
P-Grid: A Self-organizing Access Structure

for P2P Information Systems

Karl Aberer

Distributed Information Systems Laboratory
Department of Communication Systems

Swiss Federal Institute of Technology (EPFL)
1015 Lausanne, Switzerland

karl.aberer@epfl.ch

Abstract. Peer-To-Peer systems are driving a major paradigm shift in
the era of genuinely distributed computing. Gnutella is a good exam-
ple of a Peer-To-Peer success story: a rather simple software enables
Internet users to freely exchange �les, such as MP3 music �les. But it
shows up also some of the limitations of current P2P information sys-
tems with respect to their ability to manage data eÆciently. In this paper
we introduce P-Grid, a scalable access structure that is speci�cally de-
signed for Peer-To-Peer information systems. P-Grids are constructed
and maintained by using randomized algorithms strictly based on local
interactions, provide reliable data access even with unreliable peers, and
scale gracefully both in storage and communication cost.
Keywords. Peer-To-Peer computing, Distributed Indexing, Distributed
Databases, Randomized Algorithms.

1 Introduction

Peer-To-Peer (P2P) systems are driving a major paradigm shift in the era of gen-
uinely distributed computing [2]. Major industrial players believe \P2P reects
society better than other types of computer architectures. It is similar to when in
the 1980's the PC gave us a better reection of the user" (www.infoworld.com).

In a P2P infrastructure, the traditional distinction between clients and back-
end (or middle tier application) servers is simply disappearing. Every node of the
system plays the role of a client and a server. The node pays its participation in
the global exchange community by providing access to its computing resources.
Gnutella is a good example of a P2P success story: a rather simple software
enables Internet users to freely exchange �les, such as MP3 music �les.

In the current P2P �le-sharing systems, like Gnutella [1], no indexing mech-
anisms are supported. Search requests are broadcasted over the network and
each node receiving a search request scans its local database (i.e. its �le system)
for possible answers. This approach is extremely costly in terms of communica-
tion and leads to high search costs and response times. For supporting eÆcient
search, however, appropriate access structures are prerequisite.

Access structures in distributed information systems have been addressed
in the area of distributed and parallel databases. Di�erent approaches to data
access in distributed environments have been taken. We mention some of the
principal approaches.

{ The distribution of one copy of a search tree over multiple, distributed nodes
is a technique that has been investigated in [6]. The same authors have shown
that, under certain assumptions, with that approach balanced search trees
do not exist [7].

{ The replication of the complete search structure is an approach that underlies
the RP �-Trees proposed in [8]. In [10] a mechanisms is proposed that leads
eventually to the replication of the search structures.

{ Scalable replication of a search tree (more precisely B-Tree) is proposed
in [5] (dB-Tree) and [11] (Fat-BTree). With scalable replication each node
stores a single leaf node of the search tree, the root node of the search tree
is replicated to every node, and the intermediate nodes are replicated such
that each node maintains a path from the root to its own leaf.

{ No search structures: in these approaches operation messages are broad-
casted to all participating nodes. E.g. with RP �N [8] the data is range parti-
tioned as in B-Trees but no index exists and a multicast mechanism is used.
In current P2P �le sharing systems, like Gnutella, the P2P network is used
to propogate search requests to all reachable peers.

Many of these approaches assume a reliable execution environment, require some
centralized services, are designed for a fairly small numbers of nodes (hundreds)
and focus on deterministic execution guarantees. In this paper we would like to
take a di�erent approach and address the question of how an access structure
can be built by a community of a very large number of unreliable peers without
any central authority, that can provide still a certain level of reliability of search
and scales well in the number of peers, both in storage and communication
cost. In order to obtain scalability we use the approach of scalable replication of
tree structures, as proposed in [5][11]. To construct these search structures and
perform searches and updates we use randomized algorithms, that are based
exclusively on local interactions among peers. The idea is that by randomly
meeting among each other the peers successively partition the search space and
retain enough information in order to be able to contact other peers for eÆciently
answering future search requests. The resulting distributed access structure we
call P-Grid (Peer-Grid). As this paper addresses the prinicipal feasibility of such
an approach we make the simplifying assumption that the data distribution is not
skewed. Thus the use of binary search trees over a totally order domain of keys is
suÆcient (as e.g. also used in [6]). Similarly, for the analysis and simulation of P-
Grids, we make uniformity assumptions on the peer behavior. Though de�nitely
in a next step skewed data distributions and extended methods for balancing the
search trees, as well known from B-Tree structures, are required, even the basic
methods in this paper can be bene�cial to improve the eÆciency of current �le
sharing applications. The main characteristics of P-Grids are that

{ they are completely decentralized, there exists no central infrastructure, all
peers can serve as entry point to the network and all interactions are strictly
local.

{ they use randomized algorithms for constructing the access structure, up-
dating the data and performing search; probabilistic estimates can be given
for the success of search requests, and search is robust against failures of
nodes.

{ they scale gracefully in the total number of nodes and the total number of
data items present in the network, equally for all nodes, both, with respect
to storage and communication cost.

In the next section we introduce our system model and the structure of P-Grids.
In Section 3 we describe the distributed, randomized algorithm that is used to
construct P-Grids. In Section 4 we give some analysis on basic properties of
P-Grids. Section 5 contains extensive simulation results, that demonstrate the
feasibility of the P-Grid algorithms and exhibit important scalability properties
of P-Grids. Section 6 indicates directions for future work.

2 System Model and Access Structure

We assume that a community of peers P is given that can be addressed using
a unique address addr : P ! ADDR. For an address r 2 ADDR we de�ne
peer(r) = a i� addr(a) = r for a 2 P . The peers are online with a probability
online : P ! [0; 1]. Peers that are online can be reached reliably through their
addressusing the underlying communication infrastructure.

Every peer stores information items from a set DI that are characterized by
an index term from a set K. The set of index terms is totally ordered, such that
a search tree can be constructed in the usual way. In the following, we assume
that the index terms are binary strings, built from 0's and 1's and that a key
k = p1 : : : pn; pi 2 f0; 1g corresponds to a value val(k) =

Pn
i=1 2

�ipi and an
interval I(k) = [val(k); val(k) + 2�n[� [0; 1[.

Now we de�ne the access structure. The goal is to construct an access struc-
ture, such that

{ The search space is partitioned into intervals of the form I(k); k 2 K. Every
peer takes over responsibitity for one interval I(k). As each key corresponds
to a path in the binary search tree we will also say that the peer is responsible
for the path k.

{ Taking over responsibility for an interval I(k) means, that a peer should
provide the addresses of all peers that have an information item with a key
value kquery that belongs to I(k), i.e. val(kquery) 2 I(k).

{ For each pre�x kl of k of length l; l = 1; : : : ; length(k) a peer a maintains
references to other peers, that have the same pre�x of length l, but a di�erent
value at position l+1, for the key they are responsible for. We will call these
references to other peers, a's references at level l + 1. These references are
used to route search requests for keys with pre�x kl, but a continuation that
does not match the own key, to other peers.

{ A search can start at each peer.

Before giving the formal de�nition of the access structure, we give in Fig. 1 a
simple example. The di�erent levels relate to the di�erent levels of the binary
search tree. The intervals relate to the nodes of the search tree. We indicate the
key values that correspond to the intervals (i.e. 0 and 1 at level 1, 00, 01, 10, and
11 at level 2). At the lowest level we entered have 6 peers, indicated by black
circles, into the leaf nodes corresponding to the keys they are responsible for.
Multiple peers can be responsible for the same key. We will call these later also
replicas. We also entered the agents into all intervals on the path from the root
to their leaf node. At the leaf nodes we show the pointers to speci�c data items
whose key is a pre�x of the key of the peer.

At level zero every peer is associated with the whole interval, in other words,
it stores a root node of the search tree. At level 1 every peer is associated with
exactly one of the two intervals. At level 2 every peer is associated with exactly
one interval. The connectors from one level to the next are the references that s
peer maintains to cover the other side of the search tree. For example, at level 0
peer 1 has a reference to peer 3, and at level 1 peer 1 has a reference to peer 2.

When a search request is issued it is routed over the responsible peers. There
are two possiblities, either at the next level the peer itself is responsible, then
it can further process the request itself, or, the request needs to be forwarded
to another peer. For illustration we have included into Fig. 1 the processing of
two queries. In the �rst example the query 00 is submitted to peer 1. As peer
1 is reponsible for 00 it can process the complete query. In the second example
the query 10 is submitted to peer 6. Using its reference at level 0 it contacts
peer 5, which in turn contacts at level 1 peer 4, who is responsible for the key
corresponding to the query.

Data items

Key Intervals
level 2

1 2 3 4 5 6

1 2 3 4 56

1 2 6 43

Key Intervals
level 0

Key Intervals
level 1 5

0 1

00 01 10 11

00 10

001 0010 01 0100 100 1001 1011 110

Queries

Fig. 1. Example P-Grid

We de�ne now formally the data structure for peers that allows to represent
the P-Grid. Every peer a 2 P maintains a sequence

(p1; R1)(p2; R2) : : : (pn; Rn);

where pi 2 f0; 1g and Ri � ADDR. We de�ne path(a) = p1 : : : pn, prefix(i; a) =
p1 : : : pi for 0 � i � n and refs(i; a) = Ri. In addition the number of references
in Ri will be limited by a value refmax. The sets Ri, 1 � i � n are references
to other peers and satisfy the following property:

r 2 refs(i; a) : prefix(i; peer(r)) = prefix(i� 1; a)p�i

where path(a) = p1 : : : pn and p� is de�ned as p� = (p+1)MOD 2. In addition,
each peer maintains a set of references D � ADDR�K to the peers that store
data items indexed by keywords k for which path(a) is a pre�x. In other words,
at the leaf level the peer knows at which peers data items corresponding to the
search keys that it is responsible for, can be found.

This gives rise to a straightforward depth �rst search algorithm shown in
Fig. 2. Given a P-Grid, a query p can be issued to each peer a through a call
query(a; p; 0).

query(a, p, l)

{

found = FALSE;

rempath = sub_path(path(a), l+1, length(path(a)));

compath = common_prefix_of(p, rempath);

IF length(compath) = length(p)

OR length(compath) = length(rempath) THEN

result = a; found = TRUE ELSE

IF length(path(a)) > l + length(compath) THEN

querypath = sub_path(p, length(compath) + 1, length(p));

refs = refs(l + length(compath) + 1, a);

WHILE |refs| > 0 AND NOT found

r = random_select(refs);

IF online(peer(r))

found = query(peer(r), querypath, l + length(compath));

RETURN found;

/* Comment:

sub_path(p1...pn, l, k) := pl...pk

common_prefix_of(p1...pk pk+1...pn, p1...pk qk+1...ql = p1...pk)

random_select(refs) returns a random element from refs

and removes it from refs */

}

Fig. 2. P-Grid search algorithm

3 P-Grid Construction

Having introduced the access structure and the search algorithm, the main ques-
tion is now, of how a P-Grid can be constructed. As there exists no global con-
trol this has to be done by using exclusively local interactions. They idea is
that whenever peers meet, they use the opportunity to create a re�nement of
the access structure. We do not care at this point why peers meet. They may
meet randomly, because they are involved in other operations, or because they
systematically want to build the access structure. But assuming that by some
mechanisms they meet frequently, the procedure works as follows.

Initially, all peers are responsible for the whole search space, i.e. all search
keys. At that stage, when two peers meet initially, they decide to split the search
space into two parts and take over responsibility for one half each. They also
store the reference to the other peer in order to cover the other part of the search
space. The same happens whenever two peers meet, that are responsible for the
same key at the same level.

However, as soon as the P-Grid develops, also other cases occur. Namely,
peers will meet where their keys share a common pre�x or where their keys are
in a pre�x relationship. In the �rst case, what the peers can do, is to initiate new
exchanges, by forwarding each other to peers they are themselves referencing. In
the second case the peer with the shorter key can specialize by extending its key.
In order to obtain a balanced P-Grid it will specialize in the opposite way the
other peer has already done at that level. The other peer remains unchanged.
These considerations give rise to the algorithm in Fig. 3 that two peers a1 and
a2 execute when they meet.

A few remarks are in place on this algorithm. A measure to prevent over-
specialization of peers is to bound the maximal length of paths that can be
constructed to maxl. Simulations show that this results in a more uniform dis-
tribution of path lengths among peers and better convergence of the P-Grid.
Also such a bound is needed when a certain degree of replication at the lowest
grid level is to be achieved. The disadvantage is that some global knowledge is
used, namely the maximal path length, which not always might be locally avail-
able or easily derivable. In practical applications, one possible indication that a
path has reached maxl could be that the number of data items belonging to the
key is falling below a certain threshold.

An alternative would be to avoid overspecialization by taking another ap-
proach in Case 2 and Case 3, where one path is subpath of the other and the
peer with shorter path chooses to specialize di�erently than the other peer. Here
one could shorten the longer path if the di�erence in length is greater than 1,
such that both resulting paths have the same length. However, this would re-
quire additional means to maintain consistency of references as peers give up
responsibility for keys by generalizing and could possibly specialize at a later
stage di�erently. This approach also slows down convergence. So we ommitted
this possibility here.

The recursive executions of the exchange function by using the locally avail-
able references (Case 4) have an important inuence on the performance of the

exchange(a1, a2, r)

{

commonpath = common_prefix_of(path(a1), path(a2));

lc = length(commonpath);

IF lc > 0

(* exchange references at level where the paths agree *)

commonrefs = union(refs(lc, a1), refs(lc, a2));

refs(lc, a1) = random_select(refmax, commonrefs);

refs(lc, a2) = random_select(refmax, commonrefs);

l1 = length(sub_path(path(a1), lc + 1, length(path(a1)));

l2 = length(sub_path(path(a2), lc + 1, length(path(a2)));

(* Case 1: both paths empty, introduce new level *)

CASE l1 = 0 AND l2 = 0 AND length(commonpath) < maxl

path(a1) = append(path(a1), 0);

path(a2) = append(path(a2), 1);

refs(lc + 1, a1) = {a2};

refs(lc + 1, a2) = {a1};

(* Case 2: one remaining path empty, split shorter path *)

CASE l1 = 0 AND l2 > 0 AND length(commonpath) < maxl

path(a1) = append(path(a1), value(lc+1, path(a2))^-;

refs(lc + 1, a1) = {a2};

refs(lc + 1, a2) =

random_select(refmax, union({a1}, refs(lc+1, a2));

(* Case 3: analogous to case 2 *)

CASE l1 > 0 AND l2 = 0 AND length(commonpath) < maxl

path(a2) = append(path(a2), value(lc+1, path(a1))^-;

refs(lc + 1, a2) = {a1};

refs(lc + 1, a1) =

random_select(refmax, union({a2}, refs(lc+1, a1));

(* Case 4: recursively exchange with referenced peers *)

CASE l1 > 0 AND l2 > 0 AND r < recmax,

refs1 = refs(lc+1, a1) \ {a2};

refs2 = refs(lc+1, a2) \ {a1};

FOR r1 IN refs1 DO

IF online(peer(r1)) THEN exchange(a2, peer(r1), r+1);

FOR r2 IN refs2 DO

IF online(peer(r2)) THEN exchange(a1, peer(r2), r+1);

/* Comment: random_select(k, refs) returns a set with k random

elements from refs.

append(p1...pn, p) = p1...pn p

value(k, p1...pn) = pk

p^- = 1+p MOD 2 */

}

Fig. 3. P-Grid construction algorithm

method. These executions are more promising of ending up in a successful spe-
cialization as they are already targetted to a more speci�c set of candidates. On
the other hand the recursive executions might lead to a quick overspecialization
of the P-Grid for subregions of the search tree. Therefore, we bound the recursion
depth up to which the exchange function is called by the value recmax. This
value has a very strong inuence on the global performance of the algorithm, as
we will see later.

So far, we have only considered the construction process of the access struc-
ture itself. At the leaf level the peers need also to know the data items, respec-
tively the peers storing those data items, that correspond to their responsibility.
As many peers can be responsible for the same key the general problem is of
how to �nd all those peers in case of an update. Di�erent strategies are possible:

{ Randomly performing depth �rst searches for peers responsible for the key
multiple times and propagating the update to them

{ Performing breadth �rst searches for peers responsible for the key once and
propagating the update to them

{ Creating a list of buddies for each peer, i.e. other peers that share the same
key, and propagate the update to all buddies.

We will not give the detailed algorithms here as they are quite obvious. But
in Section 5 we will identify by using simulations, which is the most eÆcient
method.

4 Analysis of Search Performance

We want to analyze the question of how probable it is to �nd a peer that is
responsible for a speci�c search key starting the search at an arbitrary peer. This
analysis allows to give rough estimates on the sizing of the P-Grid parameters
that are required to achieve a desired search reliability in a given setting. We
perform the analysis for an idealized situation, where for all peers the parameters
of the P-Grid, like keylength and number of peers responsible for the same key,
are uniformly distributed. Though such a distribution will not occur in practice
it gives a good estimation the quantitative nature of a P-Grid.

The following parameters determine the problem. The number of peersN and
the number of data objects each peer can store dpeer determine the total number
of data objects that can be stored in the network as dglobal = N �dpeer. The size
of a reference r and the amount of space each peer is willing to make available
for indexing purposes speer determines the possible number of references that
can be stored at each peer ipeer =

speer
r

.

Now we determine the number of entries required for a certain grid organisa-
tion. The length of a key required to di�erentiate data items located at di�erent
peers is given by

k � log2
dglobal

ileaf
(1)

where ileaf is the number of references to data items each peer stores at the leaf
level.

Then the total number of index entries stored at a peer is given by ileaf +
k � refmax , where refmax is the multiplicity of references used to build the
grid structure. Thus we obtain the constraint ileaf + k � refmax � ipeer which
determines the value of ileaf . In order to allow at the lowest level of the grid
the support for refmax alternative peers, references to data items need to be
replicated with a factor of refmax. This is only possible if

dglobal

ileaf
� refmax � N (2)

i.e. there must be suÆciently high numbers of peers available, such that each
interval at the lowest grid level is supported by at least refmax peers.

Given a constant probability p that a peer is online we are now interested in
the question what is the probability of performing a successful search for a peer
that is responsible for the query key. In the worst case at each level of the grid a
new peer needs to be contacted, that is selected out of the available references.
At each level of the grid, the probability of reaching a peer at the next level is
1�(1�p)refmax, i.e. one minus the probability that all refmax referenced peers
are o�ine. Since the search tree is of depth k, then the probability of performing
a successful search for a key is

(1� (1� p)refmax)k (3)

We give now an example, to illustrate what a P-Grid would cost in terms of
space for a practical setting.

Example. Let us consider the setting P2P �le sharing as it currently is
found with Gnutella. We use some rough estimates of the actual parameters
that are observed for this application. Assume that dglobal = 107 data objects
(�les) exist, that a reference costs at most r = 10 Bytes of storage (the path plus
the IP address) and that every peer is willing to provide speer = 105 Bytes of
storage for indexing (which is in fact far less than the size of an average media
�le). Furthermore, we assume that peers are online with probability 30%.

Let us now analyze how large a community for supporting the 107 �les must
be in order to ensure that search requests for �les are answered with a probability
of 99%. Each peer can store at most ipeer = 104 references. If we "guess" a value
of ileaf = 104 � 200, we see that inequality (1) is satis�ed for a value of k = 10.
For a value of refmax = 20 then, according to (3), the probability of sucessfully
�nding a peer for a given key is larger than 99%. The storage required is due
to our good initial guess exactly speer = 105. The number of peers required to
support this grid has to be according to inequality (2) larger than 20409. This
is a very reasonable number compared to the size of the actual Gnutella user
community.

5 Simulation

For performing simulations we have implemented the algorithm for constructing
P-Grids using the mathematical computing package Mathematica. We intend to
obtain results on the following questions.

{ How many communications in terms of executing the exchange algorithm
are required for building a P-Grid ?

{ What is the inuence of the recursion factor recmax in the exchange algo-
rithm on the eÆciency of the P-Grid construction ?

{ Is the resulting structure reasonably well balanced with respect to distribu-
tion of path lengths and number of replicas per path ?

{ How reliable can data be found using the P-Grid ?

5.1 Performance of the Construction Method

In the following simulations we analyze the convergence speed when the P-
Grid is constructed. The peers meet randomly pairwise and execute the ex-
change function. We consider a P-Grid as constructed when the average length
of the keys that the peers are responsible for reaches a certain threshhold t, i.e.
1

N

P
a2P length(path(a)) < t. In the following the path length is bounded by

maxl = 6 and the threshold is 99% of maxl (5.94). We count the number of
calls to the exchange function (e) to determine the construction cost.

First we investigate the relationship between the number of peers and con-
struction cost. We vary the number of peers from 200 to 1000. We use a recursion
depth recmax of 0 and 2. The value of refmax was set to 1, i.e. only one ref-
erence to another peer ist stored. This inuences the performance in the case
where recmax > 0. The results indicate that a linear relationship exists between
the number of peers (N) and the total number of communications (e) needed
in building the P-Grid. As a consequence, every peer has to perform on average
a (practically) constant number of exchanges to reach its maximal path length
independently of the total number of peers involved.

recmax = 0 recmax=2
N e e

N
e e

N

200 15942 79.71 4937 24.68
400 27632 69.08 10383 25.95
600 43435 72.39 15228 25.38
800 59212 74.01 18580 23.22
1000 74619 74.61 25162 25.16

The next simulation shows how the choice of a maximal path length maxl in-
uences the number of exchanges emaxl required. The simulation is done for
N = 500 peers. The results indicate that the number of communications grows
exponentially in the path length when no recursion is used. With a recursion
bound recmax = 2 the convergence speeds up substantially.

recmax = 0 recmax = 2
maxl emaxl

emaxl

N

emaxl

emaxl�1
emaxl

emaxl

N

emaxl

emaxl�1

2 4893 9.78 5590 11.18
3 9780 19.56 1.998 7289 14.57 1.303
4 18071 36.14 1.847 8215 16.43 1.127
5 35526 71.05 1.965 13298 26.59 1.618
6 72657 145.31 2.045 17797 35.59 1.338
7 171770 343.54 2.364 27998 55.99 1.573

The following simulation shows that the recursion depth recmax has substantial
inuence on the convergence speed. When using recursive calls to the exchange
function the probability that a random meeting leads to a successful exchange
increases. However, if recursion is not constrained this can lead to negative e�ects
as the peers tend to overspecialize quickly. The result shows that for 500 peers
and maximal path length 6 the optimal recursion depth limit is 2.

recmax e e

N

0 35436 70.87
1 15377 30.75
2 12735 25.47
3 16595 33.19
4 18956 37.91
5 22426 44.85
6 25130 50.26

If refmax > 1, i.e. peers maintain more than one reference to other peers at
each level, i.e. there exist more possibilities to make recursive calls. Thus if
recmax > 0 this should have an inuence on the number of exchanges that
are performed when constructing the P-Grid. Note that this additional e�ort is
rewarded by a higher density of the P-Grid. We analyzed this with a simulation
with N = 1000 peers and a recursion depth limit recmax = 2.

refmax e e

N

1 25285 25.28
2 39209 39.20
3 72130 72.13
4 125727 125.72

As one can see the number of exchanges grows exponentially, which is undesir-
able. In fact, this turned out to be a weakness in the algorithm we proposed.
However, there exists a simple way to �x this. One limits the number of ref-
erenced peers with which exchanges are made throughout recursion. Then the
results become very stable as the following simulation shows, where recursive
calls are only made to 2 randomly selected referenced peers.

refmax e e

N

1 23826 23.826
2 37689 37.689
3 40961 40.961
4 43914 43.914

5.2 Search and Update Performance

The subsequent simulations are based on a con�guration that is similar to the
one described in the example in Sec. 4. This con�rms that the algorithms scale
well for realistic parameter settings. We use 20000 peers that build a P-Grid
with keys of maximal length 10. The maximal number of references refmax at
each level is limited to 20. The online probability of peers is 30%.

Building a P-Grid of that size within a simulation environment requires con-
siderable computing resources. Within approximately 10 hours of running time
on a Pentium III processor the P-Grid was constructed up to an average depth
of 9:43. During that time 1250743 exchanges among peers were performed, i.e.
62 per peer. Based on this P-Grid we make the following observations.

First we see that the replicas, i.e. the number of di�erent peers responsible
for the same key are fairly uniformly distributed. Figure 4 shows this result. The
x-axis indicates the replication factor and the y-axis the number of peers that
have this replication factor. The average number of replicas for a peer is 19.46.

A simple, intuitive argument shows that this is not surprising as the exchange
function inherently tends to balance the distribution of keys. For example, a peer
will decide upon the �rst bit of the key when it meets the �rst time another peer
that has already taken this decision or also needs to decide on the �rst bit. It
will decide in both cases opposite to the other peer. Thus, if there exists an
imbalance in the distribution of the �rst bit, this is compensated for.

Next we would like to con�rm the analysis of Sec. 4. We search 10000 times
for a random key of length 9. Only 30% of the peers are online. In 99.97% of
the cases the search was successful and a search required on average 5.5576
messages among peers. We were counting as messages the successful calls of the
query operation to another peer. This shows that searches can be performed
reliably.

Now we turn to the question of how updates can be performed. The problem
with an update, in contrast to a search, is, that we have to �nd all replicas of
a path, not just one. Therefore we analyze how eÆciently a large fraction of all
replicas can be found. We compare the three approaches of (1) repeated depth

10 20 30 40 50 60 70

20

40

60

80

Fig. 4. Replica distribution

�rst searches, (2) repeated depth �rst searches including all buddies that have
been identi�ed throughout index construction, and (3) repeated breadth �rst
searches.

We repeatedly searched for a random key of length 9 and then computed
the fraction of replicas identi�ed as compared to the actual number of existing
replicas. Figure 5 shows the result. The x-axis shows the number of messages used
in the insertion process, and the y-axis the percentage of successfully identi�ed
replicas. One can see that clearly the strategy of using breadth �rst searches is
by far superior, while the two other methods perform comparably.

One can see also, that for achieving a high update reliability a fairly large
number of messages is required (hundreds per updated replica). So this approach
is acceptable where updates are rare as compared to queries. However, the rele-
vant problem is not to achieve high reliability in keeping the replicas consistent,
but rather high reliability in obtaining correct query results. Thus we can use a
di�erent approach. We update a suÆciently high number of replicas using fewer
messages, and use repeated query operations. Obviously, if more than half of
the replicas are correct, by repeating queries, arbitrarily high reliability can be
achieved by a making majority decision. In this manner we increase slightly the
query cost and in turn reduce drastically the update cost. There is another factor
that is helpful in that context. Not all replicas are as likely to be found. This
implies that replicas that are found during updates are also more likely to be
found during queries.

We perform a simulation to illustrate the tradeo� among update and query
cost and indicate the optimal combinations of update and query strategies. 100
updates were performed and each updated data item was searched 10 times,
thus 1000 queries were performed in each con�guration. Updates are performed
using breadth �rst search, where at each level recbreadth references are followed.
The search was repeated repetition times. The successrate is the fraction of
successfully answered queries after an update. The cost is in terms of number of
messages.

The simulation shows that the approach of using repeated searches to achieve
query reliability pays o� dramatically. The con�guration recbreadth = 3 and

1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

1
breadth first search

search with buddies

depth first search

Fig. 5. Finding all replicas

repetition = 3 without using repeated search, which achieves only 99,4% relia-
bility, would require at least a ratio of 160 queries per update in order reach the
break-even point compared to the con�guration recbreadth = 2 and repetition =
3 using repeated search, which o�ers practically 100% reliability.

repetitive search

recbreadth repetition successrate query cost insertion cost
2 1 1 137 78
2 2 1 34 147
2 3 1 17 224
3 1 1 112 637
3 2 1 13 1434
3 3 1 13 2086

non-repetitive search

2 1 0.65 5.5 72
2 2 0.85 5.6 145
2 3 0.89 5.4 212
3 1 0.95 5.5 734
3 2 0.98 5.5 1363
3 3 0.994 5.4 2080

6 Discussion

This paper introduced P-Grid, a �rst step towards developing scalable, robust
and self-organizing access structures for P2P information systems. To illustrate
the e�ectiveness of a P-Grid we can compare it to centralized replicated server
architectures. Assume D is the number of data items and N the number of
peers. For storage we consider the number of references to be stored at the nodes
ignoring local indexing cost. For querying we consider the number of messages
exchanged assuming that each node creates a constant number of queries per
time unit. Then a solution using centralized replicated servers compares to P-
Grid as follows.

P-Grid Central Server

Storage peers: O(logD) server: O(D)
client: constant

Query peers: O(logN) server: O(N)
client: constant

One can see that both storage and communication cost scale well for the P-
Grid. For a centralized servers the linear growth of communication cost in the
client number is critical as servers become bottlenecks. This shows that besides
robustness also scalability is an asset of P-Grids.

The approach presented in this paper is limited to uniform data distributions.
For uniformly distributed key values the P-Grid can be immediately applied.
For pre�x search on text the algorithm can be adapted by extending the f0; 1g
alphabet. This would allow to directly support trie search structures. However

the decentralized support for more sophisticated search structures, like in [3] is
a challenging research topic.

An obvious continuation of this research is to develop P-Grids that can sup-
port skewed data distributions. To that extent throughout the construction pro-
cess the actual data distribution needs to be taken into account and the struc-
tures have to continuously adapt to updates. Another natural extension of the
approach would be to take system parameters, like known reliability of peers,
knowledge on the network topology or knowledge on query distribution into ac-
count for optimizing P-Grid construction and updates. To achieve load balancing
a computational economy can be imposed, as already investigated for distributed
data mangement in [4][9].

We see the P-Grid, as it is presented in this paper, as a �rst representative
of access structures for P2P information systems, for which many variations
will be developed, that are adapted to the speci�c requirements of various P2P
application domains.

Acknowledgements. I would like to thank Manfred Hauswirth and Roman Schmidt

for carefully reading and commenting the manuscript. I would also like to thank Mag-

dalena Punceva and Rachid Guerraoui for many helpful discussions. This work also

greatly bene�ted from the inspiring working environment that is provided by the newly

founded Communication Systems Department at EPFL.

References

1. E. Adar and B. A. Huberman: Free riding on Gnutella Technical report, Xerox
PARC, 10 Aug. 2000.

2. D. Clark. Face-to-Face with Peer-to-Peer Networking. IEEE Computer, January
2001.

3. Y. Chen, K. Aberer: Combining Pat-Trees and Signature Files for Query Evaluation
in Document Databases DEXA 99, LNCS, Vol. 1677, p. 473-484, Springer, 1999.

4. D.F. Ferguson, C. Nikolaou and Y. Yemini An Economy for Managing Repli-

cated Data in Autonomous Decentralized Systems International Symposium on Au-
tonomous Decentralized Systems (ISADS'93), 1993.

5. T. Johnson, P. Krishna Lazy Updates for Distributed Search Structure ACM SIG-
MOD 93, p. 337-346, 1993.

6. B. Kr�oll, P. Widmayer Distributing a Search Tree Among a Growing Number of

Processors. ACM SIGMOD 94, p. 265-276, 1994.
7. B. Kr�oll, P. Widmayer Balanced Distributed Search Trees Do Not Exist WADS 95,

p 50-61, 1995.
8. W. Litwin, M. Neimat, D. A. Schneider RP*: A Family of Order Preserving Scalable

Distributed Data Structures. VLDB 94, p. 342-353, 1994.
9. M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfe�er, A. Sah, Je� Sidell, Carl Staelin,

Andrew Yu: Mariposa A Wide-Area Distributed Database System VLDB Journal
5(1): 48-63, 1996.

10. R. Vingralek, Y. Breitbart, G. Weikum SNOWBALL: Scalable Storage on Networks

of Workstations with Balanced Load Distributed and Parallel Databases Vol 6(2),
Kluwer Academic Publishers, 1998.

11. H. Yokota, Y. Kanemasa, J. Miyazaki Fat-Btree: An Update-Conscious Parallel

Directory Structure ICDE 99, p. 448-457, 1999.

