
Routing Indices For Peer-to-Peer Systems

Arturo Crespo, Hector Garcia-Molina

Computer Science Department

Stanford University

Stanford, CA 94305-2140, USA

fcrespo,hectorg@db.Stanford.edu

Abstract

Finding information in a peer-to-peer system currently requires either a costly and vulnerable central

index, or
ooding the network with queries. In this paper we introduce the concept of Routing Indices

(RIs), which allow nodes to forward queries to neighbors that are more likely to have answers. If a

node cannot answer a query, it forwards the query to a subset of its neighbors, based on its local RI,

rather than by selecting neighbors at random or by
ooding the network by forwarding the query to all

neighbors. We present three RI schemes: the compound, the hop-count, and the exponential routing

indices. We evaluate their performance via simulations, and �nd that RIs can improve performance by

one or two orders of magnitude vs. a
ooding-based system, and by up to 100% vs. a random forwarding

system. We also discuss the tradeo�s between the di�erent RI schemes and highlight the e�ects of key

design variables on system performance.

Keywords: Peer-to-peer systems, Routing Index, Query Processing, Query Forwarding, Approximate In-

dices, Content Discovery, Distributed Search Mechanisms

1 Introduction

Peer-to-peer systems (P2P) have grown dramatically in recent years. In a P2P system, distributed computing

nodes of equal roles or capabilities exchange information directly with each other. These systems represent

an incredible wealth of information allowing users to exchange documents (Freenet [Wora]), music �les

(Napster [Word], Gnutella [Worb]), and even computer cycles (Seti-at-home [Worc]). A key part of a P2P

system is document discovery. Our goal is to help users �nd documents with content of interest across

potential P2P sources e�ciently.

There are many mechanisms for searching in a P2P system, each with their own advantages and disadvan-

tages. These solutions can be classi�ed in three broad categories: mechanisms without an index (non-index

search), mechanisms with specialized index nodes (centralized search), and mechanisms with indices at each

1

x

CBA

D

RI x-z

Figure 1: Routing Indices

node (distributed search). Gnutella uses a mechanism where nodes do not have an index and queries are

propagated from node to node until matching documents are found. This search mechanism works by
ood-

ing the network (or a subset of it) with each query in the hope of �nding a match. Although this approach is

simple and robust, it has the disadvantage of the enormous cost of
ooding the network every time a query

is generated.

Centralized-search systems use specialized nodes that maintain an index of the documents available in the

P2P system. To �nd a document, the user queries an index node to identify nodes having documents with

the content of interest. These central indices may be built with the cooperation of the nodes (e.g., Napster

nodes provide a list of available �les at sign-in time) or by crawling the P2P network (as in a web search

engine). The advantages of a centralized-search mechanism is e�ciency (just a single message is needed to

resolve a query). However, a centralized system is vulnerable to attack (e.g., index sites can be shut down

by a court order or a hacker attack) and it is di�cult to keep the indices up-to-date.

A distributed-index mechanism, the option we will study in detail in this paper, maintains indices at

each node. These distributed indices need to be small, so instead of using traditional \destination" indices,

we use Routing Indices (RIs) that give a \direction" towards the document, rather than its actual location.

To illustrate, consider Figure 1 which shows four nodes A, B, C, and D, connected by the solid lines. The

document with content \x" is located at node C, but the RI of node A points to neighborB instead of pointing

directly to C (dotted arrow). By using \routes" rather than destinations, the indices are proportional to the

number of neighbors, rather than to the number of documents. We can reduce the size of RIs even further

by using approximate indices, i.e., by allowing RIs to give a hint (rather than a de�nite answer) about the

location of a document. For example, in the same �gure, an entry in the RI of node A may cover documents

with contents \x," \y," or \z." A request for documents with content \x" will yield a correct hint, but one

for content \y" or \z" will not.

In this paper we study options for building e�ective RIs, and evaluate their performance. In particular,

the contributions of this paper are:

� We introduce Routing Indices, an e�cient way of locating content in a P2P system (Sections 3 and 4).

� We present three kinds of RIs: the compound, the hop-count, and the exponential routing indices

(Sections 5, 6, and 7).

2

� We evaluate the performance of RIs via simulations, and �nd that RIs can improve performance by one

or two orders of magnitude over a
ooding-based system, and by 50-100% versus a random forwarding

system (Section 8).

2 Related Work

The problem of indexing a P2P network is closely related to the problem of indexing a distributed database.

For a survey of current approaches please refer to [Kos00]. Despite some super�cial similarities, algorithms

for indexing distributed databases are based on fundamental assumptions that are not applicable to P2P

systems. First, distributed database algorithms assume that the nodes in a distributed database are stable

and connected most of the time. This is not to say that nodes cannot fail. In fact, nodes can fail, but in

general, they are expected not to fail very often, and when they do, they are repaired and returned to the

system. Second, distributed database algorithms generally assume that the number of nodes is relatively

small. This assumption is not applicable to a P2P system, which can have tens or even hundreds of thousands

of nodes.

There are several working P2P systems currently available, each with its own \indexing" approach.

Napster [Word] uses centralized indices, which, as stated before, are vulnerable to attack and are di�cult to

fund and scale. Gnutella [Worb] does not build indices, instead, queries
ood a signi�cant part of the network,

resulting in a simple but very costly approach as just one query can expand into hundred of thousands of

requests through the Gnutella network. Freenet [Wora] uses an interesting approach to indexing. Each

node builds an index with the location of recently requested documents, so if they are requested again,

the document can be retrieved at a very low cost. However, Freenet has two limitations: �rst, queries are

restricted to the identi�er of a speci�c document, and second, it takes time for a node to build an e�ective

index. In Freenet, a newly connected node cannot do better than just blindly forward queries to its neighbors.

Oceanstore [KBC+00] uses an approach similar to the one proposed in this paper (in fact, their approach can

be considered a special case of a compound RI). The key di�erence versus our approach is that Oceanstore

assumes a static network and that queries are on document identi�ers, rather than on the content of the

documents.

Selecting a neighbor for forwarding a query is also related to traditional routing algorithms [Tan96]. In

fact, an RI can be considered a generalization of the data structures used to implement the Bellman-Ford

routing algorithm [Bel57, FF62]. The major di�erence with our algorithms is that the standard routing

algorithms are designed to transmit a packet between two nodes through the shortest route. In our case, we

need to get a \packet" from one node to one or more nodes so we �nd the best answers to a query. Also, the

destination of a packet is not pre-de�ned (as in IP routing), but instead it depends on the query contained

by the packet.

IP routing to multiple destinations (multicast algorithms) has been studied extensively (see for exam-

3

B

C

D

E

F

H

G

I

J

A

Q

Q

Q

Q

Figure 2: P2P System Model

ple [Mil98]). However, multicast algorithms require the creation of a relatively stable multicast tree. In the

case of query processing in a P2P system, we cannot predict in advance what the multicast tree would look

like, and even if we could, the cost of creating a tree for each query would be prohibitive.

The problem of selecting the best database to which to send a query was studied as part of the GlOSS

project [GGMT00, GGM95]. However, GlOSS assumes the we are selecting among a set of databases, rather

than among \paths" that lead to a set of databases.

Some recent work has empirically evaluated P2P systems. A survey and evaluation of centralized-search

P2P systems can be found at [YGM01a]. An evaluation and description of the present state of Gnutella can

be found at [Clia]. Finally, [YGM01b] focuses on search techniques that do not use indexes, although it also

studies one type of \local area index." In such indices, a node indexes the content of nodes within \r" hops.

However, these indices are not routing indices, they are traditional indices.

3 Peer-to-peer Systems

A P2P system is formed by a large number of nodes that can join or leave the system at any time and

that have equal capabilities. Each node is connected to a relatively small set of neighbors which in turn are

connected to more nodes. In Figure 2, the neighbors of node A are nodes B, C, and D. Note that there

might be cycles in the network (such as the one caused by the link between E and G). Each node has a local

document database that can be accessed through a local index. The local index receives content queries

(e.g., a request for documents containing the words \database systems," a request for documents containing

a picture of the sun, etc.) and returns pointers to the documents with the requested content.

4

3.1 Query Processing in a Distributed-Search P2P System

In a distributed-search P2P system, users submit queries to any node along with a stop condition (e.g., the

desired number of results). A node receiving a query, �rst evaluates the query against its own database,

returns to the user pointers to any results, and, if the stop condition has not been reached, the node selects

one or more of its neighbors and forwards the query to them (along with some state information). In turn,

each of the neighbors evaluates the query in a similar fashion, returns result pointers to the user and forwards

the query to neighbors.

To illustrate, consider Figure 2. Node A initially receives a query. Node A checks for local results and

sends those results to the requesting node. Then, assuming that the stop condition has not been satis�ed,

node A selects node D as the best neighbor to handle the query and forwards the query to it (dashed arrow).

Note that for nodes to be able to verify if the stop condition has been reached, we need to include the number

of results found so far as state information in each query-forwarding message. Then D processes the query

and selects I as the best neighbor to continue handling the query. Let us assume now that I has processed

the query, but not enough results have been found to reach the stop condition. In this case, I returns the

query to D which forwards the query to the next best neighbor (J in this case).

Queries can be forwarded to the best neighbors in parallel or sequentially. In the example above, D can

send the query to I, wait for results, and then send the query to J ; or it can send the query to I and J

simultaneously. A parallel approach yields better response time, but generates higher tra�c and may waste

resources (e.g., if the stop condition is reached after sending the query to I, there is no need to send it to

J). In this paper, we focus on a sequential forwarding of the queries.

4 Routing indices

In this section we present an example of how the compound RI (CRI) works. Later, in Section 5 we de�ne

RIs in general and present two other RIs: the exponential RI and the hop-count RI. in Section 6.

The objective of a Routing Index (RI) is to allow a node to select the \best" neighbors to send a query

to. A RI is a data structure (and associated algorithms) that, given a query, returns a list of neighbors,

ranked according to their goodness for the query. The notion of goodness may vary but in general it should

re
ect the number of documents in \nearby" nodes.

As a running example, we will use a P2P system for retrieval of text documents with the network depicted

on the right side of Figure 3. For simplicity, this network does not have cycles (we will discuss cycles in

Section 7). In this system, documents are on zero or more \topics," and queries request documents on

particular topics. Each node has a local index for quickly �nding local documents when a query is received.

Nodes also have a CRI containing (i) the number of documents along each path and (ii) the number of

documents on each topic of interest In Figure 3 we show an example of a CRI for node A with three

5

Number of Documents with topics:

Path documents Databases Networks Theory Languages

B 100 20 0 10 30

C 1000 0 300 0 50

D 200 100 0 100 150

B

C

D

E

F

H

G

I

J

A

Figure 3: A Sample Compound RI

neighbors (paths): B, C, and D. For simplicity, we assume that there are only four topics of interest:

databases, networks, theory, and languages. In the �gure, we can see that we can access 1000 documents

through C (i.e., there are 1000 documents in C, G and H) and that of those documents, 300 are about

\networks" and 50 are about \languages."

The RI may be \coarser" than the local indices maintained at nodes. For example, node A could maintain

a more detailed local index in which each document is further classi�ed into sub-categories. By keeping a

summary of the detailed index, we achieved a more compact RI at the cost of introducing \errors" when

user queries are based on the subcategories. Speci�cally, the summarizing of the local index may introduce

overcounts or undercounts in the RI. For example, a summarization that groups several subtopics into a single

topic (e.g., \indices", \recovery", and \SQL" into \databases") may introduce overcounts on the number of

documents available. In fact, a query for documents on \SQL" will be converted into a query for documents

on \databases," making us believe that there are many documents on \SQL" whereas in reality there may

be few or even none. Summarization can also introduce undercounts. For example, if the summarization

uses a frequency threshold (e.g., throws away topics with very few documents), then we may believe that

there are no documents on a topic when there are in fact a few.

Given the index, we need now to compute the \goodness" of each node for a query. For CRIs we will use

the number of documents that may be found in a path as a measure of goodness. To compute the number

of documents, we will use the estimators in [GGMT94a, GGMT94b]. Given that our focus is not on the

estimators but on the use and maintenance of RIs, throughout the paper we will use a simpli�ed model

where queries are conjunction of subject topics, documents can have more than one topic, and document

topics are independent. Thus, we can estimate the number of results in a path as: NumberOfDocuments�
Q

i
CRI(si)

NumberOfDocuments
where CRI(si) is the value for the cell at the column for topic si and at the row for

a neighbor.

To illustrate, consider a query for documents on \databases" and \languages" received by A. We estimate

the number of results as 20
100 �

30
100 � 100 = 6 at B, 0

100 �
0
100 � 100 = 0 at C, and 100

200 �
150
200 � 200 = 75

at D. Therefore, the \goodness" of path B will be 6, of path C will be 0, and of path D will be 75. Note

that these numbers are just estimates and they are subject to overcounts and/or undercounts. In particular,

6

Local Index

I

J

A D

B

C

A
B

D
C

 20 0 10 30
1000 0 300 0 50
 100
 300 30 80 0 10

 200 100 0 100 150

D
A
I
J

 100 60 0 60 75
 1400 50 380 10 90

 50 25 0 15 50
 50 15 0 25 25

J
D

 50 15 0 25 25
 1550 135 380 85 215

I
D

 50 25 0 15 50
 1550 125 380 95 190

 # DB N T L # DB N T L

 # DB N T L

 # DB N T L

Figure 4: Routing Indices

if there is a strong correlation between the topics \databases" and \languages," then path B may have as

many as 20 documents matching the query for topics \databases" and \languages" On the other hand, if

there is a strong negative correlation between the topics \databases" and \languages," then there may be

no documents in path B on either topic.

A limitation of using CRIs is that they do not take into account the di�erence in cost due to the number

of \hops" necessary to reach a document. For example, the documents along path B may all be just one hop

away, while the documents along path C may be scattered in a long chain of nodes and �nding them would

require many messages. Later, we will introduce more sophisticated RIs that do not have this limitation.

In the rest of the section we describe how compound RIs are used, created, and maintained.

4.1 Using Routing Indices

In this subsection we show how RIs, and in particular compound RIs, can improve the performance of

query processing in a P2P system. Consider the P2P system described in Figure 3. In Figure 4 we present

part of the P2P network with RIs attached to each node. For compactness, we are representing the four

topics of interest: database, network, theory, and languages with the letters DB, N, T, and L respectively.

In the example we are assuming that the �rst row of each RI contains the summary of the local index.

(This summary can be obtained, e.g., by consolidating subtopics into the main topics, or perhaps by using

clustering on a local keyword index to generate topics for each of its documents.) In particular, the summary

of A's local index shows that A has 300 documents: 30 about databases, 80 about networks, none about

theory, and 10 about languages. The rest of the rows represent a compound RI. In the example, the RI

shows that node A can access 100 database documents through D (60 in D, 25 in I, and 15 in J).

When A receives from a client a query for documents about \databases" and \languages," it attempts

7

to use the local database to answer the query. If not enough answers are found, it computes the goodness of

each path as explained earlier. In this case, the goodness of B, C, and D is 6, 0, and 75 respectively, so A

selects D as the best neighbor to forward the query to. In turn, D returns all local results to the client of A

and, if not enough results are found, computes the goodness of I and J (25 and 7.5). Since I has the highest

goodness, D forwards the query to I. In turn, I returns local results, but it cannot forward the query any

further as it does not have any peers besides D, so (if more results are needed) it returns the query to D

which forwards it to its best next neighbor J . Even though the network in the example is very small, a query

with a stop condition of 50 documents will generate 9 messages when using
ooding; but only 3 messages

if we use the RI. Even if we send the query serially in a depth-�rst fashion to neighbors ranked randomly,

we will have 3 messages in the best case and 9 messages in the worst case. The savings in the number of

messages when using RIs are the result of forwarding the query only to the nodes that have a high potential

of having results.

The storage space required by an RI in a node is modest as we are only storing index information for each

neighbor. Furthermore, the storage space per neighbor can be adjusted by increasing or decreasing the level

of summarization of the index. Speci�cally, if s is the counter size in bytes, c is the number of categories, N

the number of nodes, and b the branching factor (i.e., number of neighbors), then a centralized index would

require c� (t+1)�N bytes, while each node of a distributed system would need c� (t+1)� b bytes. Thus,

the total for the entire distributed system is c� (t+1)� b�N bytes. Although the RIs require more storage

space overall than a centralized index, the cost of the storage space is shared among the network nodes.

4.2 Creating Routing Indices

Let us now turn our attention to how RIs are created. Returning to our running example, let us assume that

initially there is no connection between A and D. The initial state of the system is shown by the solid lines of

Figure 5a. When the A�D connection is established, node A informs node D of all the documents that can

be accessed through node A. Speci�cally, node A aggregates its RI and sends it to D. In our example, the

aggregation is done by adding all the vectors in the RI. (We will describe additional aggregation procedures

in Section 5.) Thus, A sends D a vector saying that it has access to 1400 documents (300 + 100 + 1000),

of which 50 are on databases (30 + 20 + 0), 380 on networks (80 + 0 + 300), 10 on theory (0 + 10 + 0), and

90 on languages (10 + 30 + 50). A does not need to send more information as D does not need to know

the precise location of the documents, but only that they can be accessed through A. After D receives the

aggregated RI from A, it adds an additional row to its RI with A's identi�er and A's aggregated RI (as

shown in Figure 5b). Note that by aggregating RIs we reduce both the amount of information transmitted

and the storage space used. Similarly, D, aggregates its RI (excluding the row for A if it is already in the

RI) and sends its aggregated RI to A. Note that the RI creation process at A and D can be done in parallel.

After A and D update their RIs, they need to inform their other neighbors that now they have access to

more documents. Thus, D sends an aggregate of its RI to I (excluding I's row) and to J (excluding J 's row)

8

I

J

A D

B

C

A
B
C

 20 0 10 30
1000 0 300 0 50
 100
 300 30 80 0 10 D

I
D

J
D

 150 75 0 85 100
 50 25 0 15 50

I
J

 50 25 0 15 50
 50 15 0 25 25

 100 60 0 60 75

 150 85 0 85 125
 50 15 0 25 25

200 100 0 100 150

1400 50 380 10 90

 # DB N T L # DB N T L

 # DB N T L

 # DB N T L

I

J

A D

B

C
 # D N O S

I
D

 50 25 0 15 50

 # D N O S

J
D

 50 15 0 25 25

 150 75 0 85 100

 150 85 0 85 125

A
B

D
C

 20 0 10 30
1000 0 300 0 50
 100
 300 30 80 0 10

 200 100 0 100 150

 # D N O S # D N O S

D
A
I
J

 100 60 0 60 75

 50 25 0 15 50
 50 15 0 25 25

 1400 50 380 10 90

1550 135 380 85 215

1550 125 380 95 190

Updates for B and C

(a) (b)

Figure 5: Creating a Routing Index

as shown in Figure 5b. Then I and J update their RI by replacing the row for D with the new information

(not shown in the �gure). If I and J were connected to nodes other than D, they would have to send an

update to those nodes too.

4.3 Maintaining Routing Indices

The process of maintaining RIs is identical to the process used for creating them. To illustrate, let us suppose

now that client I introduces two new documents about \languages" in its database. To update the RIs of its

neighbors, I summarizes its new local index, aggregates all the rows of its compound RI (excluding the row

for D), and sends this information to D. Then D replaces the old row for I with the received aggregated RI.

In turn, D computes and sends new aggregates to A and J . When receiving the update, A and J update

their RIs and compute new aggregates for their neighbors, and so on. For e�ciency, we may delay exporting

an update for a short time so we can batch several updates, thus, trading RI freshness for a reduced update

cost. We can also choose not to send updates when the di�erence between the old and the new value is not

signi�cant. By not sending minor updates, we can again trade reduced update cost for accuracy of the RI.

Finally, a special but frequent update case occurs when a node disconnects from the network. To illustrate,

let us suppose that I disconnects from the network. Node D detects the disconnection and updates its RI by

removing the row for I. Then D informs its neighbors of the change on the number of documents it can access

by sending new aggregates of its RI to them. In turn, the neighbors of D update their RIs and propagate

the new information to their neighbors. Note, that we did not need I's participation (or the participation

of any other neighbor) in the disconnection process. Not requiring the participation of a disconnecting node

is an important feature in a P2P system where nodes can come and go at will.

Observe that the creation and update of RIs can be expensive operations as an update sent to a neighbor

prompts it to send an update to its neighbors, which in turn prompt them to update their own neighbors,

and so on. By using RIs, we trade the higher cost of maintaining the RIs for a lower cost when processing

9

RI Creation/Update Algorithm
Input: I
Output: An updated RI (as a side e�ect)

// Creation phase
RI[0] = Summary(I)
For each neighbor j:

Send(j; RI[0])

// Update phase
OldRI = RI
While (true):

Wait for a batch of aggregated RIs to arrive and/or
for the local index to change

For each aggregated RI (if any), Ak, received from neighbor k:
RI[k] = Ak

If local index changed:
RI[0] = Summary(I)

If OldRI is di�erent enough than RI:
OldRI = RI
For each neighbor j in RI:

A = Aggregate(RI[(0:::j � 1; j + 1::)])
Send(j; A)

Figure 6: RI Creation/Update algorithm

queries. In some systems this trade-o� may be worth it, while in others it may not. Our experiments in

Section 8 suggest that in many systems, our approach does reduce the total cost, and therefore it is worth

building RIs. In the experimental section, we will show that for ratios of updates to queries as high as 1

update for every 30 queries, our approach reduces the total cost.

5 Algorithms and Data Structures for Routing Indices

In this section, we formalize the algorithms and data structures for RIs. We present the general algorithms

for RI creation, update, and usage and we explore alternatives for the main components of an RI.

5.1 Algorithm for creating and updating RIs

We present the algorithm for creating and updating RIs in Figure 6. This algorithm is started by a node

when it joins the P2P system and remains running until the node disconnects. The input to the algorithm

is the local index (I). The algorithm uses the following functions: Summary(), which summarizes the local

10

Answer Query
Input: A query Q, a client C, and a node F
Output: Query answers, Query forwards

Send local answers for Q to C
If StopCondition():

return
Rank = []
For each neighbor j except F :

Rank:Append([j; Estimator(RI[j])])
Sort tuples in Rank by second attribute

for t in Rank:
Send query to neighbor t[0]
If StopCondition():

return

Figure 7: RI Usage Algorithm

index I; Aggregate(RI), which aggregates the RI; and Send(i; A), which sends A, an aggregated RI, to

neighbor i. In the algorithm, we are assuming that RI is an array where each row i stores the aggregated

RI of neighbor i. Row 0 is reserved for the summary of the local index.

The Creation/Update algorithm is divided in two phases. In the �rst phase, the creation phase, a newly

connected node sends a summary of its local index to its new neighbors. In the second phase, the update

phase, the node waits for update messages or for changes on its local index. As stated before, the node may

wait for a set of changes to batch them together or it may ignore updates that are not signi�cant in order to

reduce cost. After updating its RI, the node sends a new aggregate RIs to all its neighbors. The aggregated

RIs contain all rows except the row from the neighbor to which the aggregated RI is sent.

5.2 Algorithm for Answering Queries

We present the algorithm for answering queries in Figure 7. This algorithm is run every time a new

query is received (either submitted by a user or forwarded by another node). The input of the algorithm is

a query Q, a pointer to the client C that issued the query, and a pointer to the neighbor F that forwarded

the query (if any).

The algorithm starts by attempting to answer the query using the local database. If not enough local

results are obtained to reach the stop condition, then the algorithm ranks all the neighbors by using the

Estimator(Q;RI[i]) function (this function takes a query Q and a row RI[i] and computes the goodness

of neighbor i with respect to that query). Then the node sends the query to each neighbor sequentially,

checking if the stop condition was reached whenever each query returns.

11

1 Hop 2 Hops

Neighbor # DB N T L # DB N T L

X 60 13 2 5 10 20 10 10 4 17

Y 30 0 3 15 12 50 31 0 15 20

Z 5 2 0 3 3 70 10 40 20 50

W

X

Y

Z

X1

X2

Y1

Y2

Z2

Z1

Y21

Figure 8: A sample Hop-count RI for node W

6 Alternative Routing Indices

6.1 Hop-count Routing Indices

In this subsection, we present an alternative data structure for an RI: a hop-count RI. The main limitation

of the compound RI is that it does not take into account the number of \hops" (query forwardings) required

to �nd documents. In the hop-count RI we stored aggregated RIs for each \hop" up to a maximum number

of hops. We call this number the horizon of the RI. We show in Figure 8 a sample hop-count RI with a

horizon of 2 hops. The node with this hop-count RI has three neighbors: X, Y , and Z. With one hop via

neighbor X, the node can �nd 60 documents, out of which 4 are about databases, 2 about networks, 5 about

theory, and 10 about systems. The node can also �nd 20 more documents through X with 2 hops (i.e., at

X's neighbors). Note, that we do not have information beyond the horizon with this kind of RI.

The estimator of a hop-count RI needs a cost model to compute the goodness of a neighbor. For example,

neighbor X may be preferable over neighbor Y for a query on topic \DB," as through X we would �nd 13

results with one hop, while it would require two hops to �nd that many results through Y . On the other

hand, we can �nd more results (31) when going through Y .

If we de�ne cost in terms of number of messages (we will expand on the notion of cost in Section 8), then

we can de�ne the goodness of a neighbor as the ratio between the number of documents available through

that neighbor and the number of messages required to get those documents. So a neighbor that allows us to

�nd 3 documents per message is better than a neigbor that allows us to �nd 1 document per message.

A simple model that allows us to compute this ratio is the regular-tree cost model. The construction

of this model assumes that document results are uniformly distributed across the network and that the

network is a regular tree with fanout F (i.e., all nodes are connected to exactly F + 1 nodes, except the

ones at the leaves which are connected to only one node). Under these assumptions, it takes one message

for a client to �nd all documents at the root of the tree (zero hops), 1 + F messages to get all documents

at zero or one hops (one initial message for the root and one message for each of the F neighbors of the

root), 1 + F + F 2 to get all documents at zero, one, or two hops, and so on. Therefore, if we know that

there are 10 documents in a node, 20 two hops away, and 100 three hops away, it would require 1 message

12

to get the �rst 10 documents, F additional messages to get the 20 documents, and F 2 additional messages

to get the last 100 documents. Given this, we can compute the number of documents per message by

dividing the expected number of result documents at each hop by the number of messages needed to �nd

them. Formally, we de�ne the goodness (goodnesshc) of Neighbori with respect to query Q for hop-count

RI as: goodnesshc(Neighbori; Q) =
P

j=0::h
goodness(Ni[j];Q)

F j�1 , where h is the horizon of the hop-count RI,

goodness() is the estimator for CRI, and Ni[j] is the RI entry for j hops through Neighbori.

In our example, if we assume F = 3, the goodness of X for a query about \DB" documents would be

13+10=3 = 16:33 and for Y would be 0+31=3 = 10:33, so we would prefer X over Y . These values are based

on the assumption that the network topology is a regular tree and that documents are uniformly distributed

(the regular-tree cost model). If this assumption is not true, we can still use the formula above as a heuristic.

Let us turn now to the problem of how to create and update hop-count RIs. A node that needs to notify

its neighbors of an update in its database �rst builds the aggregated RI in the same fashion as with the

compound RI. Then it shifts the columns to the right, so the entries for 1 hop become the entries for 2 hops,

the entries for 2 hops become those for 3 hops, and so on. The entries in the last column of the original RI

are discarded and the summary of the local index is placed as the �rst column of the new table (i.e. as the

one-hop entry). This new aggregated RI is sent to all neighbors which in turn update their RIs.

6.2 Exponentially aggregated RI

The hop-count RI is e�ective in taking into account the number of hops. However, this bene�t comes at a

higher storage and transmission cost than the compound RI. Moreover, in Section 8.2 we will see that the

hop-count RI performance is negatevely a�ected by the lack of information beyond the horizon (a hybrid

CRI-HRI overcomes this disadvantage, but it still does not solve the storage and transmission cost problem).

In this subsection we present an alternative index structure, the exponential aggregated RI, that overcomes

these shortcomings at the cost of some potential loss in accuracy.

The exponentially aggregated RI stores the result of applying the regular-tree cost formula to a hop-count

RI. Speci�cally, each entry of the ERI for node N contains a value computed as:
P

j=1::th
goodness(N [j];T)

F j�1 ,

where th is the height and F the fanout of the assumed regular tree, goodness() is the Compound RI

estimator, N [j] is the summary of the local index of neighbor j of N , and T is the topic of interest of the

entry.

We show in Figure 9 an exponentially aggregated RI computed from our sample network of Figure 8. In

the �gure, we assume that the neighbors of X, Y , and Z are leaf nodes and that the fan out of the tree is

3. The entries for topic \DB" for X and Y have the values 13 + 10=3 = 16:33 and 0 + 31=3 = 10:33.

The exponential RI shares the assumptions of the regular-tree cost model and may not be realistic in

some con�gurations, but it can still be used as an approximate index. There is a fundamental di�erence

between the exponential RI and the hop-count RI. While the hop-count RI does not have any information

13

Path # DB N T L

X 66.67 16.33 5.33 6.33 15.67

Y 46.67 10.33 3.00 20.00 18.67

Z 28.33 5.33 13.33 9.67 19.67

W

X

Y

Z

X1

X2

Y1

Y2

Z2

Z1

Y21

Figure 9: A sample Exponential Routing Index for Node W

beyond the horizon, with the exponential RI we can keep information for all nodes accessible from each

neighbor in the RI. In fact, we will see in Section 8.2 that the exponential RI outperforms the hop-count RI

in most cases.

To update exponential RIs, the node that needs to send an update to a neighbor adds up all rows (except

the one associated with the neighbor to which the update vector is sent), multiplies the resulting vector by

1=F , and adds the goodness of the summary of its local index. When the neighbor receives this update vector,

it replaces the row of the sending node with the new vector and propagates the updates to its neighbors.

Note that for updating exponential RIs it is essential to propagate updates only when the new and old values

of the vector are \di�erent" enough (for example by requiring that the Euclidean distance between the two

vectors is greater than a certain number). If we do not do this, the exponential RI would propagate updates

to all nodes in the network.

7 Cycles in the P2P Network

In this section we analyze how cycles a�ect the process of creating and updating RIs as well as strategies to

minimize those e�ects. To illustrate the e�ect of cycles, we will use the initial setup of Figure 3, but with

the network depicted in Figure 10 (with the cycle A � B � E � G � C � A). Let us assume that node A

adds to its database two new \theory" documents and sends a new aggregate of its RI to B. Node B sends

the update to its E and F neighbors, prompting E to send an update to G, which sends an update to C,

which �nally sends an update to A. When A receives this update, it will mistakingly assume that more

\theory" documents are available via node C, but those extra documents are its own. Worse than that, the

update from C will prompt A to send an update to its neighbors, informing them that they can access two

more theory documents, creating an in�nite loop. Even if A is able to recognize that the update from C

originated from itself (and discard it), the cycle will lead to overcounts in other nodes as, for example, node

C will receive an update from both A and G.

There are three general approaches for dealing with cycles: We ignore the problem alltogether and

pretend that cycles never occur in the P2P network (no-op solution). We use a connection protocol that

prevents cycles from forming in the P2P network (cycle avoidance solution). We allow cycles but take

14

B

C

D

E

F

H

G

I

J

A

Update

Figure 10: Cycles and Routing Indices

actions to recover from their e�ect (cycle detection and recovery solution). Next we examine each of the

above approaches in more detail.

No-op solution: This solution only works with the hop-count RI and the exponential RI (if there are

cycles, the compound RI algorithms can be trapped in an in�nite loop).

In the case of the hop-count RI, cycles longer than the horizon will not a�ect the RI. However, shorter

cycles will a�ect the hop-count RI but their e�ect will be limited if we are using the regular-tree cost model.

To illustrate, consider a simple P2P system with three nodes A, B, and C. Initially A is connected to

B, and B is connected to C. A has 10 documents, while B has 15, and C has 20. The initial hop-count

RI of A for a given topic is shown on the left side of Figure 11. Let us assume now that C establishes a

new connection with A. This new link causes a series of updates that result in the hop-count RI shown

on the right side of Figure 11. Note that now A believes that it can get 10 documents at three hops from

B, however, those 10 documents are the documents present in A. Similarly, the documents reachable via

4 and 5 hops are repeated counts of documents available at 1 or 2 hops. Let us now quantify the e�ect

of those extra columns on the goodness of B. If we use the regular-tree cost model, the goodness of B,

before the cycle was created, was 21.67 (15 + 20=3). After the cycle is created, the goodness increases to

23.58 (15 + 20=3 + 10=9 + 15=27 + 20=81). The di�erence between the two values is the error introduced

by the cycle. This increase represents a relative error of only 9%. However, the cycle increases the cost of

creating/updating the hop-count RI as updates sent by a node return to it (via the cycle), causing the node

to send a new update to all its neighbors (which in turn send the update back to the node again). The cycle

is broken when the update reaches the horizon of the hop-count RI.

Similarly, in the case of the exponential RI, updates are sent back to the originator. However, the e�ect

of the cycle will be smaller and smaller every time the update is sent back (due to the exponential decay),

until the di�erence between the old update and the new update is small enough and the algorithm stops

propagating the update. To illustrate, in the scenario of Figure 11, if we stop propagating updates after

15

Hops

Neighbor 1 2 3 4 5

B 15 20 0 0 0

Hops

Neighbor 1 2 3 4 5

B 15 20 10 15 20

C 20 15 10 20 15

Initial State After C-A connection

Figure 11: E�ects of a cycle on the hop-count RI

there are no changes to the �rst decimal digit of the goodness of the neighbor, then the goodness of B will

be 23.64 (15 + 20=3 + 10=9 + 15=27 + 20=82 + 10=243 + 15=729), resulting in a similar relative error of 9%.

As in the previous case, the main e�ect of the cycle is the increase in cost of creating/updating the RI.

Cycle avoidance solution: In this solution we do not allow nodes to create an \update" connection to

other nodes if such connection would create a cycle. The techniques for cycle avoidance have been extensively

studied (see [TW99] for a survey) and we do not cover it further in this paper. The main disadvantage of

this approach is that in the absence of global information we may end with a suboptimal update network.

Cycle detection and recovery: This solution detects cycles sometime after they are formed and, after

that, takes recovery actions to eliminate (or neutralize) the e�ect of the cycles. In the example of Figure 10,

cycles can be detected by having the originating node of a query or an update, let us say A, include a

unique message identi�er in the message. Any update (or query forwarding) that any other node sends as a

consequence of this message will have the original message identi�er. If a message with the same identi�er

returns to A (let us say from C), then A knows that there is a cycle and that a recovery procedure should be

started. A simple recovery procedure is for A to exclude C from its RI and to ignore any update messages

coming from the link with C. However, this recovery procedure may be reducing the accuracy of the RI.

For example, let us assume that B modi�es its local database and sends updates to its neighbors A, E, and

F . In turn, E will send updates to G which will send an update to C. But, simultaneously, A will send the

same update to C. C knows that the updates from A and G are the same and that it should discard one of

them. How can C choose the one to discard? Unfortunately, C by itself does not have enough information

to make a reasonable decision, especially if updates are batched. Thus, if C discards the update from A, it

may be discarding the shortest path to B.

8 Experimental Results

In this section, we evaluate search mechanisms for P2P systems. First, we present our model of a P2P system.

Then we introduce a simulation tool that allows us to evaluate di�erent search mechanisms e�ciently. We

16

then use our tool to study the performance of di�erent mechanisms as well as the factors that a�ect their

performance. We close the section with an analysis of the cases where RIs can be used e�ectively.

8.1 Modeling search mechanisms in a P2P system

Our goal in this subsection is to identify the elements of a typical search mechanism in a P2P system, so

we can model each element and study its impact on performance. A typical P2P system is a network of

nodes T where each node contains a set of documents. Users send requests consisting of a query q and a

stopCondition to a node of the P2P system. The objective of the search mechanism is to answer those

requests by obtaining a set of documents of size stopCondition that matches the query q. In addition, search

mechanisms allow for updates such as the addition of nodes or new documents.

To process queries and updates we use the mechanisms described in the previous sections (CRIs, HRIs,

ERIs). For comparison purposes, we add an additional mechanism: No-RI. Instead of using an RI to choose

the best neighbor to forward a query, this search mechanism simply chooses a random neighbor.

To further model the elements of a search mechanism, we need to de�ne the topology of the network, the

location of document results, cycle policies, and how costs are measured.

The topology of the network de�nes the number of nodes and how they are connected. In our model, we

consider three kinds of network topologies: a tree, a tree with added cycles, and a power-law graph. The

�rst topology, a tree, is of interest because it does not have cycles (a good base case for our algorithms). For

the second topology, we start with a tree and we add extra vertices at random (creating cycles) so we can

measure the impact of cycles on the search mechanisms. The third topology, a power-law graph, is considered

a good model for P2P systems and allows us to test our algorithms against a \realistic" topology [FFF99].

We model the location of document results using two distributions: uniform and an 80/20 biased distri-

bution. Under the uniform distribution all nodes have the same probability of having each document result

(nodes can have more than one document result). The second distribution assigns uniformly 80% of the

document results to 20% of the nodes (and the remaining 20% of the documents to the remaining 80% of

the nodes).

Modeling the cost of a search mechanism is a complex task. We can model the cost based on the resources

used in the P2P system (e.g., network, storage space, or processing power) or based on the user experience

(e.g., mean query response time, query throughput, or query turnaround time). In current P2P systems,

the critical resource is the network [Clia] as many of the nodes are connected through links with limited

bandwidth (e.g., dial-up connections, DSL, and cable). Therefore, in this paper we focus on the network and

we use the number of messages generated by each algorithm as a measure of cost. This is not to say that

user-based factors (such as response time) are not important, but by focusing on the network bottleneck we

are also improving those factors.

17

Parameter Name Description Base Value
Network Con�guration Parameters
NumNodes Number of nodes in the network 60000
T Topology of the P2P network tree
F Branching factor for tree topology 4
EL Extra links to add cycles to tree topology 10
o Outdegree exponent for power law -2.2088
Document Distribution Parameters
QR Number of Query Results available through all local indices 3125
D Distribution of documents for query q 80/20
RI Parameters
Creationsize Average size of an RI creation/update message 1000 bytes
Querysize Average size of a query message 250 bytes
StopCondition Number of documents requested 10
H Horizon for HRIs 5
A Decay for ERs 4
c RI Compression 0%
minUpdate minimum percentage di�erence for updates to propagate 1%

Figure 12: Simulation Parameters

8.2 Evaluating P2P Search Mechanism Performance

In this section we experimentally compare the three proposed RIs: compound RI (CRI), hop-count RI (HRI),

and exponential RI (ERI) against each other and against the No-RI search mechanism. We also explore how

the performance of the RIs are a�ected by approximate indices, di�erent stop conditions, document result

distribution, number of document results, and network topology.

To evaluate search mechanisms we built a simulator. The simulator receives as input a P2P model and

an operation that can be an update or a query. The simulator iterates over di�erent network topologies and

document result locations, and outputs the average number of messages necessary to perform the operation

plus a con�dence interval. All results were computed with at least a 95% con�dence interval of having a

relative error of 10% or less. Parameters are set to the base values presented in Figure 12 unless stated

otherwise. In Appendix A, we explain in detail the operation of the simulator as well as the choice of the

base values for the parameters.

Figure 13 shows the number of messages needed to process a query when using each kind of RI for two

document distributions. The advantage of using RIs is obvious, we are able to reduce the number of messages

by half when compared to not using RI. Among the RIs, CRI had the best performance, followed by the ERI

and HRI. This di�erence in performance is a function of the number of nodes used to generate the index. In

particular, CRI uses all nodes in the network, HRI uses nodes within a prede�ned a horizon, and ERI uses

nodes until the exponentially decayed value of an index entry reaches a minimum value (resulting in using

more nodes than HRI, but fewer than CRI). This result shows that the more nodes an RI uses to compute

18

0

100

200

300

400

500

600

CRI HRI ERI No RI

Routing Index

N
um

be
r

of
M

es
sa

ge
s

uniform

80/20

Figure 13: Comparison of CRI, HRI, and ERI

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100

Requested Results

N
um

be
r

of
M

es
sa

ge
s

CRI

ERI

Figure 14: Number of Results

the goodness of a path, the better the RI is. However, we will see that a larger number of nodes implies a

higher update cost.

In Figure 13 we also present the e�ect of using two document distributions, an 80/20 biased and a uniform

document distribution. Surprisingly, a 80/20 biased distribution does not improve the performance of RIs

much, but it degrades the performance of a No-RI search mechanism. To understand this result, we analyzed

traces of our simulations. In the case of RIs under a 80/20 document distribution, the algorithm directed

the queries to nodes with a high number of document results, but to reach those content-loaded nodes the

queries needed to travel through several nodes that had very few or no document results. On the other hand,

under a uniform document placement, the algorithms followed good paths where at each node it obtained

a few results. In summary, in one case, we collected results by traveling over an almost empty path to a

full node, while in the other case, we collected results by traveling through a path of a similar length where

each node contributes a few documents. The overall result was that the number of messages per document

result was about the same in both cases. In the case of the No-RI approach, an 80/20 document distribution

penalizes performance as the search mechanism needs to visit a signi�cant number of nodes until it �nds a

content-loaded node (generating a large number of messages in the process).

We also compared RIs against non-index/
ooding solutions such as Gnutella. In that case, RIs reduce

the number of messages by two orders of magnitude (graph not shown). However, this comparison is not

completely fair as Gnutella-like systems �nd all results in the section of the network they explore (versus only

a user-de�ned number of results when using RIs) and they potentially have a better response time (as queries

are processed in parallel, rather than sequentially). However, �nding all results may be an overkill for most

applications as users rarely examine more than the �rst 10 top results returned by a search engine [Bri98]. In

addition, low response times may be hard to achieve in Gnutella-like systems because of network contention

created by tens of thousands of messages generated by each query.

19

0

50

100

150

200

250

300

350

400

450

500

0% 50% 67% 75% 80% 83%

Index Compression

M
es

sa
ge

s CRI

HRI

ERI

No-RI

Figure 15: E�ect of Overcounts

0

100

200

300

400

500

600

0 1 10 100 1000

Added Links

M
es

sa
ge

s

Detect

Ignore

Figure 16: E�ect of Cycles

We now investigate how an increase in the requested number of documents a�ects RIs. Figure 14 shows

the number of messages generated for di�erent requested result sizes when using CRIs, HRIs and ERIs (the

performance of HRI is indistinguishable from ERI, so it is omitted from the graph). In the �gure, we observe

that the higher the number of requested documents, the more messages are generated from the other, so

it is omitted from the graph. the An encouraging fact is the linear shape of the increase, showing that all

RIs, as well as No-RI, scale well on this parameter. We also analyzed the e�ect of a decrease on the number

of document results available (graph not shown). In that case, we obtained a very similar graph where the

number of messages grows linearly with a reduction of document results.

We now investigate how errors in RIs, and particularly overcounts, a�ect RI performance. As discussed

in Section 4, errors can occur in a variety of ways; here we select one scenario to illustrate. We assume that

documents are organized into categories, and the index is a hash table of categories. Several categories may

hash to the same bucket, so the count in a bucket represents the aggregate number of documents in those

categories. For example, suppose there are 3 \database" documents, and 2 \network" ones. If \database"

and \network" hash to the same bucket, the consolidated \database/network" bucket will have a count of 5

documents. If a query is looking for \database" documents, when using the RI, we will believe that they are

5 of them, when in reality there are only 3 (an overcount). (Instead of adding the original document counts,

we could have also chosen to take the minimum of them, generating undercounts; or we could have averaged

them, generating mixed errors.)

As the table size is reduced, more and more overcounts occur. In Figure 15, we show the performance

of CRI, HRI and ERI, as a function of the \index compression." For example, a 50% value means that the

number of hash table buckets is half the number of categories, while 83% represents a table with one-sixth

the categories. (Note that the scale is not linear.) From the graph, we can see that even though there is a

loss of performance because of overcounts, this loss is modest even in the case of signi�cant reductions on

20

0

100

200

300

400

500

600

700

CRI HRI ERI No RI

M
es

sa
ge

s Tree

Tree+Cycle

Powerlaw

Figure 17: Network topology

the size of the index. Moreover, query processing when using RIs is still far cheaper than No-RI even if we

use the highest compression levels. We conducted additional experiments for undercounts and mixed errors

as well as for other error models. Those experiments had similar results to the one presented here and are

omitted for brevity.

In Figure 16 we study how ERIs perform when cycles are added to a tree network. Cycles are created

by adding random links to a tree network with NumNodes� 1 links. As expected, the number of messages

increases as we add more links and cycles are created. The increase in the tra�c is the result of two factors.

First, there is a loss of accuracy of the RI. In the case of the \detect and recover" policy, this loss is the result

of missing the best route to the results (as explained in Section 7), and in the case of the \no-op" policy the

accuracy su�ers because overcounts introduced in the generation of the RI. Second, during query processing

the number of messages increases. In the case of the \detect and recover" policy, those extra messages are

the result of return-queries messages sent by a node that detects a cycle. In the case of the no-op policy,

extra messages are generated when we traverse a cycle more than once, �nding document results that were

already found in a previous iteration. In the �gure, we observe that the increase in the number of messages

is small if we use the \detect and recover" policy, but it can be signi�cant if we choose to ignore cycles. An

unexpected result is that the number of messages drops if we add a large number of links. This drop is the

result of the added connectivity that additional links create, which allows shorter routes to document results.

Similar performance to the one presented for ERI is shown by HRI and CRI (when using the ignore-detect

policy, as CRI is not guaranteed to terminate when using the no-op policy).

In Figure 17 we study how RIs perform in di�erent network topologies. The result of our analysis is

surprising at �rst glance: RIs perform better in a power-law network than in a tree network. There are

two reasons for this result. First, while in a tree-like network the connectivity of every node (except leaf

21

0

10000

20000

30000

40000

50000

60000

70000

CRI HRI ERI

M
es

sa
ge

s Tree

Tree+Cycle

Powerlaw

Figure 18: Updates and Network Topology

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1 10
100

1000

10000

Added Links

M
es

sa
ge

s

No-op

Detect

Figure 19: Updates and Cycle Policy

nodes) is the same, in a power-law network a few nodes have a signi�cantly higher connectivity than the rest.

By analyzing the traces of our simulation, we found that the query algorithms actually direct the queries

towards those well-connected nodes. After getting to these highly connected nodes, a large number of results

is collected without having to issue many messages. The second reason for this performance improvement is

that power-law distributions generate network topologies where the average path length between two nodes

is lower than in tree topologies. Lower path length improves performance as we need less messages to go from

node to node. On the other hand, these same two factors hinder the performance of the No-RI approach.

In a power-law network, there are very few highly connected nodes and it is not easy to �nd them if we just

move randomly as No-RI does. As a result, the No-RI approach visits a signi�cant number of nodes until

it �nally stumbles onto a highly connected node (generating a large number of messages in the process).

Shorter path length also hinders No-RI as bad decisions about which neighbor to contact often result in

return-query messages.

Figure 18 shows the number of messages needed to update each kind of RI for each network topology. The

graph shows the cost of one batch of updates, propagated throughout the network. In the graph we can see

that the cost of CRI is much higher when compared with HRI and ERI. This is the result of CRI propagating

the update to all nodes, while HRI and ERI only propagate the update to a subset of the network. This

result con�rms that the additional information and better query performance of CRIs come with a high price

tag. On the other hand, HRIs and ERIs have very low update costs and their query processing performance

is very close to the one of CRIs, making them an excellent choice as the search mechanism of a P2P system.

In the graph we can also see that network topology has little impact on the update performance of RIs,

as there is low or no correlation between the network topology and the number of nodes that needs to be

updated.

A concern about using ERIs is that their performance may be a�ected signi�cantly by cycles as we may

22

0M

5000M

10000M

15000M

20000M

25000M

30000M

35000M

40000M

45000M

50000M

1 10 19 28 37 46

Updates per Minute

B
yt

es
P

er
M

in
ut

e

No RI

ERI

Figure 20: Updates per minute

have to loop through nodes several times until the value of the update has been exponentially decayed enough

to be considered insigni�cant. Figure 19 shows the number of update messages generated for two di�erent

cycle policies on di�erent tree+cycle network topologies. As in a previous experiment, we create a tree+cycle

topology by starting with a tree network and adding random links to create cycles. In this experiment, we

consider signi�cant all updates that may change the current index value by more than 1%. As expected, the

number of messages increases as we add more links, but in both cases the increase is modest (although the

increase is more rapid when cycles are ignored). In conclusion, ERIs are not expensive to use in a network

with cycles even if we propagate updates with an impact as low as 1%.

As stated earlier, building RIs is advantageous only if enough queries can make use of the RIs before

we have to update the indices. To compare query and update costs, we need to count bytes transmitted,

rather than simply messages, since query messages are shorter. In Figure 20 we show the number of bytes

transmitted per minute, for an ERI system and for a no-RI one. We assume that the system as a whole

(or is it a single node?) is processing 1032 queries per minute, and the horizontal axis shows the number of

updates per minute. The number 1032 corresponds to the observed average query load by a Gnutella node

run at Stanford [YGM01a]. Thus, when say 10 updates per minute are run, there are roughly 100 queries for

each update. For our comparison, we assume that query messages are 70 bytes [Clib], and updates messages

are 3500 bytes (hash table with 1750 buckets of 2 bytes each). As we see in the �gure, as the number of

updates increases, the overall communication cost for the ERI scheme increases. The cost for the no-RI

scheme remains constant since there are no RIs to update. The crossover point is 36 updates per minute.

That is, as long as there are fewer than 36 updates per minute, using an RI pays o�. In practice we would

expect the number of updates to be way below 36 per minute, especially since it is not that critical to keep

indexes up to date and updates can be batched together.

23

9 Conclusions

In this paper we studied how to improve the e�ciency of content search in a peer-to-peer system. We achieve

greater e�ciency by placing Routing Indices in each node. Three possible RIs: compoundRIs, hop-count RIs,

and exponential RIs were proposed and experimentally evaluated using simulations. From our experiments

we conclude that ERIs and HRI o�er signi�cant improvements versus not using an RI, while keeping update

costs low. We belive that routing indices, and in particular ERIs and HRIs, can help improve the search

performance of current and future P2P systems.

References

[Bel57] R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

[Bri98] S. Brin. The anatomy of a large-scale hypertextual web search engine. In Proceedings of the
7th WWW Conference, 1998.

[Clia] Clip2.com, world-wide web: http://dss.clip2.com/gnutella.html. Gnutella: To the Bandwidth
and Beyond.

[Clib] Clip2.com, world-wide web: http://www.clip2.com/dss barrier.html. Bandwidth Barriers to
Gnutella Network Scalability.

[FF62] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ,
1962.

[FFF99] M. Faloutsos, P. Faloutsos, and C Faloutsos. On power-law relationships of the internet topol-
ogy. In SIGCOMM, 1999.

[GGM95] L. Gravano and H. Garcia-Molina. Generalizing gloss for vector-space databases and broker hi-
erarchies. In Proceedings of the Tweenty-�rst International Conference on Very Large Databases
(VLDB'95), 1995.

[GGMT94a] L. Gravano, H. Garcia-Molina, and A. Tomasic. The e�ectiveness of gloss for the text-database
discovery problem. In Proceedings of the 1994 ACM International Conference on Management
of Data (SIGMOD'94), 1994.

[GGMT94b] L. Gravano, H. Garcia-Molina, and A. Tomasic. Precision and recall of gloss estimators for
database discovery. In Proceedings of the Third International Conference on Parallel and Dis-
tributed Information Systems (PDIS'94), 1994.

[GGMT00] L. Gravano, H. Garcia-Molina, and A. Tomasic. Gloss: Text-source discovery over the internet.
ACM Transactions on Database Systems (TODS'2000), 2000.

[KBC+00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-
scale persistent storage. In Proceedings of the Ninth international Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2000), 2000.

[Kos00] D. Kossman. The state of the art in distributed queyr processing. ACM Computing Survey,
September 2000.

24

[Mil98] C. K. Miller. Multicast Networking and Applications. Addison Wesley, 1998.

[PS00] C. Palmer and J. Ste�an. Generating network topologies that obey power laws. In GLOBE-
COM, 2000.

[Tan96] A. S. Tanenbaum. Computer Networks. Prentice Hall PTR, 1996.

[TW99] A. Tanenbaum and A.Woodhull. Operating Systems Design and Implementation. Prentice-Hall,
Inc., 1999.

[Wora] World-wide web: http://freenet.sourceforge.com. Freenet Home Page.

[Worb] World-wide web: http://gnutella.wego.com. Gnutella Development Page.

[Worc] World-wide web: http://setiathome.ssl.berkeley.edu. Seti At Home Page.

[Word] World-wide web: http://www.napster.com. Napster Home Page.

[YGM01a] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-peer systems. In Proceedings of the
Tweenty-�rst International Conference on Very Large Databases (VLDB'01), 2001.

[YGM01b] B. Yang and H. Garcia-Molina. E�cient search in peer-to-peer networks. Technical report,
Stanford University, October 2001. Submitted to ICDCS 2002.

25

Appendix A: Simulating a P2P System

In this appendix we described how our simulator works as well as the choice for the base values of the

parameters.

The simulator starts by generating a network topology. Then it distributes results among the nodes, picks

at random a node that will initially receive the query or update, and creates the necessary RIs. To build the

RIs, we do not need to use the full-
edged algorithms presented in Section 5.1, as we know from which node

the query will be issued. Instead, we use a version of the algorithm that only updates RI entries for neighbors

\downstream" from the node picked as the originator of the query. Cycles are possible when creating RIs.

We consider two possible cycle policies: no-op solution and detect and recover (we do not consider the cycle

avoidance solution as it has the same e�ect as the detect and recover policy when processing queries and

updates). As the name implies, in the no-op solution we do not do anything special to deal with cycles. For

the detect and recover policy, nodes keep track of the queries and updates that they have processed. If a

query or update reaches a node for a second time (due to a cycle) the message is not forwarded any further

(breaking the cycle).

We generate errors to simulate approximate indices in two ways. In one scenario, we assume that

RIs were implemented as hash tables with document counts in each bucket. We generate overcounts by

consolidating buckets of the original hash tables and adding their document counts (under the motivation

that by consolidating buckets we reduce the size of the index). In the second scenario, errors are generated by

using a normal distribution with mean 0 and variance v (making errors positives for overcounts, negative for

undercounts, and unchanged for mixed). In all cases, errors are propagated on updates, so they compound

from node to node (as they would do in a real system).

In the case of a query, after building the network, distributing the documents, and building the RIs,

we send a message to the selected initial node with the number of documents requested (stopCondition

in this case). The node �nds how many local results are available (if any), subtract the number of local

results from the number of requested documents and if this number has not reached zero, the node sends the

request sequentially to each of its neighbors in the order prescribed by the RI (with the number of requested

document set to the number received minus the number of documents found). In turn, a node that receives

a forwarded request does the same procedure until the number of requested documents reaches zero (we

are done) or the node does not have more neighbors to which to forward the query (we cannot proceed

further). In the later case, the query is returned to the neighbor that sent the query to that node and the

neighbor sends the returned query to its next best neighbor according to the RI. During this process we

count the three kind of messages that are generated: forwarded queries (when a node sends the query to a

neighbor), returned queries (when a node sends back a query because it cannot be forwarded any more and

the stop condition has not been met yet), and result messages (sent to the originator of the query telling

them that a result can be accessed at a node). Note, that we are not counting the actual transmission of the

answers as these messages are very application dependent and they do not depend on the performance of

A-1

the search mechanism. Similar than when building RIs, we treat cycles during query processing according

to the policies prescribed by the P2P model.

In the case of an update, the initially selected node updates its RI, aggregates all rows and sends them to

all of its neighbors (appropriately modi�ed depending on the RI used). In turn, each neighbor checks if the

changes in the RI are \signi�cant enough" by comparing the percentage di�erence between the old and the

new value against the minUpdate parameter. If the changes are signi�cant, it updates its RI, aggregates all

columns and sends the aggregated vector to its neighbors. The stop condition for an update varies among

the di�erent RIs as described in the previous sections. As before, during the update process we apply the

cycle policies de�ned in the model.

In the remaining of the appendix, we explain the choice for base values of the parameters in Figure 12.

The �rst parameter, NumNodes de�nes the size of the P2P network. In our simulations, we set NumNodes

to 60000, roughly double the maximumnumber of nodes found in a 2000 study of the Gnutella network [Clia].

Parameter T de�nes the topology of the network. To further de�ne the three topologies in our model, we

de�ne F as the branching factor for the tree topology, EL as the number of links added to a tree to form a

tree with cycles, and o as the outdegree exponent of a power-law network. In the simulator, we generate a

power-law network by using the power-law out-degree generator [PS00]. We set the outdegree exponent to

-2.20288 equal to the best �t for the Internet [FFF99]. The Document Distribution Parameters de�ne how

documents are distributed throughout the P2P system. For simplicity, we assume that all queries have the

same number of results (QR). [YGM01a] found that about 5.2% of the nodes of the Gnutella network will

have an answer for a given query, so we set this number to 3125 (5.2% of 60000 nodes). Parameter D de�nes

the location of document results in the network. Finally, the RI Parameters de�ne the size of RI tables and

messages as well as the parameters needed for each RI algorithm.

A-2

