
Approximating Aggregation Queries in Peer-to-Peer Networks

Benjamin Arai

UC Riverside

barai@cs.ucr.edu

Gautam Das

UT Arlington

gdas@cse.uta.edu

Dimitrios Gunopulos

UC Riverside

dg@cs.ucr.edu

Vana Kalogeraki

UC Riverside

vana@cs.ucr.edu

Abstract

Peer-to-peer databases are becoming prevalent on the

Internet for distribution and sharing of documents,

applications, and other digital media. The problem of

answering large scale, ad-hoc analysis queries – e.g.,

aggregation queries – on these databases poses unique

challenges. Exact solutions can be time consuming and

difficult to implement given the distributed and dynamic

nature of peer-to-peer databases. In this paper we

present novel sampling-based techniques for approximate

answering of ad-hoc aggregation queries in such

databases. Computing a high-quality random sample of

the database efficiently in the P2P environment is

complicated due to several factors – the data is

distributed (usually in uneven quantities) across many

peers, within each peer the data is often highly

correlated, and moreover, even collecting a random

sample of the peers is difficult to accomplish. To counter

these problems, we have developed an adaptive two-phase

sampling approach, based on random walks of the P2P

graph as well as block-level sampling techniques. We

present extensive experimental evaluations to

demonstrate the feasibility of our proposed solution.

1. Introduction

Peer-to-Peer Databases: The peer-to-peer network

model is quickly becoming the preferred medium for file

sharing and distributing data over the Internet. A peer-to-

peer (P2P) network consists of numerous peer nodes that

share data and resources with other peers on an equal

basis. Unlike traditional client-server models, no central

coordination exists in a P2P system, thus there is no

central point of failure. P2P network are scalable, fault

tolerant, and dynamic, and nodes can join and depart the

network with ease. The most compelling applications on

P2P systems to date have been file sharing and retrieval.

For example, P2P systems such as Napster [25], Gnutella

[15], KaZaA [20] and Freenet [13] are principally known

for their file sharing capabilities, e.g., the sharing of

songs, music, and so on. Furthermore, researchers have

been interested in extending sophisticated IR techniques

such as keyword search and relevance retrieval to P2P

databases.

Aggregation Queries: In this paper, however, we

consider a problem on P2P systems that is different from

the typical search and retrieval applications. As P2P

systems mature beyond file sharing applications and start

getting deployed in increasingly sophisticated e-business

and scientific environments, the vast amount of data

within P2P databases pose a different challenge that has

not been adequately researched thus far – that of how to

answer aggregation queries on such databases.

Aggregation queries have the potential of finding

applications in decision support, data analysis and data

mining. For example, millions of peers across the world

may be cooperating on a grand experiment in astronomy,

and astronomers may be interesting in asking decision

support queries that require the aggregation of vast

amounts of data covering thousands of peers.

We make the problem more precise as follows.

Consider a single table T that is distributed over a P2P

system; i.e., the peers store horizontal partitions (of

varying sizes) of this table. An aggregation query such as

the following may be introduced at any peer (this peer is

henceforth called the sink):

In the above query, the Agg-Op may be any aggregation

operator such as SUM, COUNT, AVG, and so on; Col

may be any numeric measure column of T, or even an

expression involving multiple columns; and the selection-

condition decides which tuples should be involved in the

aggregation. While our main focus is on the above

standard SQL aggregation operators, we also briefly

discuss other interesting statistical estimators such as

medians, quantiles, histograms, and distinct values.

While aggregation queries have been heavily

investigated in traditional databases, it is not clear that

Aggregation Query

SELECT Agg-Op(Col) FROM T

WHERE selection-condition

these techniques will easily adapt to the P2P domain. For

example, decision support techniques such as OLAP

commonly employ materialized views, however the

distribution and management of such views appears

difficult in such a dynamic and decentralized domain [19,

11]. In contrast, the alternative of answering aggregation

queries at runtime “from scratch” by crawling and

scanning the entire P2P repository is prohibitively slow.

Approximate Query Processing: Fortunately, it has

been observed that in most typical data analysis and data

mining applications, timeliness and interactivity are more

important considerations than accuracy - thus data

analysts are often willing to overlook small inaccuracies

in the answer provided the answer can be obtained fast

enough. This observation has been the primary driving

force behind recent development of approximate query

processing (AQP) techniques for aggregation queries in

traditional databases and decision support systems [9, 3,

6, 8, 1, 14, 5, 7, 23]. Numerous AQP techniques have

been developed, the most popular ones based on random

sampling, where a small random sample of the rows of

the database is drawn, the query is executed on this small

sample, and the results extrapolated to the whole

database. In addition to simplicity of implementation,

random sampling has the compelling advantage that in

addition to an estimate of the aggregate, one can also

provide confidence intervals of the error with high

probability. Broadly, two types of sampling-based

approaches have been investigated: (a) Pre-computed

samples - where a random sample is pre-computed by

scanning the database, and the same sample is reused for

several queries, and (b) Online samples - where the

sample is drawn “on the fly” upon encountering a query.

Goal of Paper: In this paper, we also approach the

challenges of decision support and data analysis on P2P

databases in the same manner, i.e., we investigate what it

takes to enable AQP techniques on such distributed

databases.

The cost of query execution in traditional databases is

usually a straightforward concept – it is either I/O cost or

CPU cost, or a combination of the two. In fact, most AQP

approaches simplify this concept even further, by just

trying to minimize the number of tuples in the sample;

thus making the assumption that the sample size is

directly related to the cost of query execution. However,

in P2P networks, the cost of query execution is a

combination of several quantities, e.g., the number of

participating peers, the bandwidth consumed (i.e.,

amount of data shipped over the network), the number of

messages exchanged, the latency (the end-to-end time to

propagate the query across multiple peers and receive

replies), the I/O cost of accessing data from participating

peers, the CPU cost of processing data at participating

peers, and so on. In this paper, we shall be concerned with

several of these cost metrics.

Challenges: Let us now discuss what it takes for

sampling-based AQP techniques to be incorporated into

P2P systems. We first observe that two main approaches

have emerged for constructing P2P networks today,

structured and unstructured. Structured P2P networks

(such as Pastry [27] and Chord [30]) are organized in such

a way that data items are located at specific nodes in the

network and nodes maintain some state information, to

enable efficient retrieval of the data. This organization

sacrifices atomicity by mapping data items to particular

nodes and assume that all nodes are equal in terms of

resources, which can lead to bottlenecks and hot-spots.

Our work focuses on unstructured P2P networks, which

make no assumption about the location of the data items

on the nodes, and nodes are able to join the system at

random times and depart without a priori notification.

Several recent efforts have demonstrated that unstructured

P2P networks can be used efficiently for multicast,

distributed object location and information retrieval [10,

24, 31].

For approximate query processing in unstructured

P2P systems, attempting to adapt the approach of pre-

computed samples is impractical for several reasons: (a) it

involves scanning the entire P2P repository, which is

difficult, (b) since no centralized storage exists, it is not

clear where the pre-compute sample should reside, and (c)

the very dynamic nature of P2P systems indicates that

pre-computed samples will quickly become stale unless

they are frequently refreshed.

Thus, the approach taken in this paper is to

investigate the feasibility of online sampling techniques

for AQP on P2P databases. However, online sampling

approaches in P2P databases pose their own set of

challenges. To illustrate these challenges, consider the

problem of attempting to draw a uniform random sample

of n tuples from such a P2P database containing a total of

N tuples. To ensure a true uniform random sample, our

sampling procedure should be such that each subset of n

tuples out of N should be equally likely to be drawn.

However, this is an extremely challenging problem due to

the following two reasons.

• Picking even a set of uniform random peers is a

difficult problem, as the sink does not have the IP

addresses of all peers in the network. This is a well-

known problem that other researchers have tackled

(in different contexts) using random walk techniques

Goal of Paper: Approximating Aggregation

Queries in P2P Networks

Given an aggregation query and a desired error

bound at a sink peer, compute with “minimum cost”

an approximate answer to this query that satisfied the

error bound.

on the P2P graph [14, 21, 4] – i.e., where a

Markovian random walk is initiated from the sink

that picks adjacent peers to visit with equal

probability, and under certain connectivity properties,

the random walk is expected to rapidly reach a

stationary distribution. If the graph is badly clustered

with small cuts, this affects the speed at which the

walk converges. Moreover, even after convergence,

the stationary distribution is not uniform; in fact, it is

skewed towards giving higher probabilities to nodes

with larger degrees in the P2P graph.

• Even if we could select a peer (or a set of peers)

uniformly at random, it does not make the problem of

selecting a uniform random set of tuples much easier.

This is because visiting a peer at random has an

associated overhead, thus it makes sense to select

multiples tuples at random from this peer during the

same visit. However, this may compromise the

quality of the final set of tuples retrieved, as the

tuples within the same peer are likely to be correlated

– e.g., if the P2P database contained listings of, say

movies, the movies stored on a specific peer are

likely to be of the same genre. This correlation can be

reduced if we select just one tuple at random from a

randomly selected peer; however the overheads

associated with such a scheme will be intolerable.

Our Approach: We briefly describe the framework of

our approach.

 Essentially, we abandon trying to pick true

uniform random samples of the tuples, as such samples

are likely to be extremely impractical to obtain. Instead,

we consider an approach where we are willing to work

with skewed samples, provided we can accurately

estimate the skew during the sampling process. To get the

accuracy in the query answer desired by the user, our

skewed samples can be larger than the size of a

corresponding uniform random sample that delivers the

same accuracy, however, our samples are much more cost

efficient to generate.

Although we do not advocate any significant pre-

processing, we assume that certain aspects of the P2P

graph are known to all peers, such as the average degree

of the nodes, a good estimate of the number of peers in

the system, certain topological characteristics of the graph

structure, and so on. Estimating these parameters via pre-

processing are interesting problems in their own right,

however we omit these details from this paper. The main

point we make is that these parameters are relatively slow

to change and thus do not have to be estimated at query

time – it is the data contents of peers that changes more

rapidly, hence the random sampling process that picks a

representative sample of tuples has to be done at runtime.

Our approach has two major phases. In the first

phase, we initiate a fixed-length random walk from the

sink. This random walk should be long enough to ensure

that the visited peers
1
 represent a close sample from the

underlying stationary distribution – the appropriate length

of such a walk is determined in a pre-processing step. We

then retrieve certain information from the visited peers,

such as the number of tuples, the aggregate of tuples (e.g.,

SUM/COUNT/AVG, etc.) that satisfy the selection

condition, and send this information back to the sink. This

information is then analyzed at the sink to determine the

skewed nature of the data that is distributed across the

network - such as the variance of the aggregates of the

data at peers, the amount of correlation between tuples

that exists within the same peers, the variance in the

degrees of individual nodes in the P2P graph (recall that

the degree has a bearing on the probability that a node

will be sampled by the random walk), and so on. Once

this data has been analyzed at the sink, an estimation is

made on how much more samples are required - and in

what way should these samples be collected - so that the

original query can be optimally answered within the

desired accuracy with high probability. For example, the

first phase may recommend that the best way to answer

this query is to visit m’ more peers, and from each peer,

randomly sample t tuples. We mention that the first phase

is not overly driven by heuristics – instead it is based on

strong underlying theoretical principles, such as theory of

random walks [14, 21, 4], as well as statistical techniques

such as cluster sampling, block-level sampling and cross-

validation [9, 16].

The second phase is then straightforward – a random

walk is reinitiated and tuples collected according to the

recommendations made by the first phase. Effectively, the

first phase is used to “sniff” the network and determine an

optimal-cost “query plan”, which is then implemented in

the second phase. For certain aggregates, such as COUNT

and SUM, further optimizations may be achieved by

pushing the selections and aggregations to the peers – i.e.,

the local aggregates instead of raw samples are returned

to the sink, which are then composed into a final answer.

Summary of Contributions:

• We introduce the important problem of approximate

query processing in P2P databases that is likely to be

of increasing significance in the future.

• The problem is analyzed in detail, and its unique

challenges are comprehensively discussed.

• Adaptive, two-phase sampling-based approaches are

proposed, based on well-founded theoretical

principles.

• The results of extensive experiments are presented

that demonstrate the importance of the problem and

the validity of our approaches.

1
 Actually, only a small fraction of the visited peers are selected

for consideration, and the remaining is “jumped over” – this is

determined by the jump size parameter that is discussed in later

sections.

The rest of this paper is organized as follows. In Section

2 we describe related work. We provide the foundation of

our approach in Section 3, and the algorithm in Section 4.

In Section 5 we present the results of experiments, and

conclude in Section 6.

2. Related Work

Peer-to-Peer (P2P) systems are becoming very popular

because they provide an efficient mechanism for building

large, scalable systems [24]. Most recent work has

focused on Distributed Hash Tables (DHTs) [26, 27, 30].

Such techniques provide scalability advantages over

unstructured systems (such as Gnutella) however they are

not flexible enough for some applications, especially

when nodes join or leave the network frequently or

change their connections often.

Recent work has proposed different techniques for

exact query processing in P2P systems. Most proposals

use structured overlay networks (DHTs), such as CAN,

Pastry, or Chord. Such techniques include PIER [17],

DIM [23], or [28], and since they use DHTs they have a

different focus and are not directly applicable to our case.

A hybrid system, Mercury [4], using routing hubs to

answer range queries, was also recently proposed. This

system is also designed to provide exact answers to range

queries. Exact solutions to OLAP queries have been

considered in [11, 19].

Methods to sample random peers in P2P networks

have been proposed in [14, 21, 4]. These techniques use

Markov chain random walks to select random peers from

the network. Their results show that when certain

structural properties of the graph are known or can be

estimated (such as the second eigenvalue of the graph) the

parameters of the walk can be set so that a representative

sample of the stationary distribution can be collected with

high probability. In [4] it is shown that if the graph is an

expander, a random walk converges to the stationary

distribution in O(logM) steps, where M is the number of

peers in the network.

Our work also generalizes to the P2P domain

previous work on approximate query processing in

relational databases. Recent work by [9, 3, 6, 8, 1, 14, 5,

7, 23] has developed powerful techniques for employing

sampling in the database engine to approximate

aggregation queries and to estimate database statistics.

Recent techniques have focused on providing formal

foundations and algorithms for block-level sampling and

are thus most relevant to our work. The objective in

block-level sampling is to derive a representative sample

by only randomly selecting a set of disk blocks of a

relation [9, 16]. Specifically, [9] presents a technique for

histogram estimation that uses cross-validation to identify

the amount of sampling required for a desired accuracy

level. In addition, the paper [16] considers the problem of

deciding what percentage of a disk block should be

included in the sample, given a cost model.

3. Foundations of our Approach

In this section we discuss the principles behind our

approach for approximate query processing on P2P

databases. Our actual algorithm is described in Section 4.

3.1. The Peer-to-Peer Model

We assume an unstructured P2P network represented as a

graph G = (P, E), with a vertex set P={p1, p2, ..., pM} and

an edge set E. The vertices in P represent the peers in the

network and the edges in E represent the connections

between the vertices in P. Each peer p is identified by the

processor’s IP address and a port number (IPp, portp). The

peer p is also characterized by the capabilities of the

processor on which it is located, including its CPU speed

pcpu, memory bandwidth pmem and disk space pdisk. The

node also has a limited amount of bandwidth to the

network, noted by pband. In unstructured P2P networks, a

node becomes a member of the network by establishing a

connection with at least one peer currently in the network.

Each node maintains a small number of connections with

its peers; the number of connections is typically limited

by the resources at the peer. We denote the number of

connections a peer is maintaining by pconn.

The peers in the network use the Gnutella’s P2P

protocol to communicate. The Gnutella P2P protocol

supports four message types (Ping, Pong, Query,

Query_Hit); of which the Ping and Pong messages are

used to establish connections with other peers, and the

Query and Query_Hit messages are used to search in the

P2P network. Gnutella, however, uses a naïve Breadth

First Search (BFS) technique in which queries are

propagated to all the peers in the network, and thus

consumes excessive network and processing resources

and results in poor performance. Our approach, on the

other hand, uses a probabilistic search algorithm based on

random walks. The key idea is that, each node forwards a

query message, called walker, randomly to one of its

adjacent peers. This technique is shown to improve the

search efficiency and reduce unnecessary traffic in the

P2P network.

3.2. Query Cost Measures

As mentioned in the introduction, the cost of the

execution of a query in P2P databases is more

complicated that equivalent cost measures in traditional

databases. The primary cost measure we consider is

latency, which is the end-to-end time to propagate the

query across multiple peers and receive replies.

For the purpose of illustration, we focus in this

section on the SUM and COUNT aggregates. For these

specific aggregates, latency can be approximated by an

even simpler measure: the number of peers that

participate in the algorithm. This measure is appropriate

for these aggregates primarily because the overheads of

visiting peers dominate other incurred costs.

To see this, we note that the aggregation operator (as

well as the selection filter) can be pushed to each visited

peer. Once a peer is visited by the algorithm, the peer can

be instructed to simply execute the original query on its

local data and send only the aggregate (and its degree)

back to the sink, from which the sink can reconstruct the

overall answer. Moreover, this information can be sent

directly without necessitating any intermediate hops, as

the visited peer knows the IP address of the sink from

which the query originated. Thus the bandwidth

requirement of such an approach is uniformly very small

for all visited peers – they are not required to send more

voluminous raw data (e.g., all or parts of the local

database) back to the sink.

In approximating latency by the number of visited

peers, we also make the implicit assumption that the

overhead of visiting peers dominates the costs of local

computations (such as, execution of the original query on

the local database). This is of course true if the local

databases are fairly small. To ensure that the local

computations remain small even if local databases are

large, our approach in such cases is to execute the

aggregation query only on a small fixed-sized random

sample of the local data – i.e., we sub-sample from the

peer - scale the result to the entire local database, and

send the scaled aggregate back to the sink. This way, we

ensure that the local computations are uniformly small

across all visited peers.

In summary, for SUM and COUNT aggregates,

latency is shown to be proportional to the number of

visited peers. Thus, our goal is to minimize the number of

peers that must be visited in order to arrive at an

approximate answer with the desired accuracy.

We mention that for other types of aggregations –

e.g., statistics computations such as medians, quantiles,

histograms, and distinct values – the cost model is more

complex as the aggregation operator usually cannot be

pushed to the peers. In such cases, more voluminous data

has to be sub-sampled from the visited peers and sent

back to the sink, thus incurring nontrivial bandwidth

costs. An appropriate cost model usually has to take into

account multiple factors, such as costs of visiting peers,

local computations at peers, transportation of data back to

the sink, and local computations at the sink. Handling

such aggregations is part of ongoing work – e.g., we have

interesting results on the median and quantile

computations that are presented later in the paper -

however we omit complete details of these efforts due to

lack of space.

3.3. Random Walk in Graphs

In seeking a random sample of the P2P database, we have

to overcome the sub-problem of how to collect a random

sample of the peers themselves. Unrepresentative samples

of peers can quickly skew results producing erroneous

aggregation statistics. Sampling in a non-hierarchical

decentralized P2P network presents several obstacles in

obtaining near uniform random samples. This is because

no peer (including the query sink) knows the IP addresses

of all other peers in the network – they are only aware of

their immediate neighbors. If this were not the case,

clearly the sink could locally generate a random subset of

IP addresses from among all the IP addresses, and visit

the appropriate peers directly. We note that this problem

is not encountered in traditional databases, as even if one

has to resort to cluster (or block-level) sampling such as

in [9, 16], obtaining an efficient sample of the blocks

themselves is straightforward.

This problem has been recognized in other contexts

(see [14] and the references therein), and interesting

solutions based on Markov chain random walks have been

proposed. We briefly review such approaches here. A

Markov chain random walk is a procedure that is initiated

at the sink, and for each visited peer, the next peer to visit

is selected with equal probability from among its

neighbors (and itself – thus self loops are allowed). It is

well known that, if this walk is carried out long enough,

the eventual probability of reaching any peer p will reach

a stationary distribution. To make this more precise, let P

= {p1, p2, …, pM} be the entire set of peers, let E be the

entire set of edges, and let the degree of a peer p be

deg(p). Then the probability of any peer p in the

stationary distribution is:

() ()
E

p
pprob

2

deg
=

It is important to note that the above distribution is not

uniform – the probability of each peer is proportional to

its degree. Thus, even if we can efficiently achieve this

distribution, we will have to compensate for the fact that

the distribution is skewed as above, if we have to use

samples drawn from it for answering aggregation queries.

The main issue that has concerned researchers has

been the speed of convergence, i.e., how many hops h are

necessary before one gets close to the stationary

distribution. Most results have pointed to certain broad

connectivity properties that the graph should possess for

this to happen. In particular, it has been shown that if the

transition probabilities that govern the random walk on

the P2P graph are modeled as an MxM matrix, the second

eigenvalue plays an important role in these convergence

results. The second eigenvalue describes connectivity

properties of graphs - in particular whether the graph has

small cuts which would adversely impact the length of the

walk necessary to arrive at convergence. For example,

Figure 2 describes a clustered graph with a small cut.

Figure 1: Two clusters with a small cut between each other

As the results in [14] show, if the P2P graph is well

connected (i.e., it has a small second eigenvalue, and a

minimum degree of the graph is large), then the random

walk quickly converges as it “loses memory” rapidly. In

fact, under certain specific conditions of connectedness

(e.g., expander graphs that are common in P2P networks),

convergence can be achieved in O(logM) steps.

In our case, recall from the introduction that we

assume that we are allowed a certain amount of

preprocessing to determine various properties of the P2P

graph that will be useful at query time – under the

assumption that the graph topology changes less rapidly

compared to the data content at the peers. The speed of

convergence of a random walk in this graph is determined

in this preprocessing step, in addition to other useful

properties such as number of nodes M, the number of

edges |E|, and so on. With respect to speed of

convergence, we essentially determine a jump parameter j

that determines how many peers to skip between

selections of peers for the sample. As the jump increases,

the correlation between successive peers that are selected

for the sample decreases rapidly.

3.4. Sampling Theorems

In this subsection, we shall develop the formal sampling

theorems that drive our algorithm. We shall show how the

tuples that are retrieved from the first phase of our

algorithm can be utilized to recommend how the second

phase should be executed, i.e., the “query plan” for

answering the query approximately so that a desired error

is achieved.

We focus here on the COUNT aggregate for the

purpose of illustrating our main ideas (our formal results

can be easily extended for the SUM case). Finally, to

keep the discussion simple, we assume that all local

databases at peers are small, i.e., sub-sampling is not

required (our results can be extended for the sub-sampling

case, and in fact our algorithm in Section 4 does not make

this assumption).

As discussed earlier, our algorithm has two phases. In

the first phase, our algorithm will visit a predefined

number of peers m using a random walk such that the

sample of visited peers will appear as if they have been

drawn from the stationary distribution of the graph. The

query will be executed locally at each visited peer, and

the aggregates will be sent back to the sink, along other

information such as the degrees of the visited peers (from

which information such as the peers probabilities in the

stationary distribution can be computed). The sink

analyzes this information, and then determines how many

more peers need to be visited in the second phase. The

theorems that we develop next provide the foundations on

which the decisions in the first phase are made.

Recall that P = {p1, p2, …, pM} is the set of peers.

For a tuple u, let y(u) = 1 if u satisfies the selection

condition, and = 0 otherwise.

Let the aggregate for a peer p be () ()
u p

y p y u
∈

=∑

Let y be the exact answer for the query, i.e. ∑
∈

=
Pp

pyy)(

The query also comes with a desired error threshold
req

∆ .

The implication of this requirement is that, if y’ is the

estimated count by our algorithm, then

' reqy y− ≤ ∆

Now, consider a fixed-size sample of peers S = {s1, s2…

sm} where each si is from P. This sample is picked by the

random walk in the first phase. We can approximate this

process as that of picking peers in m rounds, where in

each round a random peer si is picked from P with

probability prob(si). We also assume that peers may be

picked with replacement – i.e., multiple copies of the

same peer may be added to the sample – as this greatly

simplifies the statistical derivations below.

Consider the quantity y
’’
defined as follows

Theorem 1: yyE =]''[, that is, y’’ is an unbiased

estimator of y.

Proof: Intuitively, each sampled peer s tries to estimate y

as y(s)/prob(s), i.e., by scaling its own aggregate by the

inverse of its probability of getting picked. The final

estimate y’’ is simply the average of the m individual

estimates.

To proceed with the proof, consider the simple case

of only one sampled peer, i.e., m = 1. In this case,

ypprob
pprob

py
yE

Pp

=

=∑

∈

)(
)(

)(
]"[

To extend to any m, we make use of the linearity of

expectation formula: E[X+Y] = E[X] + E[Y] for random

variables X and Y (that need not even be independent).

m

sprob

sy

y
Ss

∑
∈=

)(

)(

'' (1)

Thus if the expected estimate of any single random peer is

y, then the expected average estimate by m random peers

is also y.

We next need to determine the variance of the

random variable y’’.

Theorem 2 (Standard Error Theorem):

m

pproby
pprob

py

yVar
Pp

)(
)(

)(

]''[

2

∑
∈

−

=

Proof: To easily derive this variance, let us consider the

simple case of only one sampled peer, i.e., m = 1. In this

case, it is easy to see that the variance is defined by the

quantity

)(
)(

)(
2

pproby
pprob

py
C

Pp

∑
∈

−=

To extend to any m, we make use of the following

formulas for variance: (a) Var[aX] = a
2
Var[X], and (b)

Var[X+Y] = Var[X] + Var[Y], where X and Y are

independent random variables and a is a constant. Using

these formulas, we can easily show that Var[y’’] = C/m.

The above Standard Error Theorem shows that the

variance varies inversely as the sample size. The quantity

C also represents the “badness” of the clustering of the

data in the peers – the larger the C, the more the

correlation amongst the tuples within peers, and

consequently the more peers need to be sampled to keep

the variance of the estimator y’’ small. Notice also that if

we divide the variance by N
2
, we will effectively get the

square of the error of the relative count aggregate, if y’’

was used as an estimator for y.

Our case is actually the reverse, i.e., we are given a

desired error threshold
req

∆ , and the task is to determine

the appropriate number of peers to sample that will satisfy

this threshold. Of course, we have used a fixed-sized m in

the first phase, so unless we are simply lucky, it’s unlikely

that this particular m will satisfy the desired accuracy.

However, we can use the first phase more carefully to

determine the appropriate sample size to draw in the

second phase, say m’.

The main task is to use the sample drawn in the first

phase to try and estimate C; because once we estimate C,

we can determine m’ using Theorem 2. We suggest a

simple cross-validation procedure as described below to

estimate C (this procedure is inspired by previous work in

a different context, see [9]).

Consider two random sample of peers of size m each

drawn from the stationary distribution. Let y1’’ and y2’’ be

the two estimates of y by these samples respectively

according to Equation 1. We define the cross-validation

error as:
1 2'' ''CVError y y= −

Theorem 3: [] ()[]22
''2 yyECVErrorE −=

Proof:

[] ()[]
()[] ()[] ()[]22

2

2

1

2

21

2

''2''''

''''

yyEyyEyyE

yyECVErrorE

−=−+−

=−=

This theorem says that the expected value of the square of

the cross-validation error is 2 times the expected value of

the square of the actual error.

This cross-validation error can be estimated in the

first phase by the following procedure. Randomly divide

the m samples into two halves, and compute the cross-

validation error (for sample size m/2). We can then

determine C by fitting this computed error and the sample

size m/2 into the equation in Theorem 2. To get a

somewhat more robust estimation for C, we can repeat the

random halving of the sample collected in the first phase

several times and take the average value of C. We also

note that since the cross-validation error is larger than the

true error, the value of C is conservatively overestimated.

Once C is determined (i.e., the “badness” of the

clustering of data in the peers), we can determine the right

number of peers to sample in the second phase, m’, to

achieve the desired accuracy.

4. Our Algorithm

In this section we present details of our two-phase

algorithm for approximating answering of aggregate

queries. For the sake of illustration, we focus on

approximating COUNT queries – it can be easily

extended to SUM queries. The pseudo code of the

algorithm is presented below.

Algorithm: COUNT queries

Predefined Values
M : Total number of peers in network

E : Total number of edges in network

m : Number of peers to visit in Phase I

j : Jump size for random walk

t : Max #tuples to be sub-sampled per peer

Inputs
Q : COUNT query with selection condition

Sink : Peer where query is initiated

req
∆ : Desired max error

Phase I

// Perform Random Walk

1. Curr = Sink; Hops = 1;

2. while (Hops < j * m) {

3. if (Hops % j)

4. Visit(Curr);

5. Hops++;

6. Curr = random adjacent peer

7. }

// Visit Peer

1. Visit(Curr) {

2. if (#tuples of Curr) <= t) {

3. Execute Q on all tuples

4. else

5. Execute Q on t randomly sampled

6. tuples

7. }

8.
)__(*

#

#
)(Qofresult

uplesprocessedT

tuples
Curry

=

10. Return (y(Curr), deg(Curr)) to Sink

11. }

// Cross-Validate at Sink

1. Let S = {s1, s2, …, sm} be the visited peers

2. Partition S randomly into two halves: S1 & S2

3. Compute

where
deg()

()
2

s
prob s

E
=

4. Compute
1 2'' ''CVError y y= −

5. Return

∆
=

req

CVError
mm

2

2

*)2/('

Phase II
1. Visit m’ peers using random walk

2. Let S’ = {s1, s2, …, sm’} be the visited peers

3. Return
'

'

)(/)(

'
m

sprobsy

y Ss

∑
∈=

Our approach in the first phase is broken up into the

following main components. First, we perform a random

walk on the peer-to-peer network, attempting to avoid

skewing due to graph clustering and vertices of high

degree. Our walk skips j nodes between each selection to

reduce the dependency between consecutive selected

peers. As the jump size increases, our method increases

overall bandwidth requirements within the database but

for most cases small jump sizes suffice for obtaining

random samples.

Second, we compute aggregates of the data at the

peers and send these back to the sink. Note that in the

previous section, we had not formally discussed the issue

of sub-sampling at peers – this was primarily done to keep

the previous discussion simple. In reality, the local

databases at some peers can be quite large, and

aggregating them in their entirety may not be negligible

compared to the overhead of visiting the peer – in other

words, the simplistic cost model of only counting the

number of visited peers is inappropriate. In such cases, it

is preferable to randomly sub-sample a small portion of

the local database, and apply the aggregation only to this

sub-sample. Thus, the ideal approach for this problem is

to develop a cost model that takes into account cost of

visiting peers as well as local processing costs; and for

such cost models, an ideal two-phase algorithm should

determine various parameters in the first phase, such as

how many peers to visit in the second phase, and how

many tuples to sub-sample from each visited peer. In this

paper we taken a somewhat simpler approach, in which

we fix a constant t (determined at preprocessing time via

experiments), such that if a peer has at most t tuples, its

database is aggregated in its entirety, whereas if the peer

has more than t tuples, then t tuples are randomly selected

and aggregated. Sub-sampling can be more efficient than

scanning the entire local database – e.g., by block-level

sampling in which only a small number of disk blocks are

retrieved. If the data in the disk blocks are highly

correlated, it will simply mean that the number of peers to

be visited will increase, as determined by our cross-

validation approach at query time.

Third, we estimate the cross-validation error of the

collected sample, and use that to estimate the additional

number of peers that need to be visited in the second

phase. For improving robustness, steps 2-4 in the cross-

validation procedure can be repeated a few times and the

average squared CVError computed.

Once the first phase has completed, the second phase

is then straightforward – we simply initiate a second

random walk based on the recommendations of the first

phase, and compute the final aggregate.

Although the algorithm has been presented for the

case of COUNT, it can be easily extended for SUM.

Finally, we re-emphasize that for more complex

aggregates, such as estimation of medians, quantiles, and

distinct values, more sophisticated algorithms are

required. This is part of ongoing work, and we mention

some preliminary results in the experimental section.

5. Experimental Evaluation

In this section, we have provided experimental

justification for our methods. We have implemented our

algorithms on simulated and real-world topologies using

various degrees of data clustering and topology structures.

5.1. Implementation

Our algorithms and peer-to-peer topologies are

implemented in Java 5.0 with the graph generation tool

Jung [15] version 1.6. Our implementation includes both

sampled and real-world Gnutella topology samples. All

of our experiments were run on AMD dual Opteron 2.0

GHz processors with 2GB of RAM.

2/

)(/)(

'' 1
1

m

sprobsy

y
Ss

∑
∈=

2/

)(/)(

'' 2
2

m

sprobsy

y
Ss

∑
∈=

5.2. Generation of P2P Networks and Databases

5.2.1. P2P Networks

Synthetic Topology: The power-laws [12] offer insight

to the structure of Internet topologies; and [2] confirms

that the power-laws extend to peer-to-peer networks. Our

synthetic topology is created through the process of

connecting sub-graphs using the graph generation tool

Jung [15]. It consists of 10,000 peers and 100,000 edges.

The parameters during graph creation are:
• Sub-graphs [s]: s sub-graphs are created that follow

the power-laws topology [12].

• Edges between sub-graphs [e]: The size of e

determines the cut size between sub-graphs. As the

cut size decreases, number of edges between sub-

graphs decreases.

Real-World Topology: We also experimented with 2001

Gnutella topology data containing 22,556 peers and

52,321 edges, acquired from the group of M. Ripeanu at

the University of Chicago.

5.2.2. P2P Databases

Both types of networks were populated with data

generated by a synthetic data generator. We use single

attribute tuples. The attribute values have a range

between 1 and 100. The values follow the Zipf-

distribution. The parameters that define the main

characteristics of our synthetic data sets are as follows:

• Cluster Level [CL]: If the cluster level is equal to 0,

then the dataset is perfectly clustered, i.e., it is sorted

and then partitioned across the peers. If the cluster

level is set to 1, then the dataset is randomly

permuted, then partitioned across the peers. In-

between values correspond to in-between scenarios.

• Skew [Z]: The skew determines the slant in

frequency distribution of distinct values the data. Low

skew values give the dataset an even distribution of

frequencies per value, conversely high skew values

distort the distribution of frequencies.

We populated the synthetic network with 1,000,000 tuples

and the Gnutella network with 2,200,000 tuples. It is well-

known that peer-to-peer databases have strong clustering

properties, e.g., large networks such as Gnutella contain

sub-graphs of peers, containing similar music genre,

movies, software, or documents [22]. Thus, while

populating the peers of both networks, we distributed the

data in a breadth-first method, in order to obtain

reasonable clustering of synthetic data within the

topologies. I.e., when loading a peer, the adjacent peers

are also loaded with similarly clustered data.

5.2.3. Aggregation Queries

In our experiments we use SUM and COUNT range

queries with different selectivity of the form: “SELECT

COUNT(A) FROM T WHERE A BETWEEN A1 AND

A2” (i.e. find the number of tuples with values in the

range [A1, A2]).

5.3. Input Parameters

We evaluate the accuracy, use of network resources, the

size of sample acquired, and total number of tuples

sampled from the network. We define each of the user

defined inputs as follows:

1. Required Accuracy [
req

∆]: This parameter defines

is the maximum allowed error for the estimated

answer.

2. Tuples Sampled per Peer [t]: This parameter

defines the number of tuples to sample from each

selected peer.

3. Jump Size [j]: This parameter defines the Number

of peers to pass over before selecting the next peer

for sampling.

4. Initial Sample Size [
orig
r]: This parameter defines

the initial number of tuples to acquire from the

database to execute the first phase. (Thus, orig
r

 / t =

m where m is the number of peers visited in the first

phase. In our experiments, the local databases are

always large enough to ensure that sub-sampling

always takes place.)

Parameter 1 is provided by the user for each query.

Parameters 2-4 may be provided by the user, or may be

set via a pre-processing step. In the end of the

experimental section we provide a user guide for setting

parameters 2-4.

5.4. Evaluation Metrics – Cost and Accuracy

Our algorithms are evaluated based on the cost of

execution as well as how close they get to the desired

accuracy. As discussed earlier, we use latency as a

measure of our cost, noting that in our case that it is

proportional to the number of peers visited. In fact, if the

number of tuples to be sampled is the same for all peers -

which is true in our experiments - latency is also

proportional to the total number of sample tuples drawn

by the overall algorithm. Thus we use the number of

sample tuples used as a surrogate for latency in describing

our results.

5.5. Experiments

All of our results were generated from five independent

experiments and averaged for each individual parameter

configurations. Errors are normalized between 0 and 1.
Accuracy: Figure 2 and 3 shows representative accuracy

results for COUNT using synthetic and real datasets. In

this case we have a query with selectivity 30%, CL=0.2,

and Z=0.2. In Figure 2 we vary the required accuracy.

The figure shows that the algorithm’s result is always

within the required accuracy. In Figure 3 we set required

accuracy to 0.1 and show the resulting accuracy for each

query with different selectivity’s.
Sample Size: Figures 4 and 5 show that the required

sample size increases with req
21 ∆ . They also, show that

the required sample size does not vary much when the

initial sample is ranged from 1000 to 3000. The

selectivity of the query in this experiment was 30%, and

the algorithm gave an answer within the required

accuracy in all cases. We note that the result of our

algorithm specifies the number of peers to be sampled. In

the experiments we convert it to the number of samples

by taking 25 samples per peer. Figure 6 shows that the

improvement by getting more tuples per peer is small. To

minimize the cost of sampling in each peer we take 25

samples in each peer.

Comparison with naïve techniques: Figure 7 compares

our approach with DFS, where we collect our sample

using a random walk with j=0, and BFS, where we collect

our sample from the peers in the neighborhood of the

querying peer. Note that our method always meets the

required accuracy. Our technique clearly outperforms

both techniques.

Effects of data clustering and skew: Figures 8, 9, 10,

and 11 show the effects of different degrees of data

clustering (8, 9) and different degrees of skew (10, 11).

Figures 7 to 12 simulate a peer-to-peer database with two

sub-graphs, each containing similar data within individual

sub-graphs but different from others. The results show

that with clustering closer to 0 (data are more clustered)

we need to collect more samples, while with clustering

close to 1 (data are less clustered) we need less samples;

since each peer contains a better sample of the entire

dataset. Regarding skew, the results show that when

skew increases, we need fewer samples. The reason is

that some values become much more frequent in the

dataset and therefore easier to estimate their count.

Graph size vs. jump size: Figure 12 illustrate the

relationship between jump size and size of cuts in a peer-

to-peer database. As the number of edges connecting sub-

graphs or the jump size increase, the accuracy of the

sample increase. The relationship between number of

edges connecting sub-graphs and the jump size are

inversely proportional in determining the quality of the

sample acquired.

Evaluating the SUM query: Figures 13 and 14 show

that our technique shows similar accuracy results for

SUM. Here we estimate the SUM of all tuples in the

database. (i.e. selectivity=1).

Required Accuracy vs. Error %
(CL=0.25, Z=0.2, j=10, Selectivity=30)

0%

2%

4%

6%

8%

10%

12%

14%

16%

0.25 0.2 0.15 0.1

Required Accuracy

E
rr

o
r

% Synthetic

Gnutella

Figure 2: Effects of required accuracy on the

error percentage for the COUNT technique

Selectivity vs. Error %
(Required Acc=0.10, Z=0.2, j=10)

0%

1%

2%

3%

4%

5%

6%

7%

8%

2.5 5 10 20 40

Selectivity

E
rr

o
r
% Synthetic

Gnutella

Figure 3: Effects of selectivity on the error

percentage for the COUNT technique

1
0
0
0

2
0
0
0

3
0
0
0
0

0
.2
5

0
.2

0
.1
5

0
.1

0
.0
5

0

2000

4000

6000

8000

10000

12000

14000

Sample

Size

Initial

Sample

Size
Required

Accuracy

Required Acc vs. Initial Sample Size vs. Sample Size

Synthetic Topology

(Peers=10,000, Edges=100,000, Tuples Per Peer=50)

12000-14000

10000-12000

8000-10000

6000-8000

4000-6000

2000-4000

0-2000

Figures 4: Effects of the sample size collected

for given required accuracies and initial sample

sizes for the COUNT technique

1
0
0
0

2
0
0
0

3
0
0
0
0

0
.2
5

0
.2

0
.1
5

0
.1

0
.0
5

0

2000

4000

6000

8000

10000

12000

Sample

Size

Initial

Sample

Size
Required

Accuracy

Required Acc vs. Initial Sample Size vs. Sample Size

Real-world Topology: Gnutella

(Peers=22,556, Edges=52,321, Tuples Per Peer=50)

10000-12000

8000-10000

6000-8000

4000-6000

2000-4000

0-2000

Figure 5: Effects of the sample size collected for

given required accuracies and initial sample sizes

for the COUNT technique

Samples per peer vs. Error %
Synthetic Topology

(Peers=10,000, Edges=100,000, Req Acc=0.10,Z=0.2,j=10)

0%

1%

1%

2%

2%

3%

3%

4%

4%

5%

5%

50 100 150 200 250

Samples per peer

E
rr

o
r

%

Synthetic

Figure 6: The figure shows the number of peers

does not make a vast difference in accuracy

Required Accuracy vs. Error %

Synthetic Topology
(CL =0.25,Z=0.2,Peers=10,000,Edges=100,000, j=10)

(Sub-Graphs=2,Cut-Size=1000)

0%

5%

10%

15%

20%

25%

0.25 0.2 0.15 0.1 0.05

Required Accuracy

E
rr

o
r

% Random Walk

BFS

DFS

Figure 7: The figure shows random walks

perform better then BFS and DFS

5.6. Estimating the Median

Figure 15 and 16 shows that our technique can be

extended to accurately estimate the median. Our

algorithm for computing the median is given below:
1. Select m peers at random using random walk.
2. Each peer sj computes its median medj and

sends it to the sink, along with prob(sj).

3. The sink randomly partitions the m medians

into two groups of m/2 medians, Group1 and

Group2.

4. Let medg1 be the weighted median of Group1,
i.e., such that the following is minimized

− ∑∑
>
∈

<
∈

11

,1,1

)(/1)(/1

gj

j

gj

j

medmed

Groupmed

j

medmed

Groupmed

j sprobsprobabs

5. Find the error between the median of Group2
(say medg2) and the weighted rank of medg1 in

Group2. I.e., let c =

)2//()(/1)(/1

21

,2,2

msprobsprobabs

gj

j

gj

j

medmed

Groupmed

j

medmed

Groupmed

j

− ∑∑
<
∈

<
∈

6. Select additional
22

req
c ∆ peers using random

walk.

7. Find and return the weighted median of the

medians of the additional peers.

In these experiments we use both the Gnutella and

synthetic graph, vary the clustering factor, and set

1.0=∆
req

. The error that we show in the graph is the

difference between the true rank of the median that the

algorithm returns, and 2N .

6. Conclusion & Future Work

In this paper we present adaptive sampling-based

techniques for the novel problem of approximate

answering of ad-hoc aggregation queries in P2P

databases. We present extensive experimental

evaluations to demonstrate the feasibility of our solutions.

Several intriguing open problems remain. Is it

possible to build hybrid solutions that do some amount of

pre-computations of samples, in addition to “on-the-fly”

sampling such as ours? Is it possible for sampling-based

algorithms to perform “biased sampling”, i.e., focus the

samples from regions of the database where tuples that

satisfy the query are likely to exist? More generally,

decision support and data analysis in P2P databases

Clustering vs. Error %
(Required Acc=0.10, Z=0.2, j=10,Selectivity=30)

0%

1%

2%

3%

4%

5%

6%

0 0.25 0.5 0.75 1

Clustering

E
rr

o
r
% Synthetic

Gnutella

Figure 8: Effects of clustering on the error

percentage for the COUNT technique

Clustering vs. Sample Size
(Required Acc=0.10, Z=0.2, j=10, Selectivity=30, j=10)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0.25 0.5 0.75 1

Clustering

S
a
m

p
le

 S
iz

e

Synthetic

Gnutella

Figure 9: Effects of clustering on the sample

size for the COUNT technique

Skew vs. Error %
(Required Acc=0.10,CL=0.25)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

0 0.5 1 1.5 2

Skew

E
rr

o
r

%

Synthetic

Gnutella

Figure 10: Effects of skew on the error

percentage for the COUNT technique

Skew vs. Sample Size
(Required Acc=0.10,CL=0.25,j=10)

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2
Skew

S
a
m

p
le

 S
iz

e

Synthetic

Gnutella

Figure 11: Effects of skew on the sample size

for the COUNT technique

1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

10000

1000

10

0%

5%

10%

15%

20%

25%

30%

35%

Error %

Jump Size

Cut Size

Cut Size vs. Jump Size vs. Error %

Synthetic Topology
(Peers=10,000, Req Acc=0.10, Zeta=0.2, Sub-Graph=2)

0.3-0.35
0.25-0.3
0.2-0.25
0.15-0.2
0.1-0.15
0.05-0.1
0-0.05

Figure 12: Effects of cut size with jump size on

error percentage for SUM technique

Clustering vs. Error %
(Z=0.2, Req Acc=0.10, j=10)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

0 0.25 0.5 0.75 1

Clustering

E
rr

o
r
%

Synthetic

Gnutella

Figure 13: Effects of clustering on the error

percentage for the SUM technique

appears to be an important area of research with emerging

applications, and we hope our work will encourage

further research in this field.

7. Acknowledgements

Thanks to M. Ripeanu at the University of Chicago for

providing us with the Gnutella topologies samples. The

work of Kalogeraki and Gunopulos was supported by

NSF 0330481.

8. References

[1] S. Acharya, P. B. Gibbons and V. Poosala. Aqua: A Fast

Decision Support System Using Approximate Query Answers.

Demo in Intl. Conf. on Very Large Databases (VLDB '99).

[2] L. Adamic, R. Lukose, A. Puniyani, and B. Huberman.

Search in Power-Law Networks. Phys. Rev. E, 2001.

[3] B. Babcock, S. Chaudhuri, and G. Das. Dynamic Sample

Selection for Approximate Query Processing. SIGMOD

Conference 2003: 539-550.

[4] A.R. Bharambe, M. Agrawal, and S. Seshan. Mercury:

Supporting Scalable Multi-Attribute Range Queries. SIGCOMM

2004.

[5] M. Charikar, S. Chaudhuri, R. Motwani, and V.

Narasayya. Towards estimation error guarantees for distinct

values. In Proceedings of the ACM Symp. On Principles of

Database Systems, 2000.

[6] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V.

Narasayya. Overcoming Limitations of Sampling for

Aggregation Queries. ICDE 2001: 534-542.

[7] S. Chaudhuri, R. Motwani, and V. Narasayya. Random

sampling for histogram construction: How much is enough? IN

Proceedings. Of the 1998 ACM SIGMOD Intl. Conf. on

Management of Data, pages 436-447, 1998.

[8] S. Chaudhuri, G. Das, and V. Narasayya. A Robust,

Optimization-Based Approach for Approximate Answering of

Aggregate Queries. SIGMOD Conference 2001.

[9] S. Chaudhuri, G. Das, and U. Srivastava. Effective Use of

Block-Level Sampling in Statistics Estimation. SIGMOD 2004.

[10] Y. Chu, S. Rao, and H. Zhang. A case for end system

multicast. In Proceedings of ACM Sigmetrics 2000.

[11] Mauricio Minuto Espil and Alejandro A. Vaisman.

Aggregate queries in peer-to-peer OLAP. DOLAP '04.

[12] C. Faloutsos, P. Faloutsos, and M. Faloutsos. On Power-

Law Relationships of the Internet Topology. SIGCOMM 1999.

[13] Freenet Homepage, http://freenet.sourceforge.net

[14] C. Gkantsidis, M. Mihail, and A. Saberi. Random Walks in

Peer-to-Peer Networks. IEEE Infocom 2004.

[15] Gnutella Homepage, http://rfc-gnutella.sourceforge.net.

[16] P. Haas, and C. Kőnig. A Bi-Level Bernoulli Scheme for

Database Sampling. SIGMOD 2004.

[17] R. Heubsch, J. Hellerstein, N. Lanhan, B. T. Loo, S.

Shenker, and I. Stoica. Querying the Internet with PIER.

VLDB 2003.

[18] JUNG website. http://jung.sourceforge.net.

[19] P. Kalnis, W. S. Ng, B. C. Ooi and D. Papadias and K-L.

Tan. An adaptive peer-to-peer network for distributed caching

of OLAP results. SIGMOD 2002.

[20] KaZaA Homepage, http://www.kazaa.com.

[21] V. King and J. Saia. Choosing a Random Peer. PODC

2004.

[22] F. Le Fessant, S. Handurukande, A.-M. Kermarrec, and L.

Massoulié. Clustering in Peer-to-Peer File Sharing Workloads.

3rd Intl. Workshop on Peer-to-Peer Systems IPTPS 2004.

[23] X. Li, Y.J. Kim, R. Govindan, and W. Hong. Multi-

dimensional range queries in sensor networks. SENSYS 2003.

[24] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J.

Pruyne, B. Richard, S. Rollins, and Z. Xu. Peer-to-Peer

Computing. HP Technical Report, HPL-2002-57.

[25] Napster Hompage, http://www.napster.com.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.

Shenker. A Scalable Content-Addressable Network. SIGCOMM

2001.

[27] A. Rowstron and P. Druschel. Pastry: Scalable,

distributed object location and routing for large-scale peer-to-

peer systems. IFIP/ACM Middleware 2001.

[28] O.D. Sahin, A. Gupta, D. Aggrawal, and A. El Abbadi. A

Peer-to-peer Framework for Caching Range Queries. ICDE

2004.

[29] Julian L. Simon. Resampling: The New Statistics. Second

Edition published October 1997.

[30] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H.

Balakrishnan. Chord: A scalable Peer-to-peer Lookup Service

for Internet Applications. SIGCOMM 2001.

[31] D. Zeinalipour-Yazti, V. Kalogeraki, D. Gunopulos.

Exploiting locality for scalable information retrieval in peer-to-

peer networks. Inf. Syst. 30(4): 277-298 (2005).

Clustering vs. Sample Size
(Z=0.2, Req Acc=0.10, j=10)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.25 0.5 0.75 1

Clustering

S
a
m

p
le

 S
iz

e

Synthetic

Gnutella

Figure 14: Effects of clustering on the sample

size for the SUM technique

Clustering vs. Error %
(Z=0.2, Req Acc=0.10, j=10)

0%

2%

4%

6%

8%

10%

12%

0 0.25 0.5 0.75 1

Clustering

E
rr

o
r

%

Synthetic

Gnutella

Figure 15: Effects of clustering on the error

percentage for the median technique

Clustering vs. Sample Size
(Z=0.2, Req Acc=0.10, j=10)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.25 0.5 0.75 1

Clustering

S
a
m

p
le

 S
iz

e

Synthetic

Gnutella

Figure 16: Effects of clustering on the sample

size for the median technique

