer, in addition to providing greater reliability.

Topology of the super-peer network. Gnutella is the only open P2P system for which topology information is

known. In Gnutella, the overlay network formed by the peers follows a power-law, meaning the frequencyfd of an

outdegreed is proportional tod�, where� is some constant. The power-law naturally occurs because altruistic and

powerful peers voluntarily accept a greater number of neighbors. (We will see in Section 5.1 how a greater outdegree

results in greater load).

From crawls of the Gnutella network performed in June 2001, we found the average outdegree of the network to

be 3.1. In a super-peer network, however, we believe the average outdegree will be much higher, since super-peers

have greater load capacity than an average peer. Because it is difficult to predict the average outdegree of a super-peer
1Other load-balancing techniques can be used; we choose round-robin for minimum overhead.

6

Name Default Description
Graph Type Power The type of network, which may be strongly connected or power-law
Graph Size 10000 The number of peers in the network
Cluster Size 10 The number of nodes per cluster
Redundancy No A boolean value specifying whether or not super-peer redundancy is used
Avg. Outdegree 3.1 The average outdegree of a super-peer
TTL 7 The time-to-live of a query message
Query Rate 9:26 � 10�3 The expected number of queries per user per second
Update Rate 1:85 � 10�2 The expected number of updates per user per second

Table 1:Configuration parameters, and default values

network, we will assume that every super-peer will be given a “suggested” outdegree from some global source (e.g.,

as part of the protocol). We assume the actual outdegrees will vary according to a power-law with this “suggested”

outdegree as the average, since some super-peers will be more able and willing to accept a large outdegree than others.

4 Evaluation Model

We will compare the performance of super-peer networks in a file-sharing application based on two types of metrics:

load, andquality of results.

Load is defined as the amount of work an entity must do per unit of time. Load is measured along three resource

types: incoming bandwidth, outgoing bandwidth, andprocessing power. Bandwidth is measured in bits per second

(bps), processing power in cycles per second (Hz). Because load varies over time, we will be using mean-value anal-

ysis, described in further detail in the next section. We treat incoming and outgoing bandwidth as separate resources

because their availability is often asymmetric: many types of connections (e.g., cable modem) allow greater down-

stream bandwidth than upstream. As a result, upstream bandwidth may become a bottleneck even if downstream

bandwidth is abundant.

Some systems are efficient overall, while other systems may be less efficient, but put a lower load on individual

super-peers. Hence, we will look at bothindividual load, the load of a single node, as well asaggregateload, the sum

of the loads of all nodes in the system.

We measure quality of results by thenumber of resultsreturned per query. Other metrics for quality of results often

includes relevance of results and response time. While our performance model does not capture absolute response

time, relative response times can be deduced through our results, seen in Section 5.1. Because relevance of results is

subjective and application specific, we do not use this metric.

4.1 Performance Evaluation

We will be comparing the performance of differentconfigurationsof systems, where a configuration is defined by a

set of parameters, listed in Table 1. Configuration parameters describe both the topology of the network, as well as

user behavior. We will describe these parameters in further detail as they appear later in the section.

7

Action Bandwidth Cost Processing Cost
(Bytes) (Units)

Send Query 82 + query length :44 + :003 � query
length

Recv. Query 82 + query length :57 + :004 � query
length

Process Query 0 14 + 1:1 � # results
Send Response 80 + 28 � # addr :21 + :31 � # addr

+76 � #results +:2 � #results
Recv Response 80 + 28 � # addr :26 + :41 � # addr

+76 � #results +:3 � #results
Send Join 80 + 72 � # files :44 + :2 � # files
Recv. Join 80 + 72 � # files :56 + :3 � # files
Process Join 0 14 + 10:5 � # files
Send Update 152 .6
Recv. Update 152 .8
Process Update 0 30
Packet Multiplex 0 :01� # open connections

Figure 2:Costs of atomic actions

Description Value
Expected length of query string 12 B
Average size of result record 76 B
Average size of metadata for a single file 72 B
Average number of queries per user per second9:26 � 10�3

Figure 3:General Statistics

There are 4 steps in the analysis of a configuration:

Step 1: Generating an instance. The configuration parameters listed in Table 1 describe the desired topology

of the network. First, we calculate the number of clusters asn = GraphSize
ClusterSize. We then generate a topology ofn

nodes based on thetypeof graph specified. We consider two types of networks:strongly connected, andpower-

law. We study strongly connected networks as a best-case scenario for the number of results (reach covers every

node, so all possible results will be returned), and for bandwidth efficiency (no Response messages will be forwarded,

so bandwidth is conserved). We study power-law networks because they reflect the real topology of the Gnutella

network. Strongly connected networks are straightforward to generate. Power-law networks are generated according

to thePLODalgorithm presented in [18].

Each node in the generated graph corresponds to a single cluster. We transform each node into a single super-

peer or “virtual” super-peer if there is redundancy. We then addC clients to each super-peer, whereC follows the

normal distributionN(�c; :2�c), and where�c is the mean cluster size defined as�c = ClusterSize� 1 if there is no

redundancy and�c = ClusterSize� 2 if there is. To each peer in the network, both super-peers and clients, we assign

a number of files and a lifespan according to the distribution of files and lifespans measured by [22] over Gnutella.

Note that the actual distribution of cluster size depends on how clients discover super-peers. The “bootstrapping”

problem of how a joining node discovers currently connected nodes is an open problem in pure and super-peer net-

works, with many potential solutions. For example, in Gnutella, many peers use “pong servers”2 that keep a list of

currently connected nodes in the network, and give the joining peer the IP address of a randomly chosen connected

node. Such a service might instead provide the peer with the IP address of a randomly chosen super-peer, in a super-

peer network. Regardless of the exact method used, which is orthogonal to this study, we expect any well-constructed

discovery method to be fair, or at least random. Hence, we use the normal distribution to describe the distribution of

cluster sizes.
2Two popular pong servers are gnutellahosts.com, originally run by Clip2 [24], or router.limewire.com, run by LimeWire [13]

8

Step 2: Calculating expected cost of actions.There are three “macro” actions in our cost model: query, join and

update. Each of these actions is composed of smaller “atomic” actions for which costs are given in Table 2. There

are two types of cost measured: bandwidth, and processing power. In terms of bandwidth, the cost of an action is the

number of bytes being transferred. We define the size of a message by the Gnutella protocol where applicable. For

example, query messages in Gnutella include a 22-byte Gnutella header, a 2 byte field for flags, and a null-terminated

query string. Total size of a query message, including Ethernet and TCP/IP headers, is therefore 82 + query string

length. Some values, such as the size of a metadata record, are not specified by the protocol, but are a function of the

type of data being shared. These values, listed in Table 3, were gathered through observation of the Gnutella network

over a 1-month period, described in [26].

The processing costs of actions are given in coarse units, and were determined by measurements taken on a

Pentium III 930 MHz processor running Linux kernel version 2.2. Processing costs will vary between machines

and implementations, so the values seen in Table 2 are meant to be representative, rather than exact. A unit is defined

to be the cost of sending and receiving a Gnutella message with no payload, which was measured to be roughly 7200

cycles on the measurement machine. When displaying figures in Section 5, we will convert these coarse units to cycles

using this conversion ratio.

The packet multiplex cost is a per-message cost reflecting the growing operating system overhead of handling

incoming and outgoing packets as the number of open connections increases. Please see Appendix A for a discussion

of this cost and its derivation.

As an example of how to calculate the cost of a “macro” action, consider the cost of a client joining the system.

From the client perspective, the action consists of the startup cost of sending a Join message, and for each file in its

collection, the cost of sending the metadata for that file to the super-peer. Suppose the client hasx files andm open

connections. Outgoing bandwidth for the client is therefore80 + 72 � x, incoming bandwidth is 0, and processing

cost is:44 + :2 � x + :01 � m. From the perspective of the super-peer, the client join action consists of the startup

cost of receiving and processing the Join message, and then for each file owned by the client, the cost of receiving the

metadata and adding the metadata to its index. In this example, we see how an action can involve multiple nodes, and

how cost is dependent on the instance of the system (e.g., how many files the client owns).

Updates and leaves, like joins, are a straightforward interaction between a client and super-peer, or just the super-

peer itself. Queries, however, are much more complicated since they involve a large number of nodes, and depend

heavily on the topology of the network instance. Here, we describe how we count the actions taken for a query. For our

evaluations, we assume the use of the simple baseline search used in Gnutella (described in Section 3). However, other

protocols such as those described in [26] may also be used on a super-peer network, resulting in overall performance

gain, but similar tradeoffs between configurations.

We use a breadth-first traversal over the network to determine which nodes receive the query, where the source of

the traversal is the query sourceS, and the depth is equal to the TTL of the query message. Any response message

9

will then travel along the reverse path of the query, meaning it will travel up the predecessor graph of the breadth-first

traversal until it reaches the sourceS. Every node along this path must sustain the cost of forwarding this message.

Note that messages in a real network may not always propagate in an exact breadth-first fashion, as latencies will vary

across connections. However, since we are focusing on cost rather than response time, and since query messages are

very small (average 94 bytes), breadth-first traversal remains a reasonable approximation of query propagation for our

purposes.

To determine how many results a super-peerT returns, we use the query model developed in [25]. Though this

query model was developed for hybrid file-sharing systems, it is still applicable to the super-peer file-sharing systems

we are studying. Given the number of files in the super-peer’s index, which is dependent on the particular instance

I generated in step 1, we can use this model to determineE[NT jI], the expected number of results returned, and

E[KT jI], the expected number ofT ’s clients whose collections produced results. Note that since the cost of the query

is a linear function of (NT jI) and (KT jI), and load is a linear function of the cost of queries, we can use these expected

values to calculate expected load. Please see Appendix B for how we calculateE[NT jI] andE[KT jI] using the query

model.

Step 3: Calculating load from actions. In step 2 we calculate expected values forCqST , CjST , andCuST , the cost

of a query, join and update, respectively, when the action is initiated by nodeS and incurred on nodeT , for every pair

of nodesS andT in the network instance.S andT may be super-peers or clients.

For each type of action, we need to know the rate at which the action occurs. Default values for these rates are

provided in Table 1. Query rate is taken from the general statistics listed in Table 3. Join rate is determined on a per-

node basis. On average, if the size of the network is stable, when a node leaves the network, another node is joining

elsewhere. Hence, the rate at which nodes join the system is the inverse of the length of time they remain logged in.

Update rate is obtained indirectly, since it is impossible to observe through experiments how frequently users updated

their collections. We first assume that most online updates occur as a result of a user downloading a file. We then use

the rate of downloads observed in [25] for the OpenNap system as our update rate. Because the cost of updates is low

relative to the cost of queries and joins, the overall performance of the system is not sensitive to the value of the update

rate.

Given the cost and rate of each type of action, we can now calculate the expected load on an individual nodeT ,

for a network instanceI :

E[MT jI] =
X

S2network

E[CqST jI] �E[FqS] +E[CjST jI] � E[FjS jI] +E[CuST jI] � E[FuS] (1)

FqS is defined as the number of queries submitted byS in a second, soE[FqS] is simply the query rate per user listed

in Table 1, for allS. FjS jI andFuS are similarly defined.

We can also calculate the expected number of results per query originated by nodeS:

E[RS jI] =
X

T2network

E[NT jI] (2)

10

Often we will want to calculate the expected load or results per query on nodes that belong to some setQ defined

by a condition: for example,Q may be the set of all nodes that are super-peers, or the set of all super-peers with 2

neighbors. The expected loadMQ of all such nodes is defined as:

E[MQjI] =

P
n2QE[MnjI]

jQj
(3)

Finally, aggregate load is defined as:

E[M jI] =
X

n2network

E[MnjI] (4)

Step 4: Repeated Trials. We run analysis over several instances of a configuration and averageE[M jI] over these

trials to calculateE[E[M jI]] = E[M], the value by which we compare different configurations. We also calculate

95% confidence intervals forE[M jI].

5 Results

In this section we present the results of our evaluations on a wide range of configurations. Because there are many

different scenarios and factors to consider, we do not attempt to report on all the results here. Instead, from all our

results we distill a few important “rules of thumb” to follow while designing a P2P topology, and present these rules to

the reader, supported with examples from our experiments. We then formulate a general procedure that incorporates

the rules and produces an efficient topology. Finally, we discuss how an individual node without a global view of the

system might make local decisions to form a globally efficient network.

Recall that all results in the following section are expected values. All figures show the expected value of costs,

along with vertical bars to denote 95% confidence intervals forE[valuejinstance] where appropriate. All figures use

the default parameters listed in Table 1, unless otherwise specified. Please refer to Appendix C for additional results.

5.1 Rules of Thumb

The four rules of thumb we gathered from our experiments are as follows:

1. Increasing cluster size decreases aggregate load, but increases individual load.

2. Super-peer redundancy is good.

3. Maximize outdegree of super-peers.

4. Minimize TTL.

Let us now examine the causes, implications and details of each.

#1 Increasing cluster size decreases aggregate load, but increases individual load.In terms of cluster size,

there is a clear tradeoff between aggregate and individual load. Figure 4 shows the aggregate bandwidth required by

11

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12
x 10

8

Cluster Size

B
an

dw
id

th
 (

In
 +

 O
ut

)
(b

ps
)

Strong
Strong, Redundancy
Power, Avg Outdeg=3.1
Power, Avg Outdeg=3.1, Redundancy

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3
x 10

7

Cluster Size

In
co

m
in

g
B

an
dw

id
th

 (
bp

s)
Strong
Strong, Redundancy
Power, Avg Outdeg=3.1
Power, Avg Outdeg=3.1, Redundancy

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8
x 10

7

Cluster Size

P
ro

ce
ss

in
g

Lo
ad

 (
H

z)
Strong
Strong, Redundancy
Power, Avg Outdeg=3.1
Power, Avg Outdeg=3.1, Redundancy

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14
x 10

6

Num Neighbors

O
ut

go
in

g
B

an
dw

id
th

 (
bp

s)
Avg Outdeg=3.1
Avg Outdeg=10.0

0 5 10 15 20 25 30 35
400

500

600

700

800

900

1000

Num Neighbors

N
um

be
r

of
 R

es
ul

ts

Avg Outdeg=3.1
Avg Outdeg=10.0

0 20 40 60 80 100
1

2

3

4

5

6

Average outdegree

E
xp

ec
te

d
P

at
h

Le
ng

th
reach=20
reach=50
reach=100
reach=200
reach=500
reach=1000

0 0.5 1 1.5 2

x 10
4

10
0

10
2

10
4

10
6

10
8

Rank (in decreasing required load)

O
ut

go
in

g
B

an
dw

id
th

 (
bp

s)

Today

New (no redundancy)

New (redundancy)

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12
x 10

7

Cluster Size

B
an

dw
id

th
 (

In
 +

 O
ut

)
(b

ps
)

Strong
Strong, Redundancy
Power, Avg Outdeg=3.1
Power, Avg Outdeg=3.1, Redundancy

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6
x 10

6

Cluster Size

In
co

m
in

g
B

an
dw

id
th

 (
bp

s)
Strong
Strong, Redundancy
Power, Avg Outdeg=3.1
Power, Avg Outdeg=3.1, Redundancy

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9
x 10

6

Cluster Size

O
ut

go
in

g
B

an
dw

id
th

 (
bp

s)
Avg Outdeg=50.0
Avg Outdeg=100.0

