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Abstract 

Peer-to-peer databases are becoming prevalent on the 

Internet for distribution and sharing of documents, 

applications, and other digital media.  The problem of 

answering large scale, ad-hoc analysis queries – e.g., 

aggregation queries – on these databases poses unique 

challenges. Exact solutions can be time consuming and 

difficult to implement given the distributed and dynamic 

nature of peer-to-peer databases.  In this paper we 

present novel sampling-based techniques for approximate 

answering of ad-hoc aggregation queries in such 

databases.  Computing a high-quality random sample of 

the database efficiently in the P2P environment is 

complicated due to several factors – the data is 

distributed (usually in uneven quantities) across many 

peers, within each peer the data is often highly 

correlated, and moreover, even collecting a random 

sample of the peers is difficult to accomplish. To counter 

these problems, we have developed an adaptive two-phase 

sampling approach, based on random walks of the P2P 

graph as well as block-level sampling techniques. We 

present extensive experimental evaluations to 

demonstrate the feasibility of our proposed solution.  

 

1. Introduction 

Peer-to-Peer Databases: The peer-to-peer network 

model is quickly becoming the preferred medium for file 

sharing and distributing data over the Internet. A peer-to-

peer (P2P) network consists of numerous peer nodes that 

share data and resources with other peers on an equal 

basis. Unlike traditional client-server models, no central 

coordination exists in a P2P system, thus there is no 

central point of failure.  P2P network are scalable, fault 

tolerant, and dynamic, and nodes can join and depart the 

network with ease. The most compelling applications on 

P2P systems to date have been file sharing and retrieval. 

For example, P2P systems such as Napster [25], Gnutella 

[15], KaZaA [20] and Freenet [13] are principally known 

for their file sharing capabilities, e.g., the sharing of 

songs, music, and so on. Furthermore, researchers have 

been interested in extending sophisticated IR techniques 

such as keyword search and relevance retrieval to P2P 

databases.  

Aggregation Queries: In this paper, however, we 

consider a problem on P2P systems that is different from 

the typical search and retrieval applications. As P2P 

systems mature beyond file sharing applications and start 

getting deployed in increasingly sophisticated e-business 

and scientific environments, the vast amount of data 

within P2P databases pose a different challenge that has 

not been adequately researched thus far – that of how to 

answer aggregation queries on such databases. 

Aggregation queries have the potential of finding 

applications in decision support, data analysis and data 

mining. For example, millions of peers across the world 

may be cooperating on a grand experiment in astronomy, 

and astronomers may be interesting in asking decision 

support queries that require the aggregation of vast 

amounts of data covering thousands of peers.  

We make the problem more precise as follows. 

Consider a single table T that is distributed over a P2P 

system; i.e., the peers store horizontal partitions (of 

varying sizes) of this table. An aggregation query such as 

the following may be introduced at any peer (this peer is 

henceforth called the sink): 
 

 

 

 

 

 
 

In the above query, the Agg-Op may be any aggregation 

operator such as SUM, COUNT, AVG, and so on; Col 

may be any numeric measure column of T, or even an 

expression involving multiple columns; and the selection-

condition decides which tuples should be involved in the 

aggregation. While our main focus is on the above 

standard SQL aggregation operators, we also briefly 

discuss other interesting statistical estimators such as 

medians, quantiles, histograms, and distinct values. 

While aggregation queries have been heavily 

investigated in traditional databases, it is not clear that 

Aggregation Query 
 

SELECT Agg-Op(Col) FROM T 

WHERE selection-condition 

 



these techniques will easily adapt to the P2P domain. For 

example, decision support techniques such as OLAP 

commonly employ materialized views, however the 

distribution and management of such views appears 

difficult in such a dynamic and decentralized domain [19, 

11]. In contrast, the alternative of answering aggregation 

queries at runtime “from scratch” by crawling and 

scanning the entire P2P repository is prohibitively slow. 

Approximate Query Processing: Fortunately, it has 

been observed that in most typical data analysis and data 

mining applications, timeliness and interactivity are more 

important considerations than accuracy - thus data 

analysts are often willing to overlook small inaccuracies 

in the answer provided the answer can be obtained fast 

enough. This observation has been the primary driving 

force behind recent development of approximate query 

processing (AQP) techniques for aggregation queries in 

traditional databases and decision support systems [9, 3, 

6, 8, 1, 14, 5, 7, 23]. Numerous AQP techniques have 

been developed, the most popular ones based on random 

sampling, where a small random sample of the rows of 

the database is drawn, the query is executed on this small 

sample, and the results extrapolated to the whole 

database. In addition to simplicity of implementation, 

random sampling has the compelling advantage that in 

addition to an estimate of the aggregate, one can also 

provide confidence intervals of the error with high 

probability. Broadly, two types of sampling-based 

approaches have been investigated: (a) Pre-computed 

samples - where a random sample is pre-computed by 

scanning the database, and the same sample is reused for 

several queries, and (b) Online samples - where the 

sample is drawn “on the fly” upon encountering a query.  

Goal of Paper: In this paper, we also approach the 

challenges of decision support and data analysis on P2P 

databases in the same manner, i.e., we investigate what it 

takes to enable AQP techniques on such distributed 

databases.  
 

 

 

 

 

 

 

 

 
 

The cost of query execution in traditional databases is 

usually a straightforward concept – it is either I/O cost or 

CPU cost, or a combination of the two. In fact, most AQP 

approaches simplify this concept even further, by just 

trying to minimize the number of tuples in the sample; 

thus making the assumption that the sample size is 

directly related to the cost of query execution. However, 

in P2P networks, the cost of query execution is a 

combination of several quantities, e.g., the number of 

participating peers, the bandwidth consumed (i.e., 

amount of data shipped over the network), the number of 

messages exchanged, the latency (the end-to-end time to 

propagate the query across multiple peers and receive 

replies), the I/O cost of accessing data from participating 

peers, the CPU cost of processing data at participating 

peers, and so on. In this paper, we shall be concerned with 

several of these cost metrics.  

Challenges: Let us now discuss what it takes for 

sampling-based AQP techniques to be incorporated into 

P2P systems. We first observe that two main approaches 

have emerged for constructing P2P networks today, 

structured and unstructured.  Structured P2P networks 

(such as Pastry [27] and Chord [30]) are organized in such 

a way that data items are located at specific nodes in the 

network and nodes maintain some state information, to 

enable efficient retrieval of the data. This organization 

sacrifices atomicity by mapping data items to particular 

nodes and assume that all nodes are equal in terms of 

resources, which can lead to bottlenecks and hot-spots. 

Our work focuses on unstructured P2P networks, which 

make no assumption about the location of the data items 

on the nodes, and nodes are able to join the system at 

random times and depart without a priori notification. 

Several recent efforts have demonstrated that unstructured 

P2P networks can be used efficiently for multicast, 

distributed object location and information retrieval [10, 

24, 31].  

For approximate query processing in unstructured 

P2P systems, attempting to adapt the approach of pre-

computed samples is impractical for several reasons: (a) it 

involves scanning the entire P2P repository, which is 

difficult, (b) since no centralized storage exists, it is not 

clear where the pre-compute sample should reside, and (c) 

the very dynamic nature of P2P systems indicates that 

pre-computed samples will quickly become stale unless 

they are frequently refreshed.  

Thus, the approach taken in this paper is to 

investigate the feasibility of online sampling techniques 

for AQP on P2P databases. However, online sampling 

approaches in P2P databases pose their own set of 

challenges. To illustrate these challenges, consider the 

problem of attempting to draw a uniform random sample 

of n tuples from such a P2P database containing a total of 

N tuples. To ensure a true uniform random sample, our 

sampling procedure should be such that each subset of n 

tuples out of N should be equally likely to be drawn. 

However, this is an extremely challenging problem due to 

the following two reasons. 
 

• Picking even a set of uniform random peers is a 

difficult problem, as the sink does not have the IP 

addresses of all peers in the network. This is a well-

known problem that other researchers have tackled 

(in different contexts) using random walk techniques 

Goal of Paper: Approximating Aggregation 

Queries in P2P Networks 

Given an aggregation query and a desired error 

bound at a sink peer, compute with “minimum cost” 

an approximate answer to this query that satisfied the 

error bound. 

 



on the P2P graph [14, 21, 4] – i.e., where a 

Markovian random walk is initiated from the sink 

that picks adjacent peers to visit with equal 

probability, and under certain connectivity properties, 

the random walk is expected to rapidly reach a 

stationary distribution. If the graph is badly clustered 

with small cuts, this affects the speed at which the 

walk converges. Moreover, even after convergence, 

the stationary distribution is not uniform; in fact, it is 

skewed towards giving higher probabilities to nodes 

with larger degrees in the P2P graph. 

• Even if we could select a peer (or a set of peers) 

uniformly at random, it does not make the problem of 

selecting a uniform random set of tuples much easier. 

This is because visiting a peer at random has an 

associated overhead, thus it makes sense to select 

multiples tuples at random from this peer during the 

same visit. However, this may compromise the 

quality of the final set of tuples retrieved, as the 

tuples within the same peer are likely to be correlated 

– e.g., if the P2P database contained listings of, say 

movies, the movies stored on a specific peer are 

likely to be of the same genre. This correlation can be 

reduced if we select just one tuple at random from a 

randomly selected peer; however the overheads 

associated with such a scheme will be intolerable. 

Our Approach: We briefly describe the framework of 

our approach.
 
 Essentially, we abandon trying to pick true 

uniform random samples of the tuples, as such samples 

are likely to be extremely impractical to obtain. Instead, 

we consider an approach where we are willing to work 

with skewed samples, provided we can accurately 

estimate the skew during the sampling process. To get the 

accuracy in the query answer desired by the user, our 

skewed samples can be larger than the size of a 

corresponding uniform random sample that delivers the 

same accuracy, however, our samples are much more cost 

efficient to generate.  

Although we do not advocate any significant pre-

processing, we assume that certain aspects of the P2P 

graph are known to all peers, such as the average degree 

of the nodes, a good estimate of the number of peers in 

the system, certain topological characteristics of the graph 

structure, and so on. Estimating these parameters via pre-

processing are interesting problems in their own right, 

however we omit these details from this paper. The main 

point we make is that these parameters are relatively slow 

to change and thus do not have to be estimated at query 

time – it is the data contents of peers that changes more 

rapidly, hence the random sampling process that picks a 

representative sample of tuples has to be done at runtime.  

Our approach has two major phases. In the first 

phase, we initiate a fixed-length random walk from the 

sink. This random walk should be long enough to ensure 

that the visited peers
1
 represent a close sample from the 

underlying stationary distribution – the appropriate length 

of such a walk is determined in a pre-processing step. We 

then retrieve certain information from the visited peers, 

such as the number of tuples, the aggregate of tuples (e.g., 

SUM/COUNT/AVG, etc.) that satisfy the selection 

condition, and send this information back to the sink. This 

information is then analyzed at the sink to determine the 

skewed nature of the data that is distributed across the 

network - such as the variance of the aggregates of the 

data at peers, the amount of correlation between tuples 

that exists within the same peers, the variance in the 

degrees of individual nodes in the P2P graph (recall that 

the degree has a bearing on the probability that a node 

will be sampled by the random walk), and so on. Once 

this data has been analyzed at the sink,  an estimation is 

made on how much more samples are required - and in 

what way should these samples be collected - so that the 

original query can be optimally answered within the 

desired accuracy with high probability. For example, the 

first phase may recommend that the best way to answer 

this query is to visit m’ more peers, and from each peer, 

randomly sample t tuples. We mention that the first phase 

is not overly driven by heuristics – instead it is based on 

strong underlying theoretical principles, such as theory of 

random walks [14, 21, 4], as well as statistical techniques 

such as cluster sampling, block-level sampling and cross-

validation [9, 16]. 

The second phase is then straightforward – a random 

walk is reinitiated and tuples collected according to the 

recommendations made by the first phase. Effectively, the 

first phase is used to “sniff” the network and determine an 

optimal-cost “query plan”, which is then implemented in 

the second phase. For certain aggregates, such as COUNT 

and SUM, further optimizations may be achieved by 

pushing the selections and aggregations to the peers – i.e., 

the local aggregates instead of raw samples are returned 

to the sink, which are then composed into a final answer. 

Summary of Contributions:  

• We introduce the important problem of approximate 

query processing in P2P databases that is likely to be 

of increasing significance in the future.  

• The problem is analyzed in detail, and its unique 

challenges are comprehensively discussed. 

• Adaptive, two-phase sampling-based approaches are 

proposed, based on well-founded theoretical 

principles.  

• The results of extensive experiments are presented 

that demonstrate the importance of the problem and 

the validity of our approaches. 

                                                           
1
 Actually, only a small fraction of the visited peers are selected 

for consideration, and the remaining is “jumped over” – this is 

determined by the jump size parameter that is discussed in later 

sections. 



The rest of this paper is organized as follows.  In Section 

2 we describe related work.  We provide the foundation of 

our approach in Section 3, and the algorithm in Section 4.  

In Section 5 we present the results of experiments, and 

conclude in Section 6. 

2. Related Work 

Peer-to-Peer (P2P) systems are becoming very popular 

because they provide an efficient mechanism for building  

large, scalable systems [24]. Most recent work has 

focused on Distributed Hash Tables (DHTs) [26, 27, 30]. 

Such techniques provide scalability advantages over 

unstructured systems (such as Gnutella) however they are 

not flexible enough for some applications, especially 

when nodes join or leave the network frequently or  

change their connections often. 

Recent work has proposed different techniques for 

exact query processing in P2P systems. Most proposals 

use structured overlay networks (DHTs), such as CAN, 

Pastry, or Chord. Such techniques include PIER [17], 

DIM [23], or [28], and since they use DHTs they have a 

different focus and are not directly applicable to our case. 

A hybrid system, Mercury [4], using routing hubs to 

answer range queries, was also recently proposed. This 

system is also designed to provide exact answers to range 

queries. Exact solutions to OLAP queries have been 

considered in [11, 19]. 

Methods to sample random peers in P2P networks 

have been proposed in [14, 21, 4]. These techniques use 

Markov chain random walks to select random peers from 

the network. Their results show that when certain 

structural properties of the graph are known or can be 

estimated (such as the second eigenvalue of the graph) the 

parameters of the walk can be set so that a representative 

sample of the stationary distribution can be collected with 

high probability.  In [4] it is shown that if the graph is an 

expander, a random walk converges to the stationary 

distribution in O(logM) steps, where M is the number of 

peers in the network. 

Our work also generalizes to the P2P domain 

previous work on approximate query processing in 

relational databases. Recent work by [9, 3, 6, 8, 1, 14, 5, 

7, 23] has developed powerful techniques for employing 

sampling in the database engine to approximate 

aggregation queries and to estimate database statistics. 

Recent techniques have focused on providing formal 

foundations and algorithms for block-level sampling and 

are thus most relevant to our work. The objective in 

block-level sampling is to derive a representative sample 

by only randomly selecting a set of disk blocks of a 

relation [9, 16].  Specifically, [9] presents a technique for 

histogram estimation that uses cross-validation to identify 

the amount of sampling required for a desired accuracy 

level. In addition, the paper [16] considers the problem of 

deciding what percentage of a disk block should be 

included in the sample, given a cost model. 

3. Foundations of our Approach 

In this section we discuss the principles behind our 

approach for approximate query processing on P2P 

databases. Our actual algorithm is described in Section 4. 

3.1. The Peer-to-Peer Model 

We assume an unstructured P2P network represented as a 

graph G = (P, E), with a vertex set P={p1, p2, ..., pM} and 

an edge set E. The vertices in P represent the peers in the 

network and the edges in E represent the connections 

between the vertices in P. Each peer p is identified by the 

processor’s IP address and a port number (IPp, portp). The 

peer p is also characterized by the capabilities of the 

processor on which it is located, including its CPU speed 

pcpu, memory bandwidth pmem and disk space pdisk. The 

node also has a limited amount of bandwidth to the 

network, noted by pband. In unstructured P2P networks, a 

node becomes a member of the network by establishing a 

connection with at least one peer currently in the network. 

Each node maintains a small number of connections with 

its peers; the number of connections is typically limited 

by the resources at the peer. We denote the number of 

connections a peer is maintaining by pconn.  

The peers in the network use the Gnutella’s P2P 

protocol to communicate. The Gnutella P2P protocol 

supports four message types (Ping, Pong, Query, 

Query_Hit); of which the Ping and Pong messages are 

used to establish connections with other peers, and the 

Query and Query_Hit messages are used to search in the 

P2P network. Gnutella, however, uses a naïve Breadth 

First Search (BFS) technique in which queries are 

propagated to all the peers in the network, and thus 

consumes excessive network and processing resources 

and results in poor performance. Our approach, on the 

other hand, uses a probabilistic search algorithm based on 

random walks. The key idea is that, each node forwards a 

query message, called walker, randomly to one of its 

adjacent peers. This technique is shown to improve the 

search efficiency and reduce unnecessary traffic in the 

P2P network. 

3.2. Query Cost Measures  

As mentioned in the introduction, the cost of the 

execution of a query in P2P databases is more 

complicated that equivalent cost measures in traditional 

databases. The primary cost measure we consider is 

latency, which is the end-to-end time to propagate the 

query across multiple peers and receive replies. 

For the purpose of illustration, we focus in this 

section on the SUM and COUNT aggregates. For these 

specific aggregates, latency can be approximated by an 



even simpler measure: the number of peers that 

participate in the algorithm. This measure is appropriate 

for these aggregates primarily because the overheads of 

visiting peers dominate other incurred costs.  

To see this, we note that the aggregation operator (as 

well as the selection filter) can be pushed to each visited 

peer. Once a peer is visited by the algorithm, the peer can 

be instructed to simply execute the original query on its 

local data and send only the aggregate (and its degree) 

back to the sink, from which the sink can reconstruct the 

overall answer. Moreover, this information can be sent 

directly without necessitating any intermediate hops, as 

the visited peer knows the IP address of the sink from 

which the query originated. Thus the bandwidth 

requirement of such an approach is uniformly very small 

for all visited peers – they are not required to send more 

voluminous raw data (e.g., all or parts of the local 

database) back to the sink. 

In approximating latency by the number of visited 

peers, we also make the implicit assumption that the 

overhead of visiting peers dominates the costs of local 

computations (such as, execution of the original query on 

the local database). This is of course true if the local 

databases are fairly small. To ensure that the local 

computations remain small even if local databases are 

large, our approach in such cases is to execute the 

aggregation query only on a small fixed-sized random 

sample of the local data – i.e., we sub-sample from the 

peer - scale the result to the entire local database, and 

send the scaled aggregate back to the sink. This way, we 

ensure that the local computations are uniformly small 

across all visited peers. 

In summary, for SUM and COUNT aggregates, 

latency is shown to be proportional to the number of 

visited peers. Thus, our goal is to minimize the number of 

peers that must be visited in order to arrive at an 

approximate answer with the desired accuracy. 

We mention that for other types of aggregations – 

e.g., statistics computations such as medians, quantiles, 

histograms, and distinct values – the cost model is more 

complex as the aggregation operator usually cannot be 

pushed to the peers. In such cases, more voluminous data 

has to be sub-sampled from the visited peers and sent 

back to the sink, thus incurring nontrivial bandwidth 

costs. An appropriate cost model usually has to take into 

account multiple factors, such as costs of visiting peers, 

local computations at peers, transportation of data back to 

the sink, and local computations at the sink. Handling 

such aggregations is part of ongoing work – e.g., we have 

interesting results on the median and quantile 

computations that are presented later in the paper - 

however we omit complete details of these efforts due to 

lack of space. 

3.3. Random Walk in Graphs 

In seeking a random sample of the P2P database, we have 

to overcome the sub-problem of how to collect a random 

sample of the peers themselves. Unrepresentative samples 

of peers can quickly skew results producing erroneous 

aggregation statistics.  Sampling in a non-hierarchical 

decentralized P2P network presents several obstacles in 

obtaining near uniform random samples. This is because 

no peer (including the query sink) knows the IP addresses 

of all other peers in the network – they are only aware of 

their immediate neighbors. If this were not the case, 

clearly the sink could locally generate a random subset of 

IP addresses from among all the IP addresses, and visit 

the appropriate peers directly. We note that this problem 

is not encountered in traditional databases, as even if one 

has to resort to cluster (or block-level) sampling such as 

in [9, 16], obtaining an efficient sample of the blocks 

themselves is straightforward. 

This problem has been recognized in other contexts 

(see [14] and the references therein), and interesting 

solutions based on Markov chain random walks have been 

proposed. We briefly review such approaches here. A 

Markov chain random walk is a procedure that is initiated 

at the sink, and for each visited peer, the next peer to visit 

is selected with equal probability from among its 

neighbors (and itself – thus self loops are allowed). It is 

well known that, if this walk is carried out long enough, 

the eventual probability of reaching any peer p will reach 

a stationary distribution. To make this more precise, let P 

= {p1, p2, …, pM} be the entire set of peers, let E be the 

entire set of edges, and let the degree of a peer p be 

deg(p). Then the probability of any peer p in the 

stationary distribution is: 

( ) ( )
E

p
pprob

2

deg
=  

It is important to note that the above distribution is not 

uniform – the probability of each peer is proportional to 

its degree. Thus, even if we can efficiently achieve this 

distribution, we will have to compensate for the fact that 

the distribution is skewed as above, if we have to use 

samples drawn from it for answering aggregation queries.  

The main issue that has concerned researchers has 

been the speed of convergence, i.e., how many hops h are 

necessary before one gets close to the stationary 

distribution. Most results have pointed to certain broad 

connectivity properties that the graph should possess for 

this to happen. In particular, it has been shown that if the 

transition probabilities that govern the random walk on 

the P2P graph are modeled as an MxM matrix, the second 

eigenvalue plays an important role in these convergence 

results. The second eigenvalue describes connectivity 

properties of graphs - in particular whether the graph has 

small cuts which would adversely impact the length of the 



walk necessary to arrive at convergence. For example, 

Figure 2 describes a clustered graph with a small cut.  

   

 
Figure 1: Two clusters with a small cut between each other   
 

As the results in [14] show, if the P2P graph is well 

connected (i.e., it has a small second eigenvalue, and a 

minimum degree of the graph is large), then the random 

walk quickly converges as it “loses memory” rapidly. In 

fact, under certain specific conditions of connectedness 

(e.g., expander graphs that are common in P2P networks), 

convergence can be achieved in O(logM) steps. 

In our case, recall from the introduction that we 

assume that we are allowed a certain amount of 

preprocessing to determine various properties of the P2P 

graph that will be useful at query time – under the 

assumption that the graph topology changes less rapidly 

compared to the data content at the peers. The speed of 

convergence of a random walk in this graph is determined 

in this preprocessing step, in addition to other useful 

properties such as number of nodes M, the number of 

edges |E|, and so on.  With respect to speed of 

convergence, we essentially determine a jump parameter j 

that determines how many peers to skip between 

selections of peers for the sample.  As the jump increases, 

the correlation between successive peers that are selected 

for the sample decreases rapidly.  

3.4. Sampling Theorems 

In this subsection, we shall develop the formal sampling 

theorems that drive our algorithm. We shall show how the 

tuples that are retrieved from the first phase of our 

algorithm can be utilized to recommend how the second 

phase should be executed, i.e., the “query plan” for 

answering the query approximately so that a desired error 

is achieved. 

We focus here on the COUNT aggregate for the 

purpose of illustrating our main ideas (our formal results 

can be easily extended for the SUM case).  Finally, to 

keep the discussion simple, we assume that all local 

databases at peers are small, i.e., sub-sampling is not 

required (our results can be extended for the sub-sampling 

case, and in fact our algorithm in Section 4 does not make 

this assumption). 

As discussed earlier, our algorithm has two phases. In 

the first phase, our algorithm will visit a predefined 

number of peers m using a random walk such that the 

sample of visited peers will appear as if they have been 

drawn from the stationary distribution of the graph. The 

query will be executed locally at each visited peer, and 

the aggregates will be sent back to the sink, along other 

information such as the degrees of the visited peers (from 

which information such as the peers probabilities in the 

stationary distribution can be computed). The sink 

analyzes this information, and then determines how many 

more peers need to be visited in the second phase. The 

theorems that we develop next provide the foundations on 

which the decisions in the first phase are made. 
 

Recall that P = {p1, p2, …, pM} is the set of peers. 
 

For a tuple u, let y(u) = 1 if u satisfies the selection 

condition, and = 0 otherwise.  
 

Let the aggregate for a peer p be ( ) ( )
u p

y p y u
∈

=∑  

Let y be the exact answer for the query, i.e. ∑
∈

=
Pp

pyy )(  

The query also comes with a desired error threshold 
req

∆ . 

The implication of this requirement is that, if y’ is the 

estimated count by our algorithm, then 
 

' reqy y− ≤ ∆  

 

Now, consider a fixed-size sample of peers S = {s1, s2… 

sm} where each si is from P. This sample is picked by the 

random walk in the first phase. We can approximate this 

process as that of picking peers in m rounds, where in 

each round a random peer si is picked from P with 

probability prob(si). We also assume that peers may be 

picked with replacement – i.e., multiple copies of the 

same peer may be added to the sample – as this greatly 

simplifies the statistical derivations below. 
 

Consider the quantity y
’’
defined as follows 

 
Theorem 1: yyE =]''[ , that is, y’’ is an unbiased 

estimator of y. 
 

Proof: Intuitively, each sampled peer s tries to estimate y 

as y(s)/prob(s), i.e., by scaling its own aggregate by the 

inverse of its probability of getting picked. The final 

estimate y’’ is simply the average of the m individual 

estimates.   

To proceed with the proof, consider the simple case 

of only one sampled peer, i.e., m = 1. In this case, 

ypprob
pprob

py
yE

Pp

=







=∑

∈

)(
)(

)(
]"[  

To extend to any m, we make use of the linearity of 

expectation formula: E[X+Y] = E[X] + E[Y] for random 

variables X and Y (that need not even be independent). 

m

sprob

sy

y
Ss

∑
∈=

)(

)(

''                                                    (1) 



Thus if the expected estimate of any single random peer is 

y, then the expected average estimate by m random peers 

is also y.  

We next need to determine the variance of the 

random variable y’’.   

 

Theorem 2 (Standard Error Theorem): 

m
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Proof: To easily derive this variance, let us consider the 

simple case of only one sampled peer, i.e., m = 1. In this 

case, it is easy to see that the variance is defined by the 

quantity 
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To extend to any m, we make use of the following 

formulas for variance: (a) Var[aX] = a
2
Var[X], and (b) 

Var[X+Y] = Var[X] + Var[Y], where X and Y are 

independent random variables and a is a constant. Using 

these formulas, we can easily show that Var[y’’] = C/m.  
 

The above Standard Error Theorem shows that the 

variance varies inversely as the sample size. The quantity 

C also represents the “badness” of the clustering of the 

data in the peers – the larger the C, the more the 

correlation amongst the tuples within peers, and 

consequently the more peers need to be sampled to keep 

the variance of the estimator y’’ small. Notice also that if 

we divide the variance by N
2
, we will effectively get the 

square of the error of the relative count aggregate, if y’’ 

was used as an estimator for y.   

Our case is actually the reverse, i.e., we are given a 

desired error threshold 
req

∆ , and the task is to determine 

the appropriate number of peers to sample that will satisfy 

this threshold. Of course, we have used a fixed-sized m in 

the first phase, so unless we are simply lucky, it’s unlikely 

that this particular m will satisfy the desired accuracy. 

However, we can use the first phase more carefully to 

determine the appropriate sample size to draw in the 

second phase, say m’. 

The main task is to use the sample drawn in the first 

phase to try and estimate C; because once we estimate C, 

we can determine m’ using Theorem 2. We suggest a 

simple cross-validation procedure as described below to 

estimate C (this procedure is inspired by previous work in 

a different context, see [9]). 

Consider two random sample of peers of size m each 

drawn from the stationary distribution. Let y1’’ and y2’’ be 

the two estimates of y by these samples respectively 

according to Equation 1. We define the cross-validation 

error as: 
1 2'' ''CVError y y= −  
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This theorem says that the expected value of the square of 

the cross-validation error is 2 times the expected value of 

the square of the actual error.  

This cross-validation error can be estimated in the 

first phase by the following procedure. Randomly divide 

the m samples into two halves, and compute the cross-

validation error (for sample size m/2). We can then 

determine C by fitting this computed error and the sample 

size m/2 into the equation in Theorem 2.  To get a 

somewhat more robust estimation for C, we can repeat the 

random halving of the sample collected in the first phase 

several times and take the average value of C. We also 

note that since the cross-validation error is larger than the 

true error, the value of C is conservatively overestimated. 

Once C is determined (i.e., the “badness” of the 

clustering of data in the peers), we can determine the right 

number of peers to sample in the second phase, m’, to 

achieve the desired accuracy. 

4. Our Algorithm 

In this section we present details of our two-phase 

algorithm for approximating answering of aggregate 

queries. For the sake of illustration, we focus on 

approximating COUNT queries – it can be easily 

extended to SUM queries. The pseudo code of the 

algorithm is presented below. 

   

Algorithm: COUNT queries 

 

Predefined Values 
M : Total number of peers in network 

E : Total number of edges in network 

m : Number of peers to visit in Phase I 

j : Jump size for random walk 

t : Max #tuples to be sub-sampled per peer 

 

Inputs 
Q : COUNT query with selection condition 

Sink  : Peer where query is initiated 

req
∆  : Desired max error 

 

Phase I 

 
// Perform Random Walk 

1. Curr = Sink; Hops = 1;  

2. while (Hops < j * m) { 

3.  if (Hops % j)  

4.  Visit(Curr); 

5. Hops++;  



6. Curr = random adjacent peer  

7. } 

 

 

// Visit Peer  

1. Visit(Curr) { 

2.  if (#tuples of Curr) <= t) { 

3.  Execute Q on all tuples 

4. else 

5.  Execute Q on t randomly sampled 

6.  tuples 

7. } 

8. 
)__(*

#

#
)( Qofresult

uplesprocessedT

tuples
Curry 
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10. Return (y(Curr), deg(Curr)) to Sink 

11. } 

 

 

// Cross-Validate at Sink 

1. Let S = {s1, s2, …, sm} be the visited peers 

2. Partition S randomly into two halves: S1 & S2 

3. Compute  
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4. Compute 
1 2'' ''CVError y y= −  

5. Return  
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Phase II 
1. Visit m’ peers using random walk  

2. Let S’ = {s1, s2, …, sm’} be the visited peers 

3. Return 
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Our approach in the first phase is broken up into the 

following main components.  First, we perform a random 

walk on the peer-to-peer network, attempting to avoid 

skewing due to graph clustering and vertices of high 

degree.  Our walk skips j nodes between each selection to 

reduce the dependency between consecutive selected 

peers. As the jump size increases, our method increases 

overall bandwidth requirements within the database but 

for most cases small jump sizes suffice for obtaining 

random samples. 

Second, we compute aggregates of the data at the 

peers and send these back to the sink. Note that in the 

previous section, we had not formally discussed the issue 

of sub-sampling at peers – this was primarily done to keep 

the previous discussion simple. In reality, the local 

databases at some peers can be quite large, and 

aggregating them in their entirety may not be negligible 

compared to the overhead of visiting the peer – in other 

words, the simplistic cost model of only counting the 

number of visited peers is inappropriate. In such cases, it 

is preferable to randomly sub-sample a small portion of 

the local database, and apply the aggregation only to this 

sub-sample. Thus, the ideal approach for this problem is 

to develop a cost model that takes into account cost of 

visiting peers as well as local processing costs; and for 

such cost models, an ideal two-phase algorithm should 

determine various parameters in the first phase, such as 

how many peers to visit in the second phase, and how 

many tuples to sub-sample from each visited peer. In this 

paper we taken a somewhat simpler approach, in which 

we fix a constant t (determined at preprocessing time via 

experiments), such that if a peer has at most t tuples, its 

database is aggregated in its entirety, whereas if the peer 

has more than t tuples, then t tuples are randomly selected 

and aggregated. Sub-sampling can be more efficient than 

scanning the entire local database – e.g., by block-level 

sampling in which only a small number of disk blocks are 

retrieved. If the data in the disk blocks are highly 

correlated, it will simply mean that the number of peers to 

be visited will increase, as determined by our cross-

validation approach at query time.   

Third, we estimate the cross-validation error of the 

collected sample, and use that to estimate the additional 

number of peers that need to be visited in the second 

phase. For improving robustness, steps 2-4 in the cross-

validation procedure can be repeated a few times and the 

average squared CVError computed. 

Once the first phase has completed, the second phase 

is then straightforward – we simply initiate a second 

random walk based on the recommendations of the first 

phase, and compute the final aggregate. 
 

Although the algorithm has been presented for the 

case of COUNT, it can be easily extended for SUM. 

Finally, we re-emphasize that for more complex 

aggregates, such as estimation of medians, quantiles, and 

distinct values, more sophisticated algorithms are 

required. This is part of ongoing work, and we mention 

some preliminary results in the experimental section. 

5. Experimental Evaluation 

In this section, we have provided experimental 

justification for our methods.  We have implemented our 

algorithms on simulated and real-world topologies using 

various degrees of data clustering and topology structures. 

5.1. Implementation 

Our algorithms and peer-to-peer topologies are 

implemented in Java 5.0 with the graph generation tool 

Jung [15] version 1.6.  Our implementation includes both 

sampled and real-world Gnutella topology samples.  All 

of our experiments were run on AMD dual Opteron 2.0 

GHz processors with 2GB of RAM.      
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5.2. Generation of P2P Networks and Databases 

5.2.1. P2P Networks 

Synthetic Topology:  The power-laws [12] offer insight 

to the structure of Internet topologies; and [2] confirms 

that the power-laws extend to peer-to-peer networks.  Our 

synthetic topology is created through the process of 

connecting sub-graphs using the graph generation tool 

Jung [15]. It consists of 10,000 peers and 100,000 edges. 

The parameters during graph creation are: 
• Sub-graphs [s]:  s sub-graphs are created that follow 

the power-laws topology [12].     

• Edges between sub-graphs [e]:  The size of e 

determines the cut size between sub-graphs.  As the 

cut size decreases, number of edges between sub-

graphs decreases. 

Real-World Topology:  We also experimented with 2001 

Gnutella topology data containing 22,556 peers and 

52,321 edges, acquired from the group of M. Ripeanu at 

the University of Chicago.  

5.2.2. P2P Databases 

Both types of networks were populated with data 

generated by a synthetic data generator.  We use single 

attribute tuples.  The attribute values have a range 

between 1 and 100. The values follow the Zipf-

distribution. The parameters that define the main 

characteristics of our synthetic data sets are as follows: 

• Cluster Level [CL]:  If the cluster level is equal to 0, 

then the dataset is perfectly clustered, i.e., it is sorted 

and then partitioned across the peers.  If the cluster 

level is set to 1, then the dataset is randomly 

permuted, then partitioned across the peers.  In-

between values correspond to in-between scenarios. 

• Skew [Z]:  The skew determines the slant in 

frequency distribution of distinct values the data.  Low 

skew values give the dataset an even distribution of 

frequencies per value, conversely high skew values 

distort the distribution of frequencies. 

We populated the synthetic network with 1,000,000 tuples 

and the Gnutella network with 2,200,000 tuples. It is well-

known that peer-to-peer databases have strong clustering 

properties, e.g., large networks such as Gnutella contain 

sub-graphs of peers, containing similar music genre, 

movies, software, or documents [22]. Thus, while 

populating the peers of both networks, we distributed the 

data in a breadth-first method, in order to obtain 

reasonable clustering of synthetic data within the 

topologies.  I.e., when loading a peer, the adjacent peers 

are also loaded with similarly clustered data.   

5.2.3. Aggregation Queries 

In our experiments we use SUM and COUNT range 

queries with different selectivity of the form: “SELECT 

COUNT(A) FROM T WHERE A BETWEEN A1 AND 

A2” (i.e. find the number of tuples with values in the 

range [A1, A2]). 

5.3. Input Parameters 

We evaluate the accuracy, use of network resources, the 

size of sample acquired, and total number of tuples 

sampled from the network.  We define each of the user 

defined inputs as follows: 

1. Required Accuracy [
req

∆ ]:  This parameter defines 

is the maximum allowed error for the estimated 

answer.  

2. Tuples Sampled per Peer [t]:  This parameter 

defines the number of tuples to sample from each 

selected peer.  

3. Jump Size [j]:  This parameter defines the Number 

of peers to pass over before selecting the next peer 

for sampling.  

4. Initial Sample Size [
orig
r ]:  This parameter defines 

the initial number of tuples to acquire from the 

database to execute the first phase.  (Thus, orig
r

 / t = 

m where m is the number of peers visited in the first 

phase. In our experiments, the local databases are 

always large enough to ensure that sub-sampling 

always takes place.)  

Parameter 1 is provided by the user for each query. 

Parameters 2-4 may be provided by the user, or may be 

set via a pre-processing step. In the end of the 

experimental section we provide a user guide for setting 

parameters 2-4. 

5.4. Evaluation Metrics – Cost and Accuracy 

Our algorithms are evaluated based on the cost of 

execution as well as how close they get to the desired 

accuracy. As discussed earlier, we use latency as a 

measure of our cost, noting that in our case that it is 

proportional to the number of peers visited. In fact, if the 

number of tuples to be sampled is the same for all peers - 

which is true in our experiments - latency is also 

proportional to the total number of sample tuples drawn 

by the overall algorithm. Thus we use the number of 

sample tuples used as a surrogate for latency in describing 

our results.  

5.5. Experiments 

All of our results were generated from five independent 

experiments and averaged for each individual parameter 

configurations.  Errors are normalized between 0 and 1.  
Accuracy:  Figure 2 and 3 shows representative accuracy 

results for COUNT using synthetic and real datasets.  In 

this case we have a query with selectivity 30%, CL=0.2, 

and Z=0.2.  In Figure 2 we vary the required accuracy.  

The figure shows that the algorithm’s result is always 

within the required accuracy.  In Figure 3 we set required 



accuracy to 0.1 and show the resulting accuracy for each 

query with different selectivity’s. 
Sample Size:  Figures 4 and 5 show that the required 

sample size increases with req
21 ∆ .  They also, show that 

the required sample size does not vary much when the 

initial sample is ranged from 1000 to 3000.  The 

selectivity of the query in this experiment was 30%, and 

the algorithm gave an answer within the required 

accuracy in all cases.  We note that the result of our 

algorithm specifies the number of peers to be sampled.  In 

the experiments we convert it to the number of samples 

by taking 25 samples per peer.  Figure 6 shows that the 

improvement by getting more tuples per peer is small.  To 

minimize the cost of sampling in each peer we take 25 

samples in each peer. 

Comparison with naïve techniques:  Figure 7 compares 

our approach with DFS, where we collect our sample 

using a random walk with j=0, and BFS, where we collect 

our sample from the peers in the neighborhood of the 

querying peer.  Note that our method always meets the 

required accuracy.  Our technique clearly outperforms 

both techniques.  

Effects of data clustering and skew:  Figures 8, 9, 10, 

and 11 show the effects of different degrees of data 

clustering (8, 9) and different degrees of skew (10, 11).  

Figures 7 to 12 simulate a peer-to-peer database with two 

sub-graphs, each containing similar data within individual 

sub-graphs but different from others.  The results show 

that with clustering closer to 0 (data are more clustered) 

we need to collect more samples, while with clustering 

close to 1 (data are less clustered) we need less samples; 

since each peer contains a better sample of the entire 

dataset.  Regarding skew, the results show that when 

skew increases, we need fewer samples.  The reason is 

that some values become much more frequent in the 

dataset and therefore easier to estimate their count. 

Graph size vs. jump size:  Figure 12 illustrate the 

relationship between jump size and size of cuts in a peer-

to-peer database.  As the number of edges connecting sub-

graphs or the jump size increase, the accuracy of the 

sample increase.  The relationship between number of 

edges connecting sub-graphs and the jump size are 

inversely proportional in determining the quality of the 

sample acquired. 

Evaluating the SUM query:  Figures 13 and 14 show 

that our technique shows similar accuracy results for 

SUM. Here we estimate the SUM of all tuples in the 

database. (i.e. selectivity=1). 

Required Accuracy vs. Error %
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Figure 2:  Effects of required accuracy on the 

error percentage for the COUNT technique  
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Figure 3:  Effects of selectivity on the error 

percentage for the COUNT  technique  
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Figures 4: Effects of the sample size collected 

for given required accuracies and initial sample 

sizes for the COUNT technique  
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Figure 5: Effects of the sample size collected for 

given required accuracies and initial sample sizes 

for the COUNT technique  
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Figure 6:  The figure shows the number of peers 

does not make a vast difference in accuracy 
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Figure 7:  The figure shows random walks 

perform better then BFS and DFS 

 

 



5.6. Estimating the Median 

Figure 15 and 16 shows that our technique can be 

extended to accurately estimate the median.    Our 

algorithm for computing the median is given below: 
1. Select m peers at random using random walk. 
2. Each peer sj computes its median medj and 

sends it to the sink, along with prob(sj). 

3. The sink randomly partitions the m medians 

into two groups of m/2 medians, Group1 and 

Group2. 

4. Let medg1 be the weighted median of Group1, 
i.e., such that the following is minimized 
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5. Find the error between the median of Group2 
(say medg2) and the weighted rank of medg1 in 

Group2. I.e., let c = 

)2//()(/1)(/1
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6. Select additional 
22

req
c ∆  peers using random 

walk. 

7. Find and return the weighted median of the 

medians of the additional peers. 

In these experiments we use both the Gnutella and 

synthetic graph, vary the clustering factor, and set 

1.0=∆
req

.  The error that we show in the graph is the 

difference between the true rank of the median that the 

algorithm returns, and 2N . 

6. Conclusion & Future Work 

In this paper we present adaptive sampling-based 

techniques for the novel problem of approximate 

answering of ad-hoc aggregation queries in P2P 

databases.  We present extensive experimental 

evaluations to demonstrate the feasibility of our solutions.  

Several intriguing open problems remain. Is it 

possible to build hybrid solutions that do some amount of 

pre-computations of samples, in addition to “on-the-fly” 

sampling such as ours? Is it possible for sampling-based 

algorithms to perform “biased sampling”, i.e., focus the 

samples from regions of the database where tuples that 

satisfy the query are likely to exist? More generally, 

decision support and data analysis in P2P databases 
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Figure 8:  Effects of clustering on the error 

percentage for the COUNT technique 
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Figure 9:  Effects of clustering on the sample 

size for the COUNT technique 
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Figure 10:  Effects of skew on the error 

percentage for the COUNT technique 
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Figure 11:  Effects of skew on the sample size 

for the COUNT technique 
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Figure 12: Effects of cut size with jump size on 

error percentage for SUM technique 
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Figure 13:  Effects of clustering on the error 

percentage for the SUM technique 

 

 



appears to be an important area of research with emerging 

applications, and we hope our work will encourage 

further research in this field. 
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Clustering vs. Sample Size
(Z=0.2, Req Acc=0.10, j=10)
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Figure 14: Effects of clustering on the sample 

size for the SUM technique 

 

Clustering vs. Error %
(Z=0.2, Req Acc=0.10, j=10)
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Figure 15: Effects of clustering on the error 

percentage for the median technique 

Clustering vs. Sample Size
(Z=0.2, Req Acc=0.10, j=10)
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Figure 16: Effects of clustering on the sample 

size for the median technique 

 
 

 

 


