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Abstract

In this work we propose and develop a comprehensive infrasitre, coined PastryStrings, for supporting rich quees
both numerical (with range, and comparison predicates) ammihg attributes, (accommodating equality, prefix, syind
containment predicates) over DHT networks utilising préfssed routing. As event-based, publish/subscribe irdtion

systems are a champion application class, we formulate @lutisn in terms of this environment.

1 Introduction

Peer-to-peer (p2p) data networks are appropriate for imgjlthrge-scale distributed systems and applicationesiney
are completely decentralised, scalable, and self organigill participating nodes have equal opportunities ardmoviding
services where information is exchanged directly betwaemt There are two families of p2p networlssructured where
the data placement and the network topology are tightlyrotlatl, and theunstructurecbnes. The most prominestructured
p2p networks are built using a Distributed Hash Table (DH,TLE-21, 30]). A special class of DHTs employ prefix-based
routing based on Plaxton’s et al. Mesh [16] (Tapestry [3@ktB/ [20], Bamboo [19]). DHT architectures provide scédab
resource look-up and routing with(log(N')) complexity in aN-node network.

A large body of research is currently targeting the extemsiod employment of p2p data network architectures oveeeith
unstructurecor DHT-basedp2p networks ([6, 10-12, 14,17, 29]). Related work has gtedisolutions for a large number of
problems, from architectures and algorithms for searchégvant data, to range query processing and data integratnd
has started to examine how to support join and aggregatéegudihis fact testifies to the importance the distributesteays
community at large is giving to being able to support data+isive applications over large-scale network infragtres.

Supporting drich’ set of queries (queries involving prefix, suffix, containmemd equality predicates on strings, and
range and comparison predicates on numerical-typed @iislp in p2p data networks may be very useful to a number of

applications. A representative class of such distribugalieations is systems built using the publish/subscriigo(sub)



paradigm. With our work in this paper we contribute a compredive infrastructure, coinedastryStrings supporting
efficiently and scalably a rich set of operators on string andherical-typed attributes. Given the popularity of thédfsub

paradigm, we focus on it and formulate our solution in territhis environment.

2 Background and contributions
2.1 Plaxton’s mesh and Pastry

Pastry [20], as well as Tapestry [30] and Bamboo [19], aréadled on location and routing mechanisms introduced in
[16].

Plaxton et. al. present in [16] a distributed data strucfark.a. Plaxton Mesh) optimised for routing and locatingeots
in a very large network with constant size routing tablessuxsing a static network, routing tables consist of multiplels,
where in each level there are pointers to nodes whose identifiers (or node ids) tiee same-digit long suffix with the
current node’s id. The routing of messages is achieved pjvieg) one digit of the destination id in each steand looking
at thei + 1 level of the local routing table for the next node. This methean ensures that a node will be reached in at most
m = logg(N) logical hops, whereV is the namespace sizg,is the base of ids, ane the number of digits in an id. The
size of the routing table is constant and equal te logs (V).

Pastry [20] offers a robust, scalable, and self-organisittgnsion to Plaxton’s Mesh under a dynamic environmeng. Th
routing scheme in Pastry, is similar to the one proposed bxtBh et. al. with routing tables of siz& x logg(N) (with
logs(N) levels/rows and? columns per level), resulting ifvgs (V) logical hops to locate a node. However, prefix (instead
of suffix) matching is performed in each routing step towatdsdestination node, while routing table entries pointi® t
closest node with the appropriate id prefix in terms of a progi metric (such as round-trip time, RTT). Moreover, in erd
to achieve reliable routing, there is the notion déaf setfor each node consisting @f pointers to nodes with id numerically
close to the current node’s id. In Pastry there is also thenatf neighbouring nodes, which is a setidf pointers to nearby
nodes according to a proximity metric and used for maintejhocality properties. Tapestry [30] and Bamboo [19] areTR3H

with similar routing functionality.
2.2 The publish/subscribe paradigm

In the pub/sub paradigm, subscribing users are interestpdrticular events, comprising a small subset of the sell of a
events that publishing users may generate. Pub/sub syf8¢are separated in two major categories, according to e w
subscribers express their interests; tibigic-basedand thecontent-basegub/sub system<Content-basegub/sub systems
are preferable as they give users the ability to express ihigrest by issuing continuous queries, termed subsaript
specifying predicates over thaluesof a number of well defined attributes. The matching of pudilans (a.k.a. events) to
subscriptions (a.k.a. interests) is done based on the mofviEues of attributes).

The main challenge in a distributed pub/sub environmemigsievelopment of an efficient distributed matching algonit



and related efficient algorithms to store subscriptionshim network. Distributed solutions have been provided fpicto
based pub/sub systems [5]. More recently, some attemptsstribdted content-based pub/sub systems use routing tree
to disseminate the events to interested users based orcastiltechniques [3,4,7,12,22,23,25]. Typically, process
subscriptions and/or events in these approaches reqlif®y messages iN-node networks. Additionally, there exist
techniques for subscription summarization that signifilyareduce the complexity [25, 26].

Some other attempts use the notion of rendezvous nodes whatire that events and subscriptions meet in the system
[15]. Some approaches have also considered the couplingiofbased and content-based systems [31] where evdrgsfsu
ptions are automatically classified in topics. However,aofhthese works supports string attributes with prefix, suéind
containment predicates.

Finally, some techniques found in the literature for stiimgexing may also be relevant to our goals. The most promisin
is the technique relying on n-grams [11] which can be apgledubstring matching. However, deciding on the right ealu
of n of n— grams is difficult. Thus, typically, several values afare used, which has a multiplicative effect on the overheads
associated with, — grams. A relevant toPastryStringswork is presented in [27] where pub/sub functionality issoéfd on
top of the Chord DHT using an attribute-value model, caldP S In [13] a balanced tree structure on top of a p2p network
is presented, which can handle equality and range queries.

Prior research aiming to address relevant issues of priongg'sieh’ queries as typified by those in a pub/sub environie
and which is closest to this work includes our previous workupport numerical-attributes in a DHT-based pub/subrenvi
ment [24]. In this work we showed how to exploit DHTs and orgdezserving hashing to process range subscriptions (with
rangeR of size|R|), with worst-case message complexity|R| + log(NN)) and events irO(log(N)), in an N-node net-
work. Our more recent work in [2] presented an approach aldapport string-attribute predicates with message caxitgle
O(l x log(N)) (wherel is the average length of string values) for events @ttbg(N)) for subscriptions. Both of these
works were DHT-independent, relying on the underlying D$ilGokup functionality for routing events and subscripgon
In the same spirit, the work in [17] proposed a distributed structure calledPrefix Hash TregPHT) which is built on
top of a DHT p2p network and can support range queries andksing queries. PHT, like [2] and [24] enjoy universal
applicability (as they are based solely on the DHT's lookuipction). However, it too suffers from a number of drawbacks
regarding its performance and particularly the messageptmiity of processing range and string queries. Adapting R
the pub/sub paradigm we would observe that range query¢gphien) processing would requi@(log(N) +|R| x log(N))
messages. This is similar to the performance of [24], onlyalise of the use of order-preserving hashing the latter work
hasO(|R| + log(IN)) complexity (since peer nodes storing neighbouring valuesatwork neighbours due to the order-
preserving data placement). With respect to processingteveatching prefix-string subscriptions (in general) PHiuld
exhibit a message complexity 6f(I x log(NN)), similar to [2], since one DHT lookup is needed per charaaténe string.

The reader should note that the valug Bf can be large and thais typically in the order ofog (V).



2.3 Contribution

What is very much lacking in the literature is a single unifiedmprehensive DHT-based, pub/sub architecture that can
support with the same structures both string and numeaitteibute events and subscriptions effectively. This iempthat it is

highly desirable to offer logarithmic event and subscdptprocessing performance for both string and numericabates.

3 PastryStrings architecture and rationale

The two primary design choices that best descRastryStringsare (i) a tuned Pastry (or any other Plaxton-like DHT)
network with an alphabet bals@ appropriately defined so as to map string values (every plesspoken word) to nodes
and (ii) a tree structure (known a&tring tree$ on top of Pastry dedicated for storing subscriptions antthiag events to
subscriptions using prefix-based routing a la Pastry.

Each tree in thestring treeforest is dedicated to one of the characters of our alphabet. For string queries starting
with a specific character we will first locate the approprimée dedicated to that character and follow a path towares th
“rendezvous node” inside that tree where events and sydtiears will meet. Each node insdring treeuses the Pastry nodes’
local routing tables as a hint for the tree construction.

The architecture oPastryStringsconsists of clients that are producers/consumers, issuBegts/subscriptions, respec-
tively. Each client is “attached” to a Pastry network nodmgsny appropriate mechanism. Each Pastry node hosts one or
morestring treenodes responsible for holding and processing events arstgptions.

Consumers publish their interests with subscriptions #éin@tstored in specifistring treenodes, the “rendezvous nodes”.
Producers generate events that are delivered only to steteeonsumers by collecting and ‘activating’ the alreadyesl
subscriptions in the “rendezvous nodes”. For simplicitypoésentation, we will concentrate in this section on a singl

attribute event/subscription schema.
3.1 String trees

There are two types of nodeshastryStringsNetwork (Pastry) nodes (referred to as simply “nodes”) stnidg treenodes
(referred to ag nodes). A node in general hosts sevefidhodes. Nodes have ids (assigned by Pastry) whileodes have
labels for identifying them. Al'node’s label is in general a prefix-string that is meant to idgnéifspecificl'node that is
responsible for storing subscriptions matching the stiég!. In this case, th€node with label ‘Ibl’ is denoted ag nodey,; .
Eachstring treeis denoted byl; wherei € S = {a | a is one of the 3 characters of the alphabet} is the character
for which T; is responsible for. This means that every label inThetree starts with the same characieEachT; has a
maximum depth (root’s depth is zero) equal to the maximuowadble string-length.

A first attempt regarding thstring treeconstruction is to take advantage of the routing table ohewe in the Pastry

1The digit base is equal #4 as a result of the x 26 = 52 characters of the English alphabet (uppercase and lowe},d¢ag10 numerical characters
and two special symbols: space and period.



network (e.g. with id digit bas@ = 64)? and use those routing tables for (prefix-based) routing tiexigs to rendezvous
Tnodes. However, this turns out not to be a good idea due to the caajins introduced by the maintenance functionality
in the presence of churn. Consider, for example, the caseendndastry nodel changes the entry in its routing table
which was pointing taB, to point now toC' because of3’s departure. Then, the entire subtree rootedavould become
unreachable. In this case, either this subtree should bedntovhang fronC, (which implies that everf'node in the
subtree would have to be replaced and be hosted by a Paseyemchable frond’) or C’s routing table should be updated,
which implies that we would interfere with the way the Pastegwork is constructed.

Thus, a better idea is to maintain an additional routingedbt eachl'node of ourT; trees of constant length equal to
6 with entries pointing to th@node’s children. The construction of this routing table fofaode is done based on the
routing table of the Pastry node hosting thieode. The routing table at each Pastry node hagids logs (N ), entries. Each
Tnode uses as a hint one of tliegs(IV) levels in the routing table of the Pastry node, whereffhede is hosted, in order
to build its own routing table. More precisely, ifBnode lays in depthd then it is going to use thél + 1) mod logs(N)
level of the host’s routing table. Since the alphabet fortf®asode ids andi'node’s labels is the same, the aim is to do
prefix-based routing oveFnode’s labels utilising the Pastry infrastructure for doing fixebased routing over node ids, so
as (i) to leverage the Pastry self-organisation logic ai@¢hieve short RTT where possible.

String treesare created dynamically as new requests for storing syigams with string-valued predicates, arrive. Since
there are mantring treeswe locate the root of a specifi; by hashing the first character of the given string with a
uniformly-distributed hash function like SHA-1. Then, thede with that id will host (or already hosts) the rootiof. The

following example illustrates howstring treesare created.

Example 1 Simple subscription storing. In Figure 1 a simplified snapshot of the PastryStrings infiacture is presented.
In this example, we use 3-character long ids with alphabdtasies = 2. Suppose now that a user expresses her interests
with two subscriptions (with identifielSubl D, and Subl D- ) on the same attribute, setting the attribute’s value to001
and ‘00’ respectively.

In general, the string tree forest consists of two trees: Theand 77 . Both subscriptions in this example concéin.
To process the storage request for value ‘010’ we shouldlficsite the Pastry node responsible for hosting the root ef th
T, tree (say node with id ‘000) by hashing the character ‘0’ anddting the Pastry node with id equal (or close) to the
hashing result. We construct there the rdbodey and since its routing table is empty we use the host’s routibde at
level 1 as a hint (recall that the root lays in depth= 0 and thus we look at levéll + 1) mod 3 = 1). The routing table of
the host off'nodey atlevel 1 has two entries (since we have a binary alphabeijiwdre copied tdl'nodey’s routing table.
The first one is pointing to node ‘001’ which will hdBhodeqy, while the second entry points to ‘011’ which is going to host
Tnodeg;. Now that we have fille@nodey’s routing table we further process the request by checkiregsecond character
of the string, ‘1’. We look at the root’s routing table, at cohn ‘1, and select the record that matches the next digitgsey

the request to the node ‘011’. Since initially node ‘011’ dowt host any'node, we construct ther&nodeg; and fill its

2|f, for instance = 64 andstr Length, the maximum string length, 20, then the namespace sizesig?® =~ 2120 If 3 = 64 andstrLength = 30
then the namespace sizesis’® =~ 2180, Please note, that typical DHTSs are reported to have a naoesjize in the range aft28... 2164,



( Create a String Tree for character ‘0'and store subscription id with values 010 and 00 ) C Match stored subscriptions to the incoming event with value 010 )

Event value 010
locate the root
hash("0”) = 000

For 010 and 00:
locate the root
hash("0") = 000,

Check 2nd character: 1
locate Tnodeo1 and
forward the event

For 00:
Ask Tnodeo for
pointer in column ‘0)

Create Tnodeo
Take L1 from Pastry
node as routing table,

L14001 | 011_D
/12| - [001

Check 3rd character: 0
locate Tnodeotoand
forward the event

For010:
Create Tnodeo1

Take L2 from Pastry
node as routing table

001 | 100
000 | 011
100 -

For 00:
Create Tnodeoo
and store SublD2

O Node belonging to a String Tree

Pastry node connectivity
"\ String Tree node connectivity

Create Tnodeo10

‘ O Broker in the Pastry Network ’
and store SubID1

Figure 1. String tree construction over a Pas- Figure 2. Simple matching. An event arrives
try network with 3 = 2 and 3-characters long with value equal to ‘010’. Two subscriptions
ids. The tree is constructed on demand as with values ‘00’ and ‘010’ are already stored
there is a store request for values ‘010’ and in PastryStrings.

‘00'.

routing table with the level 2 of its host’s routing table.efhwe process the storage request, by examining the finahctear
of the string, ‘0’. We again asknodeg; for its pointer in column ‘0’ of its routing table and we forvehthe request to node
‘100'. We construct ther@'nodegy and storeSubl Dy . The second storage request is handled similarly, as yolsearin

Figure 1. O

3.2 Event and subscription rendezvous

When an event arrives defining a value in our simple singigbate event/subscription schema, we locate the root®f th
appropriate/; and forward the event towards tiigiode that has the same label as the string value in the event, bivieg
one character at a time. All subscriptions found there, aresiclered to match the event since they have declared the sam

value as the event.

Example 2 Simple event-subscription rendezvous. Figure 2 shows a snapshot of PastryStrings with two subsorip
already stored from the previous example. Suppose that emt @efining the value ‘010’ arrives at the system. We first
locate the root node nodeg, of the string tree responsible for the character ‘0’ and dehere the eventT'nodey will
look-up its routing table in column ‘1’ for the pointer to tmearbyTnodeg; and will send there the everitinodey; will

look-up its own routing table in column ‘0’, for tHBnodeg1o Where the subscriptioSubl D, is stored. O

Having introduced the notion atring trees 7; , and how event routing is performed, we see that two differeating

schemes coexist iRastryStrings Specifically:

e Pastry Routing: is done based on Pastry’s routing tables and offers the acom#®| functions described in [20]. Pastry

Routing is necessary for locating tfig trees, and for creatingtring treepaths.



e String Tree Routing: is performed within al; tree and exploits th&nodes’ routing tables in order to forward the
requests towards the leaves. A typical API functiofis forward(msg, key), performed locally at eactinode,

forwarding a messager{sg) to theTnode that is responsible for the valuey.

We stress that Pastry routing is unaffectedRastryStrings String treerouting uses thé@nodes’s routing tables. A

Tnode's routing table in essence constitutes another routinglJéaving one entry for each possible string characterevalu

3.3 Supporting complex string and numerical predicates

In this section we will show how to support prefix (e.g. ‘abcand suffix (e.g. *abc’) predicates on string attributes as

well as range (and compariseh >, #) queries on humerical attributes over tBastryStringsinfrastructure.

3.3.1 Storing subscriptions and processing incoming evesitstring-typed attributes

First note that a suffix operation can be easily transformemla prefix operation if we simply proceed to examine thengtri
from its last to its first character. Thus, without loss of geality, we shall only present how a prefix operation on gtrin
values can be applied PastryStrings

Suppose that we have a subscription with a prefix predicatetder to appropriately store the subscription we follow th
same methodology as if we had an equality predicate. Now w&hesvent arrives, we locate the appropriBtetree which is
responsible for the first character of the event’s stringiege.g.7;, for predicate abc*), and we then traverse a specific path
of the tree (from the rodf'node towards the leaves) until we find tH&iode whose label is that value. During this traversal
and since we perform prefix-based routing,Bllodes belonging to this path may be storing subscriptions matghiprefix

of the event’s value.

Example 3 Storing subscriptions.

Suppose that a subscription arrives with the string prewic@0«’. We first locate the appropriate tree for character ‘0’,
Ty , (in Figure 3, node ‘0111’ hosts the root @f , Tnodeg). Then the subscription’s id is forwarded and stored in the
Tnode whose label equals ‘00T(nodeg).

Now suppose that an event arrives at the system with valde. ‘Dbe root ofT;, , Tnodey will be located. Then the event
will be forwarded to the node hostirBnodeyy;. At eachTnode in the path from the root to th&nodegg:, the incoming
event ‘activates’ the stored subscriptions if any. As youn see, there is a stored subscriptiondmodegy and thus it is

collected by our algorithm as a matched subscription. O

In addition to prefix and suffix predicates, our scheme cam sipport a “containment” predicate (e.g. ‘a*c’). This aint
ment operator can be easily decomposed to prefix/suffix tipag The main idea is that, for example, ‘a*c’ can be viewed
both as prefix (i.e. ‘a*’) and suffix (i.e. “*c’) predicates dnvith appropriate post-processing we can conclude on plessi
matching. Due to space limitations we omit the detailed mebtogy for this, which is straightforward extension givibe

support for prefix/suffix predicates.



Event : E1
value=001

1. Subscription sub1: range [2,5)

2. Decomposes to: [2,4), [4,5)

3. Sub1 is stored in 001 and 0100

4. Event arrives with value 3 T(]

5. Following the path towards 0011
matches sub1

Event: E1
value=3

Depth 0

‘ n: [4,8) Depth 1
E X 7. Subscription Sub1 arrives
2. Following the path, it is stored in 0100 / De th 2
No Subscripfigy [0,2) [6,8)PeP
Xe 3. Event E1 arrives
J 4. Following the path matches subscriptions
3 [O Broker in the Pastry Networﬂ 0000 @ @ @ @ Depth 3
[Sub1]

O Node belonging to a tree [0,1) [1,2)
X Tree node connectivity

Figure 3. Storing subscriptions and perform- Figure 4. T, tree with stored SublDs for range
ing the prefix-based matching with incoming [2,5). Event arrives with value 3 and follows the
events. path from root to leaf, matching subscription.

3.3.2 Storing subscriptions and processing incoming evesitnumerical-typed attributes

PastryStrings also supports numerical attributes with rangg,>, #, and= predicates. The key idea here is that every
possible range of integer values may be appropriately nthpper number ofl'nodes based on their labels and their
location in theT; tree. There are several ways to do so. Here we adapt the RaagehSTree (RST) approach presented in
[9], and encapsulate its functionality withi®astryStrings

The required functionality consists of: (i) assign submsgf numerical values tdnodes and (ii) partitioning a given
range into appropriate subranges. Given this functiopalihen a subscription arrives declaring a range of valuesfinst
decompose the range to proper sub-ranges. Then we locappnepriate for each subran@&ode inT; and store there
the SubI D . When an event arrives declaring a specific value, we tramstoe value tg3-ary string representation, locate
the appropriatd’; tree and follow the path from the root to the leaf with the sdatel as the givers-ary string. Each
Tnode in this path may have storesh:.b1 Ds declaring ranges including the value of the event.

Recall that eact’; tree has a depth (D equals the maximum string length) denotes the depth @fnode;,;. We also
denote withnum(lbl) the numerical representation of the label striby For instance, givepp = 2 andibl = 0010 then
num(‘0010") = 2.

With the proposed scheme, domains of size uptanay be easily mapped Bnodes in thePastryStringsinfrastructure.
EachTnodey,; (in depthd in aT; tree) responsible for the prefiki is assigned by RST to hold a specific range of values

belonging to the following set:
[ num(1bl) x BP=4=1  (num(Ibl) + 1) x gP=4=1)

In Figure 4 we present a simplified version of fRastryStringsinfrastructure for explaining the main functionality. IImis

exampled = 2 and string length equal to 4 = 4). As you can se€l'nodego1, IS going to store ranges belonging to the



interval [2,4). Using the node to interval mapping above,ggé num(“001”) = 1, 8 = 2, D = 4 andd = 2 resulting

in: [1x 247271 (1 +1) x 247271) = [2,4). Each leafl'node holds the smallest possible sub-range while any non-leaf
Tnode holds the union of its children sub-ranges. The union of muiges of all rooff'nodes of our schema, covers the
maximum possible domain for integer values (with siZd).

Up to now we set our; trees so as to easily discover the sub-ran@eade is responsible for, based on tiieode;;,; la-
bel. For storing a subscription with a range predicate, veeikhactually break the range into subranges, find the apjatep
Tnodes responsible for each subrange, and then store thergidheD of the subscription with the range predicate. In [9],
a specific algorithm for this purpose is developed wWitflogs(|R|)) complexity for a ranger with length|R|. Using this
algorithm (with small modifications) we can decompose faraeple the rang€, 5) into [2,4) and[4,5) (in our example,
Figure 4). In this case, we store thebl D in Tnodegy; andTnodegigp-

Given theT'nodes labels, we showed above that we can identify the sub-rangetich the node is responsible for.
However, the inverse operation (i.e., given the range firdnibde label]bl), is done with the following method. Based on
the way sub-ranges are mappediteodes, we can notice that for a given decomposed subrangiee T'node responsible
for that subrange lays in depth= D — logg|r| — 1. Since we know th&node;,;’s depth, its label is thed + 1 prefix of the
string representation in the— base alphabet of the lower bound of the subrange. Thaltks= prefixz(d+ 1, 8 — ary(Bl))

, wheres — ary(int x) is the string representation of integeand Bl is the lower bound of the subrange. For example, as
you can see in Figure 4, the decomposed subrange [3,4) isadap@l node in depthd — 0 — 1 = 3, and since the binary
representation of the lower bourglin D = 4 characters long string is ‘0011)node’s label is the 4 (3+1) character long
prefix of string ‘0011’, resulting in ‘0011".

When an event arrives declaring a value, we first computertfaiast possible subrange that includes the value. If, for
example, the value is 3, the smallest possible subrangedimg 3, is[3,4). Then, we compute the label of ti&ode re-
sponsible for that range, ‘0011’, and route the event toa@antodeyg11. All storedSubl Ds from root to leafl'nodeyg11 are
considered to match the event.

Given that we know in advance every attribute’s domain baufav and high bound€3 L, BH) we can easily transform
the predicates:, >, and= into range predicates. For example, the predigafé can be thought as the rangBL, V], the
predicate> V as[V, BH| and the predicat¢ V as[BL,V) and(V, BH].

3.4 Load balancing issues

A possible limitation of the approach already describetiég & very small fraction of the nodes may become bottlenecks
as they are expected to absorb the access load of incomisgritipns and events. Nodes belonging to this category are
all Tnodes close to the root of each one of thg trees. InPastryStringswe adopt two widely used and complementary
techniques for distributing the load: (i) replicating th@dst structure among the network nodes and (ii) partitigrihe
stored subscriptions for a popular value. Further, we céneste even more load distribution by applyidgmain relocation

Replicating the Forest



Replicating the forest results in balancing the access (f@dstoring subscriptions or locating them when events/ajr
across the network. We define the replication facfof, as the number of replicas for each one of thstring trees For

this to be done we could use a hash function returning rangléhl values for each specific input. Thus, during jeroot
look-up phase (when an event or subscription is lookingtieflf tree) we could use this special function so as to reach one
of the RF" different replica roots (and eventually trees) and thelofola path inside that replica tree.

During the subscription storing phase, we could eitheragtiee sam&ubl D storing proces® F' times (for each replica
tree) or let the node which was chosen to hold the subscnigtidnform the corresponding replica nodes for storing the
subscription. Both approaches are easy to implement adlslate omitted for space reasons.

Partitioning the Storage Load
In real applications it is likely that som&nodes may become overloaded because of storing subscriptiondfisiig
a popular value. This kind of storage load hot spots may bédadoby defining a threshold for the number of stored
Subl Ds which when it is exceeded tHEnode chooses randomly anoth&mode for further storingSublDs . Each
Tnode under this scheme maintains pointers to othendes holding Subl Ds for the same value, so as to be possible to
collect all matched subscriptions for an incoming event.

Numerical Attribute’s Domain Relocation
A typical PastryStringgonfiguration can support extremely large domains of integkies,Dm. However, each numerical-
typed attributea; , is expected to have a much smaller domdinp,;. Given that some ranges are expected to be very
popular, a small set df'nodes are expected to absorb a great load of requests for storithgedirievingSubl Ds . With this
observation in mind, we propose to distribute edeh; in our domainDm adding an attribute-specific base vallg,to
each attribute’s value. This kind of relocation will result in spreading thi¢ributes’ values across a large numbesting

treesandTnodes and will then ameliorate load balancing problems.

3.5 Self-organisation

The self organisation of th&tring treeforest is required in highly dynamic p2p networks with freqtinode arrivals/depart-
ures and failure/recoveries. In order to treat failurescessfully we must ensumdring treeconnectivity, so we need extra
routing state pef'node. This extra state, consists of pointers to a descendant (tloaleis a child of @'node’s child) and

two pointers to the left and right siblings in tfié tree structure.

3.5.1 Node Arrival

The Pastry protocol facilitating new arrivals is briefly aidws: the new node with id X sends a ‘join’ message to arealye
known node A, which then routes the join message to node Zidittumerically closest to X. Then all nodes in the path
from A to Z send their state tables to X, which then builds is)adouting table and informs other nodes, if necessarytfor i
arrival.

In general, p2p networks are very sparse. Thus, a node magspemsible for processing messages that are sent to an
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O Broker in the Pastry Network

O Node belonging to a tree
. Tree node connectivity
»\ Sibling and Descendant pointer,

Create ‘001'in X
Transfer Routingtable

and sublIDs and update sibling Create ‘001'in X, reconstruct Routing table and transfer subIDs

and descendant pointers from a replica. Update sibling and descendant pointers
Figure 5. Node X arrives in  PastryStrings with Figure 6. Node X leaves PastryStringsnetwork.
Tp and T; trees already deployed. T, recon- T, reconstruction on X’s departure.

struction on arrival of X.

absent node. IRastryStringsthis results in nodes hosting more than dheodes. For example, in Figure 5 node C hosts
Tnodegypy andTnodegy;. However,Tnodeyy; belongs to an absent Pastry node. Upon the arrival of a new, rend
system should reconstruct appropriately the string tneesire and supply the new node with the defa§/ D lists) that it
is responsible for handling.

Suppose now, that a Pastry node B, (Figure 5), detects tivalaf node X and updates its routing table at lelvigl order
to point to the new node. If there is any hosBdode laying in depth(l — 1) mod logs(N) in its ownT; tree (in Figure 5
Tnodeqp), then node X will host a new child for thdtnode (if the appropriate entry ifi'node’s routing table is not empty,
as in this example, then the incoming node, X, should hosthiild hosted by the node pointed in the routing table). What
we do in this case, is to update fathefBr{odey,) routing table to point to X. Then we should inform the child Figure
5 Tnodegp1) that it should be hosted in X and thus to change host nodengihg host node, means that we create a new
Tnode in X, we transfer the routing table and the stoigeb/ Ds there and we update descendant and sibling pointers for

eachT'node that points to C so as to now point to X.

3.5.2 Node Departure

A node in Pastry may depart without warning due to a netwoitlara or leave the network at its own will. In both cases
the way the string tree structure is self-organised is atrae@bove. The only difference is in the w8ybI D lists stored
in the failing node, are recovered. Pastry provides meamasfor perceiving if a node has failed. More precisely, withen
immediate neighbours of a node in the node id space fail tcwonicate, then the node is considered failed. In this chse, t
routing state of nodes having a pointer to the failed nodepsired by finding a new node appropriate for handling messsag

designated for the failed one.

11



Suppose now that the failed node is X (Figure 6) and node Bhitists the father of one of tliénodes in X (T'nodeqgg in
Figure 6), notices its absence. Pastry-specific protocitii$ake control and update the routing table of B pointingatoew
node, Z. This action will force the fath@mode (T'nodey, in Figure 6) to update his own routing table pointing to Z. The
real challenge in coping with node failures is how to retei@nd deliver to Z th&ublI D lists stored in the failed node as
well as to reconstruct the routing table Bhodeyg; in Z. If node X leaves the network at its own will, then X may ibas
communicate with Z in order to deliver its stored lists. IEXleparture is unexpected then the only solution for re¢ogéine
storedSwubI D lists is to have at least one replica forest in order to cdriteereplica nodes and retrieve the lists. Regarding
the routing table off ' nodego1, when node X leaves at its own will, it may inform node Z abdweTrnodeyo,’s children by
copying the routing table to Z. When X suddenly fails then veed one (or more depending on the fault tolerance level)
extra routing pointer pointing to one of their descendant$ @vo more pointers to their left and right siblings, fétode.
Then when the fath€f'nodeg, in B is triggered upon the failure of X, will inform one @nodegp1’s children (using the
descendant pointer) about the new node (Z) hostingdeqo;. Then that child will inform its siblings about the existenaf

Z which in turn will send a special message to Z in order to Zetpconstruct the missing routing table.

4 Multi-dimensional events and subscriptions

So far, we have present@astryStringsunder a single-attribute event/subscription schema.dhwerld pub/sub systems
events and subscriptions are defined over a schema thatrssigpattributes. Each attribute; consists of a name, type,
and a values(a;) . A k — attribute (kK < A) eventis defined to be a set bfvalues, one for each attribute. Similarly, a
subscription is defined through an appropriate set of peddgcover a subset of theattributes of the schema.

The allowed operators are: (i) prefix (eghc*), (i) suffix (e.g. *abc), (iii) equality, and (iv) numerical range. An event
matches a subscriptiaghand only if all the attribute predicates of the subscription are satisfi

The subscription identifier in our approac$ybl D is the concatenation of three parts; ¢z, andcs. ¢; represents the
id of the node where the subscription arrived from a conrietrighat node client and keeps metadata information abeut th
subscriptiongs refers to the key of the subscription for identifying it angothe stored ones at, andcs is the number of

declared attributes in the subscription.
4.1 Processing incoming subscriptions

We maintain four lists (initially empty) in evefynode for every attributez; of our schema. These are thg;_,,.; and
Lai—susy lists, where we store th8ubI Ds of the subscriptions that contain prefix or suffix predicaiasattributea; ,
respectively, thd ,;_., list dedicated to equality predicates, and thg_,,...,, dedicated to numerical predicates.

Storing subscriptions is done by appropriately storing$héI D in at leastcz nodes$ using the methodology presented

earlier. Briefly, we process each attributeof the subscription and (i) when dealing with prefix predéoae storeSubl D at

3If all attributes in the subscription involve predicatessirings thercs Tnodes must be reached. However, if ranges are defined, then eagh Rin
may be translated int®(logg (| R|)) string values and thus the number increases.
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Storing Subscriptions
Notation

SubI D : subscription identifierg; : attributei, v(a;) : value of attributez, , prefix(x,j) : j-characters-long prefix of string x

Lai—num +» Lai—eq » Lai—pref » Lai—sufy : Listof Subl Ds for attributea; with numerical, equality, prefix, or suffix constraint
inv(x) : inverts the string x, (inv(abc) = cba), h(): DHT’ss$tafunction (e.g. SHA-1)'node;p;: Tnode intheT; tree with labellbl
Function: LocateAndStore(a) , Subl D)

01. Create a node id with value h( prefix@) ,1))

02. Go there (the root of the tree) and follow the path towdrd de., (4)

03. If attributea has arequality (or prefix, or suffix, or numericgconstraint
04. storeSubI D inthatnodeinthel,; cq (OF Lai—pref O Lai—suff » OF Lai—num ) list.
04. endif

Main Procedure
01. For every attribute; in subscriptionSubI D, loop

02. If a; has a numerical constraint

03. decompose(a;) and translate subrangeslébels
04. for everylabelin the decomposed set loop

05. LocateAndStorgabel,SubID; )

06. end loop

07. else ifa; has a suffix constraint

08. LocateAndStornv(v(a) ),SubID; )

09. else ifa; has a prefix constraint

10. LocateAndStotev(a) ,SubID; )

11. end if

12. end Loop

Table 1. The procedure of storing subscription identifiers i n PastryStrings

Lai—prey Of Tnode,,,) (v(a;) is the attribute’s value), (i) when dealing with suffix pieate we invert(a;) and store
SublD atLgi—suys Of Tnode;y,(v(a,)), (i) when dealing with equality predicate we stdfebl D atL, ., of Tnode,(,,),

and finally (iv) when dealing with numerical values we decoswthe range into subranges and following the methodology
presented earlier we stofa:bI D atthelL,; ..., Of all appropriaté'nodes. The procedure of storing subscriptions can be

seenin Table 1.
4.2 Event processing and matching

Suppose now, that an event arrives at the system Nith....,,; attributes defined. Th8ubID Lists Collection Phase
(Table 2), starts by processing each attribute separdtdiyst locates the roof'node of the appropriate tree and then the
event is forwarded towards thenode,,,). In eachlnmode in the path toward$node,,,), we collect all stored lists for the
given attribute and send them to the n&xtode in the path. At each step of this process, we merge the prslicollected
lists of each kind resulting in four major lists which are figaeturned back to the node where the event arrived whege th
matching is performed. Those lists are thg _ nuverrcar s Lai—EQuariTy s Lai—PrEFIX » @NALGi_surrrx lists®.

The next step, termddatching Phasglable 3), is actually the event-subscriptions matchiragpss. Suppose, now, that a

subscriptionSubl Dy, is found to be in at least one of the collected lists. Assuragttiis subscription consists &f, .5«

4In fact in order to collect thé., _ sy rrx list we should repeat the same procedure with the invertitstalue of the event.
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Event Processing and Matching
Notation

SubID : subscription identifierg; : attributei, v(a;) : value of attributes; , inv(x) : inverts the string x, (inv(abc) = cba)

Ng— sub—i - the number of attributes defined in a subscripfiolV;; s+ — sw»—4 : the number of collected lists th&tubI D; is stored
Lai—num »Lai—eq+ Lai—pref » Lai—sugy : Listof SubI Ds for attributea,; with numerical, equality, prefix, or suffix operation

Lai {NUMERICAL,EQUALITY,PREFIX,sUFFIx} - Delivery List with candidateSubl Ds for numerical, equality, prefix, and suffix
matching

Tnodestr: Tnode intheT; tree with labelstr

SublD Lists Collection Phase

01. for everyevent; arriving at the system, loop

02. for every attributer; in theevent, loop

03. if v(a;) is numerical value

04. translate it to the appropriafenode label: [bl

05. locate the righT; tree and for each node in the path towaftsode;;

06. retrieve thel ,; —»m found there and merge it with the previously collectedi9; - NuU M ERIC AL
07. end if

08. if v(a;) is astring value

09. locate the right’’; tree and for each node in the path towaidsode., (4, )

10. retrieve thel,; 4 found there and merge it with the previously collectedt9; - eQu aLITY
11. retrieve thel ,; — -y found there and merge it with the previously collectedtg; — prEF1 X
12. locate the righT; tree and for each node in the path towa(idmde,;m,(,,(w))

13. retrieve thel ;<. s found there and merge it with the previously collectedto; — svrrrx
14. end if

15. end loop

16. end loop

Table 2. Collecting the SubIDs of subscriptions that are can didate for matching the event.

attributes (V,_s.—« IS Obtained from the field; of the subscription identifier). Then, this subscriptiorcansidered to
match the event if it appears in exacthy, ..« lists collected from the network, since an event matchesagiption if
and only if all of the subscription’s predicates are satikfithoseSubl Ds are then transferred to the Matching list,a:ching
where they are processed further in order to inform the gillims that are interested for the incoming event utilisiietd
cq.

A number of distributed algorithms for event matching carubed to avoid performance problems stemming from the
use of a per-event coordinator for event matching. Theserinegonal issues and outside the scope of this paper. W ref

the interested reader to [2].

4.3 Message complexity analysis

The Pastry infrastructure ensures that at mologs(N)) messages are needed to reach any node in a system with
namespace siz& and node identifiers of bage

During the subscription storage procedure, the averagebruwf messages needed to stor8w@I D is equal for all
allowable operations on strings. Thus, for string-typedtaites we need(logg(/N)) messages in order to reach the root
of the appropriatel; string tree(i.e. one DHT lookup) and then at maStlogs(N)) messages in order to locate the

Tnode inside thestring treethat will accommodate the subscription id (i.e. one mesgmyestring character), yielding a
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Event Processing and Matching

Matching Phase
01. for everySubl D;, found in the Delivery Lists, loop

02. retrieve the number of attributes defined from ¢hdield: N, — sup—&

03. count the number of Delivery lists whefebI Dy, is stored:Ny;st— sub—k
04. if Ng—sub—k €QualsNy;s¢— sub—k We have a match

05. removeSubI D;, from all lists

06. storeSubI Dy, in the Matching listL ,,atching

07. end if

08. end loop

Table 3. Matching collected SubIDs to event.

total of O(logg(IN)) messages. For numerical-typed attributes, if the meandadiz@nges igR|, the range decomposition
and string translations used in RST result®ifiogs|R|) string values. Thu®(logs|R| x logs(IN)) messages are required
for storing a numerical rang€)(logs| R|) is expected to be small compared®¢logs(N)) in real-life pub/sub applications
with range sizes|R|) very small compared t&/'. Thus, we could viewD(logs|R|) as a relatively small constant.

Regarding the matching process and more precisehptlid D Lists Collection Phasgfor every attribute in the event,
we should first locate the appropriating tree which require0(logg(N)) messages (i.e. one DHT lookup). Then we
locate the righf'node and then collect th&ubl D lists stored in alll'nodes in the path from the root t@'node. This step
requires at mosb(logg(IN)) messages. Thus, in general, for each attribute of the eéhigs(N)) messages are required

in order to collect the storefubI D lists.

5 Experimentation and performance evaluation

We performed a hnumber of experiments in a 1000-br&kestryStringsimulated network with up to 140,051 Ds stor-
ed and 160,000 generated requests for collecting/ D lists (the exact number depends on the skewness of releignt d
tributions). We used a Zipfi&rpopularity distribution for attributes, which determiride actual number of attributes in an
event or subscription, varying from 1 to 10. The popularityalues for each attribute also follows a Zipfian distrilouti As
the skewness of the values’ distribution plays a key rolehee varied? from 0.0 to 1.6 (to test for load imbalances). Re-
garding the distribution of numerical and string typedihtttes in the subscriptions, half of the attributes are micag(and
the rest strings). Unless stated otherwise, half of the migaleattributes are declaring equalities while the othaf lranges
on integer numbers. The domain of each numerical attrilsjte 70000] and the size of each range defined in subscriptions,
unless stated otherwise, was varied frortequality) to20 (following a uniform distribution). The3 base of our alphabet

was set to 15 and the maximum string length to 5.

5the frequency of occurrence of thé” ranked item is defined to bg% Typical values of the parametérare: 0.0 < ¥ < 1.6, where large values of
¢ denote very skewed distributions atid= 0.0 yields a uniform distribution
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Figure 7. The effect of ranges in subscription processing an d access/storage load balancing for
different attributes’ popularity skewness.

5.1 The effect of ranges on subscription processing performance

In the first set of experiments (Figure 7(a)) we varied theestage of attributes defining a numerical value (equality o
range) in each subscription from 0% (no ranges at all) to L0@®4%r performance metric here is the number of messages
needed to store a subscription. You can see that as the pegessf range predicates per subscription increases, sothdee
number of messages for subscription processing. In faghéssage count for the only-ranges case is four times langer t
the no-ranges case. This is as expected from our analysis sirmerical attributes need to be decomposed into sutsange
for each of which a differer'node is responsible.

To have a clear picture with respect to the number of submagange is decomposed into, we varied the size of the range
and counted the subranges produced. Then for each partienige size|R| we created 00, 000 ranges with size ranging
from 0 to | R| following a uniform distribution and counted the averagd amaximum number of subranges. As you can see
in figure 7(b) as the range size increases so does the avenag®en of subranges, but the increase is logarithmic. In the
same figure you can also observe that the maximum number tdrsgis into which an 1000-size range is decomposé?l is
which is the trend of the expected number of subranges (agwteally the number ofubl D storing requests) in the case

of an inequality £) predicate under the existence of an attribute’s domamaizip to 1000 integer values.

5.2 Load balancing

Our main objective with this set of experiments, is to obsdrew load balancing is affected by changing the skewness of

the attributes’ and values’ popularity distribution.

5.2.1 The data distribution effect on access and storage Ida

Our specific performance metric here is the coefficient ofaten (CV) of access and storage load. CV for storage load

is defined as the ratio of the standard deviation of the nurabstoredSubI Ds in a network node acrodastryStrings
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Figure 8. Access/storage load balancing and messages neede d for event/subscription processing.

to the mean value of store8lub/ Ds in a node. CV for access load involves both the number of retguer retrieving
Subl Ds and routing requests to nodes. As you can see in Figure 7écgdbfficient of variation of storage and access
load slightly increases as the attributes’ skewness iseehecause the number of attributes per event/subsorgareases
(fewer popular attributes are defined per event/subsoripti Having fewer attributes results in more workload fovée
nodes. However, the difference between skewed and unifarklaads seems to be small.

Figure 8(a) shows how access and storage CV increases a&s\maome more popular. This can be explained by the
fact that as? increases fewer and popular values are defined in each fuiiistievent. This results in overloading a few
Tnodes in the PastryStringsnfrastructure while others remain lightly-loaded. Todgthow storage load balancing can be
improved by applying the attributes’ domain relocatiorcéithe discussion in section 3.4) we made a number of exyseris
varying the attributes’ values popularity distributioreskness and observed that the CV for storage is not affectexidog
skewed values’ popularity distributions. This comes frdva tact that range processing dominates string processirigg
the subscription storage phase (since ranges involve titaciing of many mor&nodes) and the domain relocation further

distributes hot values and ranges to differéniodes.

5.2.2 Effect of replication on access and storage load

In this set of experiments we tried to measure how the rejidiceof the string treeforest helps distributing evenly the
storage and the access load during$hél D storage phase and ti$abI D collection phase, respectively, by varying the
replication factor RF (the number of replist&ring treeforests).

As you can see in Figure 8(b) the coefficient of variation (@¥Ahe number oSubI Ds stored in network nodes (storage
load) as well as the number of retrieval and routing requiest$ubl Ds (access load) decreases and approaches 0 (fully
balanced), as the replication factor increases. Anothpoitant observation is that the network is more imbalanchdrw
dealing with access load compared to the storage load. Fhige to the fact that subscriptions involving range preadica
may generate a greater number of storage requests (reaathtihrange decomposition may result in storing$hé/D in

logs|R| nodes). This number dfubI Ds stored is greater and have a more evenly distribution ameowokglbs, compared to
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the distribution of event requests.

5.3 Event processing and matching

5.3.1 Number of messages

We also conducted a number of experiments in order to medksaraumber of messages per event needed to collect all
SubID lists and the number of messages per subscription in ordstote Subl Ds as a function of the attributes’ and
values’ popularity distribution skewness.

We observed that as the the skewness of the attributes’ @afyudlistribution increases, fewer attributes are inealv
per event/subscription and thus the mean number of mesgageent/subscription decreases (Figure 8(c)). Again, ou
main observation here is that subscription processingseeate communication overhead, compared to event progessin
This is the right design choice. In real pub/sub systemstsvare expected to arrive in the system in rates much greater
than subscriptions rates. Thus, it is deemed necessaryfaripea fast and efficient event matching. We also increalked t
skewness of the values’ popularity distribution and we haviced that the number of messages per event/subscisgtion

not affected by the value popularity.

5.3.2 Network traffic

Our specific performance metric here is the total numbes:@fl Ds sent for the processing of each incoming event.

We varied the skewness of the attribute values’ distributidnile ©J for the attributes’ popularity equals 0.8. Detailed
results are omitted for space reasons. Briefly, we obsehagdhis the values’ popularity distribution becomes morevskie
(varying? of Zipfian popularity distribution fron.0 to 1.6) the traffic increases by a factor of 5 since most of the incagmi
events, contact a small number of nodes that hold the mamfrsitored subscription identifiers. We also varied thelaites’
popularity distribution (varying from 0.0 to 1.6) and we observed that when the distribution is skewkdfdproaches 1.6)

the network traffic is decreased by a factor of 2.5, since feme popular attributes are chosen in every incoming event.

6 Conclusions

In this work we have contributed an architecture for buiggdscalable, self-organising, well-performing systemd tha
support queries with arich set of predicates on string amdarical typed attributes. We specifically focused on andgméed
how our algorithms can be applied in a pub/sub environmetfit vbroker network implemented using a DHT network. The
distinguishing feature of our work is that is shows how teleage specific DHT infrastructures to ensure logarithmissage
complexity for both event and subscription processing, fandboth rich string and numerical predicatdastryStringsis
DHT-specific, but does not interfere with the DHT internaisimply leverages its key information.

Our experimentation results show thRastryStringscan handle subscriptions with rich string and numericatijmates

efficiently and scalably, i.e., with small number of messagmod load distribution to network nodes, and small networ
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bandwidth requirements.
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