
Semantic data integration in P2P systems

Diego Calvanese, Elio Damaggio, Giuseppe De Giacomo,
Maurizio Lenzerini, Riccardo Rosati

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
lastname @dis.uniroma1.it

Abstract. In this paper, we study the problem of data integration in
P2P systems. Differently from the traditional setting, data integration
in these systems is not based on the existence of a global view. Instead,
each peer exports data in terms of its own schema, and information in-
tegration is achieved by establishing mappings among the various peer
schemas. We present a framework that captures this general architec-
ture, and then we discuss the problem of characterizing the semantics
of such framework. We show that the usual approach of resorting to a
first-order logic intepretation of P2P mappings, leads both to a poor
modeling of the whole system, and to undecidability of query answering,
even for mappings of a restricted form. This motivates the need of a new
semantics for P2P system. We then present a novel proposal, based on
epistemic logic, and show that not only it adequately models the inter-
actions among peers, but it also supports decidable query answering. In
particular, for the restricted form of mapping mentioned above, query
answering is polynomial with respect to the size of data stored in the
peers.

1 Introduction

Most of the formal approaches to data integration refer to an architecture based
on a global schema and a set of sources. The sources contain the real data, while
the global schema provides a reconciled, integrated, and virtual view of the
underlying sources. One of the challenging issues in these systems is to answer
queries posed to the global schema. Due to the architecture of the system, query
processing requires a reformulation step: the query over the global schema must
be re-expressed in terms of a set of queries over the sources [10, 11, 17, 14].

In this paper, we study the problem of data integration in peer-to-peer sys-
tems. In these systems every node (peer) acts as both client and server, and pro-
vides part of the overall information available from a distributed environment,
without relying on a single global view. A suitable infrastructure is adopted for
managing the information in the various nodes. Napster [16], which made the
P2P idea popular, employs a centralized database with references to the informa-
tion items (files) on the peers. Gnutella, another well-known P2P system, has no
central database, and is based on a communication-intensive search mechanism.



More recently, a Gnutella-compatible P2P system, called Gridella [12], has been
proposed, which follows the so-called Peer-Grid (P-Grid) approach. A P-Grid is
a virtual binary tree that distributes replication over community of peers and
supports efficient search. P-Grid’s search structure is completely decentralized,
supports local interactions between peers, uses randomized algorithms for access
and search, and ensures robustness of search against node failures.

As pointed out in [8], current P2P systems focus strictly on handling
semantic-free, large-granularity requests for objects by identifier, which both lim-
its their utility and restricts the techniques that might be employed to distribute
the data. These current sharing systems are largely limited to applications in
which objects are described by their name, and exhibit strong limitations in
establishing complex links between peers. To overcome these limitations, data-
oriented approaches to P2P have been proposed recently [9, 1, 8]. For example, in
the Piazza system [8], data origins serve original content, peer nodes cooperate to
store materialized views and answer queries, nodes are connected by bandwidth-
constrained links and advertise their materialized views to share resources with
other peers.

Differently from the traditional setting, integration in data-oriented P2P sys-
tems is not based on a global schema. Instead, each peer represents an au-
tonomous information system, and information integration is achieved by estab-
lishing P2P mappings, i.e., mappings among the various peers. Queries are posed
to one peer, and the role of query processing is to exploit both the data that are
internal to the peer, and the mappings with other peers in the system. To stress
the data-oriented nature of the framework, we refer to “semantic data integra-
tion”, in the sense that we assume that the various peers export data in terms
of a suitable schema, and mappings are established among such peer schemas.
A peer schema is therefore intended to export the semantics of information as
viewed from the peer.

In this paper, we present a framework that captures this general architecture
(Section 2), and then discuss the problem of characterizing the semantics of such
framework (Section 3). We argue that, although correct from a formal point of
view, the usual approach of resorting to a first-order logic interpretation of P2P
mappings (followed for example by [5, 9, 1]), has several drawbacks, both from the
modeling and from the computational perspective. In particular, query answering
under the first-order semantics is undecidable, even for restricted forms of P2P
systems, called simple P2P systems, i.e., for the case where the various peers
are empty first-order theories. Motivated by these observations, several authors
proposed suitable limitations to the form of P2P mappings, such as acyclicity.

Based on the above mentioned drawbacks, we propose a new semantics for
P2P systems, with the following aims: (i) we want to take into account that
peers are autonomous modules, and the modular structure of the P2P system
should be explicitly reflected in the definition of its semantics; (ii) we do not
want to limit a-priori the topology of the mapping assertions between the peers
in the system; (iii) we seek for a semantic characterization that leads to a setting
where query answering is decidable, and possibly, polynomially tractable.



We base our proposal of a new semantics for P2P systems on epistemic logic,
and we show that not only it adequately models the interactions among peers,
but it also supports decidable query answering. In particular, for simple P2P
systems, we devise a query answering algorithm which runs in polynomial time
with respect to the size of data stored in the peers (Section 4).

2 Framework

In this section, we set up the general framework for peer-to-peer (P2P) systems.
We refer to a fixed, infinite, denumerable, set Γ of constants. Such constants are
shared by all peers, and are the constants that can appear in the P2P system.
Moreover, given a (relational) alphabet A, we denote with LA the set of function-
free first-order logic (FOL) formulas whose relation symbols are in A and whose
constants are in Γ . A FOL query of arity n over an alphabet A is written in the
form

{x | body(x)} (1)

where body(x) is an open formula of LA with free variables x = x1, . . . , xn. A
conjunctive query (CQ) of arity n over an alphabet A is written in the form

{x | ∃ycbody(x,y)} (2)

where cbody(x,y) is an conjunction of atoms of LA involving the free variables
(also called the distinguished variables of the query) x = x1, . . . , xn, the exis-
tentially quantified variables (also called the non-distinguished variables of the
query) y = y1, . . . , ym, and constants from Γ .

A P2P system is constituted by a set of peers, and a set of mappings among
peers. We first concentrate on describing the structure of a single peer. Following
the basic ideas presented in [9], we define a peer P as a triple P = (G, S, L),
where:

– G is the schema of P , which is defined, starting from an alphabet AG, as a
set of formulas of LAG . We call AG the alphabet of P .

– S is the (local) source schema of P , that is simply a finite relational alphabet,
which is called the local alphabet of P .

– L is a set of (local) mapping assertions between G and S. Each local mapping
assertion has the form

cqS � cqG

where cqS and cqG are two conjunctive queries of the same arity, over the
source schema S and over the peer schema G, respectively.

Intuitively, the source schema describes the structure of the data sources of
the peer (possibly obtained by wrapping physical sources), where the real data
managed by the peer are stored, while the peer schema provides a virtual view of
the information managed by, and exported by the peer. The mapping assertions
establish the connection between the elements of the source schema and those of



the peer schema. In particular, an assertion of the form cqS � cqG specifies that
all the data satisfying the query cqS over the sources also satisfy the concept
in the peer schema represented by the query cqG. This form of mapping is
the most expressive one among those studied in the data integration literature.
Indeed, in terms of the terminology used in data integration, a peer in our setting
corresponds to a GLAV data integration system [7] managing a set of sound data
sources S defined in terms of a (virtual) global schema G.

A P2P system is constituted by a set of peers and a set of mappings that
specify the semantic relationships between the data exported by the peers. For-
mally, a P2P system is a pair S = (P ,M), where P is a finite set of peers, and
M is a finite set of P2P-mapping assertions. Each P2P mapping assertion has
the form

q1 � q2

where

– q1, called the tail of the assertion, is a FOL query over the union of the
alphabets of the peers in P ,

– q2, called the head of the assertion, is a FOL query over the alphabet of a
single peer, and

– q1 and q2 are of the same arity.

Intuitively, a P2P mapping assertion q1 � q2, where q2 is a query over the
schema of a peer P , expresses the fact that P can use, besides the data in its local
sources, also the data retrieved by q1 from the peers over which q1 is expressed.
Such data are mapped to the schema of P according to what is specified by the
query q2. Observe that P2P mapping assertions may be cyclic, in the sense that
no limitation is imposed on the graph representing such assertions. This graph
contains one node for every relation symbol in the peer schemas, and one arc
from the node corresponding to R1 to the node corresponding to R2 if there is
a P2P mapping assertion whose tail mentions R1 and whose head mentions R2.

Finally, we assume that queries are posed to a single peer of the system. More
precisely, a query over a P2P system S = (P ,M) is a first-order query over the
peer schema of a single peer in P .

3 Semantics

In this section, we first define the semantics of one peer (subsection 3.1), and
then we discuss two mechanisms for specifying the semantics of the whole P2P
system. The first mechanism (subsection 3.2), adopted in most formal approaches
to P2P data integration, is based of FOL. Motivated by several drawbacks of
this approach, we propose a new semantics, based on epistemic logic (subsection
3.3).

In what follows, a database (DB) for a schema T is simply a set of collection
of relations, one for each symbol in the alphabet of T . Also, if q is a query of
arity n and DB is a database, we denote with ans(q,DB) the set of tuples (of
arity n) in DB that satisfy q.



3.1 Semantics of one peer

In order to assign formal meaning to a peer P = (G, S, L), we conceive P as a
FOL theory TP , called “peer theory”, defined as follows:

– The alphabet of TP is obtained as union of the alphabet AG of G and the
alphabet of the local sources S of P ,

– The formulas of TP are obtained as follows:
• there is one formula of the form

∀x (cqS(x) → cqG(x))

for each local mapping assertion cqS � cqG in L
• TP includes all the FOL formulas expressing the schema G.

We make a simplifying assumption on the domain of the various databases.
In particular, we assume that the databases involved in our framework (both
the databases conforming to the local schemas, and those conforming to the
peer schemas) share the same infinite domain ∆, fixed once and for all. We also
assume that the constants in Γ (see the previous section) have the same, fixed,
interpretation in all databases, i.e., to each constant c ∈ Γ is associated, once and
for all, a certain domain element d ∈ ∆. Moreover, we assume that Γ contains a
constant for each element in ∆, and that different constants are interpreted as
different domain elements. It follows that Γ is actually isomorphic to ∆, so that
we can use (with a little abuse of notation) constants in Γ whenever we want to
denote domain elements.1

Now, the semantics of P directly follows from its characterization in FOL,
and the assumption above on the interpretation domain. However, in order to
point out the role of local sources in P , we specialize the notion of FOL semantics
by starting with a local source database for P , i.e., a finite database D for the
source schema S. Based on D, we now specify which is the information content
of the peer schema G at the extensional level. We call peer database for P any
database for G. A peer database B for P is said to be a model of P with respect
to D if:

– B satisfies all the formulas expressing the meaning of G,
– B satisfies every mapping assertion in L, where B satisfies the mapping

assertion cqS � cqG if every tuple that satisfies cqS in D satisfies also cqG

in B.

Finally, we specify the semantics of queries posed to a peer. As we said
before, such queries are expressed in terms of the alphabet AG , i.e., in terms of
the symbols in the peer schema G of P . Given a local source database D for P ,
the answer ans(q, P,D) to a query q in P with respect to D, is the set of tuples
t of constants in Γ such that t ∈ ans(q,B) for every peer database B that is a
model of P with respect to D. The set ans(q, P,D) is called the set of certain
answers to q in P with respect to D.

In the next two subsections, we turn our attention to the problem of speci-
fying the semantics of the whole P2P system.
1 In other words the constants in Γ act as standard names [15].



3.2 FOL semantics for P2P systems

The first approach we discuss for assigning semantics to a P2P system, is the
FOL approach, followed by [5, 13, 9]. In this approach, one associates to a P2P
system S = (P ,M) a single FOL theory, obtained as the union of the various
peer theories, plus suitable FOL formulas corresponding to the P2P mapping
assertions. In particular, we have one mapping formula

∀x (q1(x) → q2(x))

for each P2P mapping assertion q1 � q2.
In this formalization, the models of the whole P2P system S are simply the

FOL models of the corresponding FOL theory. Although correct from a formal
point of view, we argue that this formalization has two main drawbacks:

– Since this approach considers the whole P2P system as a single flat FOL
theory, in the formalization the structure of the system in terms of peers
is actually lost. In other words, the formulas of the various peers, and the
mapping between peers become formulas of the theory, without any formal
distinction of their roles.

– One of the implications of the above observation is that, even if we restrict
the general framework in such a way that the various peers are decidable
FOL theories (in particular, empty theories), query answering in the whole
P2P system is actually undecidable, as illustrated in the next section. This
is why, in [9, 13], the authors propose syntactic restrictions on the mapping
assertions (e.g., acyclicity).

The above drawbacks suggest that it is worth exploring other kinds of se-
mantics for P2P systems.

3.3 A new semantics for P2P systems based on epistemic logic

Based on the above mentioned drawbacks, we propose a new semantics for P2P
systems, with the following aims:

– We want to take into account that peers in our context are to be considered
autonomous sites, that exchange information. In other words, peers are mod-
ules, and the modular structure of the system should be explicitly reflected
in the definition of its semantics.

– We do not want to limit a-priori the topology of the mapping assertions
among the peers in the system. In particular, we do not want to impose
acyclicity of assertions.

– We seek for a semantic characterization that leads to a setting where query
answering is decidable, and possibly, polynomially tractable.

We base our proposal of a new semantics for P2P systems on epistemic logic2.
Due to space limitations, we cannot delve into the details of epistemic logic here.
2 Technically we resort to epistemic FOL with standard names, and therefore with a

fixed domain, and rigid interpretation of constants [15].



We simply describe its basic notions. In epistemic logic, the language is the one
of FOL, except that, besides the usual atoms, one can use another form of atoms,
namely:

Kα

where α is again a formula. Intuitively, the formula Kα is interpreted as the
objects that are known to satisfy α, i.e., that satisfy α in all possible FOL
models (of the kind seen so far, in our case).

Formally, the semantics of an epistemic logic theory is based on the notion of
epistemic interpretation. We remind the reader that we are referring to a unique
interpretation domain Γ . An epistemic interpretation E is a pair (I,W), where
I is a FOL interpretation, W is a set of FOL interpretations, and I ∈ W. The
notion of satisfaction of a formula in an epistemic interpretation E = (I,W) is
analogous to the one in FOL, with the provision that the interpretation for the
atoms is as follows:

– a FOL formula constituted by an atom f(x) (where x are the free variables
in F ) is satisfied in (I,W) by the tuples of constants t such that f(t) is true
in I,

– an atom of the form Kα(x) is satisfied in (I,W) by the tuples of constants
t such that α(t) is satisfied in all the pairs (J ,W) such that J ∈ W .

An epistemic model of an epistemic logic theory is an epistemic interpretation
that satisfies every formula of the theory.

Observe that in epistemic logic the formula K(α ∨ β) has an entirely different
meaning with respect to the formula Kα ∨ Kβ. Indeed, the former is satisfied
in an interpretation (J ,W) if for every I ∈ W, there is at least one among
{α, β}, α or β is satisfied in I. Conversely, the latter requires that there is one
formula among α and β that is satisfied in all I ∈ W . Observe also that, if α is
a FOL formula, there is a striking difference between K∃x.α(x) and ∃x.Kα(x).
In particular, for ∃x.Kα(x) to be satisfied in (I,W) there must be a constant
c ∈ Γ such that α(c) is satisfied in every J ∈ W .

We formalize a P2P system S = (P ,M) in terms of the epistemic logic theory
ES , called P2P theory, constructed as follows:

– the alphabet is the disjoint union of the alphabets of the various peer theo-
ries, one corresponding to one peer in P3

– all the formulas of the various theories TP belong to ES ,
– there is one formula in ES of the form

∀x ((K q1(x)) → q2(x))

for each P2P mapping assertion q1 � q2 in M.

Note that the formalization of the P2P mapping assertions in terms of the
formulas specified above intuitively reflects the idea that only what is known
3 In order to get the disjoint union, we may simply rename the predicates of the

schemas of the various peers by prefixing the peer identifier.



by the peers mentioned in the tail of the assertion is transferred to the peer
mentioned in the head.

Now, the semantics of the P2P system S directly follows from the above
characterization in epistemic logic. However, as we did for the case of one peer,
in order to point out the role of local sources in the various peers, we specialize the
notion of epistemic semantics by starting with a collection of source databases,
one for each peer in P

Let D1, . . . ,Dn be n local source databases for the peers P1, . . . , Pn in P .
We call source database D for S based on D1, . . . ,Dn the disjoint union of
D1, . . . ,Dn. Moreover, let B1, . . . ,Bn be n models of P1, . . . , Pn with respect
to D1, . . . ,Dn, respectively. The disjoint union of B1, . . . ,Bn is called a FOL
model for S based on D.

We can now introduce the notion of epistemic interpretation for S: an epis-
temic interpretation for S based on D is a pair (I,W) such that I is a FOL
model for S based on D, W is a set of FOL models for S based on D, and
I ∈ W. Taking into account the semantics of epistemic logic described above, it
is easy to see that an epistemic model for S based on D is any epistemic interpre-
tation for S based on D that satisfies all the epistemic formulas corresponding
to the P2P mapping assertions in M. In particular, an epistemic interpretation
(I,W) for S based on D satisfies the P2P mapping assertion q1 � q2 if, for
every tuple t of objects in Γ , the fact that q1(t) is satisfied in every FOL models
in W implies that q2(t) is satisfied in I.

Let q be a query over one peer of S. The certain answer ansk(q,S,D) to q in
S based on D is the set of tuples t of objects in Γ such that q(t) is satisfied in
every epistemic model (I,W) of S based on D, i.e., the set of tuples t of objects
in Γ such that, for every every epistemic model (I,W) of S based on D, q(t) is
satisfied in I.

4 Query Answering

In this section we address query answering in P2P systems. We start by noticing
that query answering in the general framework is obviously undecidable. Indeed,
since peer schemas are arbitrary FOL theories, it is undecidable even to answer
boolean queries posed to a P2P system constituted by a single peer. So, it makes
sense to introduce some restriction to make query answering more manageable.

Here we focus on a specific restricted setting. In particular, we call a P2P
system S = (P ,M) simple if it satisfies the following restrictions:

1. peer theories are empty, i.e., each peer schema of S simply consists of a
relational alphabet;

2. P2P mapping assertions in M are expressed using conjunctive queries, i.e.,
a P2P mapping assertion is an expression of the form q1 � q2, where q1 and
q2 are conjunctive queries of the same arity, q1 is expressed over the union of
the alphabets of the peers, and q2 is expressed over the alphabet of a single
peer.



3. the language for querying the P2P system is union of conjunctive queries
(UCQ), i.e., a query over a P2P system is a UCQ over the alphabet of a
single peer.

Such a restricted framework allows us to isolate the complexity coming from
the P2P mappings. Indeed, since we have dropped constraints (axioms) in the
various peer schemas, we are avoiding the introduction of complexity coming
from the structure of such schemas. Also, having restricted the queries used in
the P2P mapping and the queries posed to the P2P system to conjunctive (union
of conjunctive) queries, which are well investigated in data integration, allows
us to understand the complexity coming out of the core structure of the P2P
system itself.

Interestingly, if we adopt the FOL semantics for simple P2P systems, query
answering remains undecidable. This is mainly due to the presence of cycles in
the P2P mapping assertions [6].

One of the contributions of our work is that, if we instead adopt the epistemic
semantics, we get decidability for query answering. We show this by providing a
sound and complete algorithm for query answering in simple P2P systems.

In particular, we show that, given an UCQ q posed to a simple P2P system
S, and given a source database D for S, one can construct a finite (relational)
database RDB on the alphabet AS that is the union of the alphabet of the peer
schemas in S, such that for each tuple t of constants in Γ , t ∈ ansk(q,S,D) if
and only if t ∈ ans(q,RDB). Intuitively, such a finite database RDB constitutes
a “representative” of all the epistemic models for S based on D with respect to
the query q.

The database RDB contains, as objects, constants in Γ and new constants,
called below fresh values, coming from an infinite, denumerable set of constants
Φ, disjoint from Γ . To construct RDB, we make use of the following algorithm:

Algorithm build-rdb(S,D, q)
Input: simple P2P system S = (P ,M), with P = {P1, . . . , Pn},

source database D for S,
UCQ q over a peer Pi

Output: database RDB on AS
RDB ← ∅;
(a) for i = 1, . . . , n do RDB ← retrieve-local-mapping(S, Pi, D,RDB);
(b) repeat

RDB’ ← RDB;
RDB ← retrieve-P2P-mapping(M,RDB)

until RDB’ = RDB;
return RDB

Informally, the algorithm proceeds as follows: first, through the local mapping
assertions, it retrieves data from the local sources of the peers, and stores such
data in the database RDB; then, through the P2P mapping assertions, it adds
new data to RDB, until no new data can be added.



To compute the database RDB, the algorithm resorts to two subroutines,
retrieve-local-mapping and retrieve-P2P-mapping. The first one retrieves data from
the local sources of the peers according to the local mapping assertions, while
the second one derives new data according to the P2P mapping assertions. In
order to define such operations, we introduce the following notation. Given a
conjunctive query q = {x | ∃y.cbody(x,y)}, a tuple t of the same arity of x,
and a database DB whose objects are in Γ ∪ Φ, we denote with fresh(q, t,DB)
the set of atoms obtained by instantiating the distinguished variables in q by t
and the existentially quantified variables in q by some fresh values not already
occurring in DB. In other words, fresh(q, t,DB) is the set of atoms that form the
conjuncts of cbody(t,v) where each v in v is a fresh value not occurring in DB.

Below we define the algorithm retrieve-local-mapping that, given a simple P2P
system S = (P ,M), a peer P = (G, S, L) in P , a source database D for S and
a database RDB on AS , adds to RDB all the facts that are consequence of the
local mapping assertions in L evaluated over D.

Algorithm retrieve-local-mapping(S, P,D,RDB)
Input: simple P2P system S = (P ,M),

peer P = (G, S, L) in P ,
source database D for S,
database RDB on AS

Output: database RDB’ on AS
RDB’ ← RDB;
for each qs � qg ∈ L do

for each t ∈ ans(qs,D) do
if t 	∈ ans(qg,RDB’)
then RDB’ ← RDB’ ∪ fresh(qg, t,RDB’)

return RDB’

Then, we define the algorithm retrieve-P2P-mapping that, given a set of P2P
mapping assertions M and a database RDB on AS , adds to RDB all the facts
that are consequences of the assertions M evaluated over RDB.

Algorithm retrieve-P2P-mapping(M,RDB)
Input: P2P mapping assertions M,

database RDB on AS
Output: database RDB’ on AS
RDB’ ← RDB;
for each q � qi ∈ M do

for each tuple t of constants in Γ such that t ∈ ans(q,RDB’) do
if t 	∈ ans(qi,RDB’)
then RDB’ ← RDB’ ∪ fresh(qi, t,RDB’)

return RDB’

The next theorem proves termination of the algorithm build-rdb.

Theorem 1. Let S = (P ,M) be a simple P2P system, D a source database for
S, and q a UCQ of arity n over the alphabet of a single peer in P. Then, the



algorithm build-rdb(S,D, q) terminates, and returns a finite database RDB on
AS whose objects are constants in Γ and fresh values in Φ.

The next theorem gives us soundness and completeness of the technique
presented here, with respect to the epistemic semantics, for simple P2P systems.

Theorem 2. Let S = (P ,M) be a simple P2P system, D a source database for
S, q a UCQ of arity n over the alphabet of a single peer in P, and RDB the
database returned by build-rdb(S,D, q). Then, for each tuple t of constants in Γ ,
t ∈ ans(q,RDB) if and only if t ∈ ansk(q,S,D).

Informally, the proof of the above theorem is based on the fact that the
finite database RDB computed by the algorithm build-rdb constitutes a “repre-
sentative” of all the (generally infinite) models for S and D. Based on such a
property, the evaluation of the query q with respect to S and D is equivalent to
the evaluation of q over the database RDB.

Finally, we analyze the complexity of the algorithm with respect to the size
of data stored in the peers of S, i.e., the size of the source database D for S (data
complexity). Next theorem gives us a polynomial time bound in data complexity.

Theorem 3. Let S = (P ,M) be a simple P2P system, D be a source database
for S, q a UCQ of arity n over the alphabet of a single peer in P, and t a tuple of
arity n of constants in Γ . The problem of establishing whether t ∈ ansk(q,S,D)
is in PTIME in data complexity.

The result follows from the following observations:

1. it is immediate to verify that the algorithm retrieve-local-mapping runs in
polynomial time in data complexity, and therefore the data complexity of
step (a) of the algorithm build-rdb is polynomial as well;

2. in the algorithm retrieve-P2P-mapping, for each assertion q � qi ∈ M, only
the answers to the query q that are tuples of constants in Γ are considered,
which implies that the number of instances of the P2P mapping assertion
q � qi that cause the addition of new tuples in RDB’ is bound to ch,
where c is the number of constants occurring in the P2P source database
D and h is the arity of the query q. Consequently, the maximum number
of iterations that can be executed by step (b) of the algorithm build-rdb is
bound to a · ck, where a is the number of assertions in M and k is the
maximum arity of the conjunctive queries occurring in M. Hence, step (b)
of the algorithm build-rdb runs in polynomial time data complexity, and the
size of the database RDB computed by the algorithm is also polynomial with
respect to the size of the source database D for S;

3. checking t ∈ ans(q,RDB) is polynomial (actually LOGSPACE) in data com-
plexity, being q an UCQ.



5 Conclusions

In this paper we have presented a general framework for data-oriented P2P
systems, and we have discussed possible methods for specifying the semantics of
such systems. Motivated by several drawbacks in the usual FOL formalization
of data-oriented P2P systems, we have proposed a novel semantics for data
integration in these systems, and we have shown that, at least for simple P2P
systems, query answering under the new semantics is not only decidable, but
can be done in polynomial time with respect to the size of data stored in the
peers. The main objective of our work was to study the fundamental aspects of
P2P data integration, and, therefore, we made several assumptions that may be
too restrictive in real applications. One direction to continue our research work
is to relax some of these assumptions. In particular,

– The purpose of the algorithm presented in Section 4 was to show relevant
formal properties of the proposed semantics, in particular that it support
polynomial time data complexity in computing the answers to queries posed
to simple P2P systems. However, the algorithm is based on a bottom-up
computation, that does not exploit in any way neither the structure of the
query, nor the topology of the P2P mappings. This makes the algorithm
only of theoretical interest. We are working on a new algorithm that is both
sound and complete with respect to the epistemic semantics, and is based on
a method driven by the query and the structure of mappings, thus avoiding
the bottom-up computation.

– Although we have assumed here that P2P mappings mention only one peer
in their heads, our results can be extended to the case of more expressive
forms of mappings, in particular allowing conjunctive queries over more than
one peer in the head.

– Peer schemas in simple P2P systems are specified just in terms of an al-
phabet. Obviously, more expressive forms of schema may be needed in real
settings. Interestingly, by exploiting the results presented in [2–4], it is pos-
sible to show that both the technique described in Section 4, and the query-
driven algorithm mentioned above, can be generalized to a setting where peer
schemas contain important classes of constraints, such as key and foreign key
constraints.

– In our formal framework we assumed the existence of a single, common
set of constants for denoting the interpretation domain of all the peers. In
real applications, this is a too strong assumption, as the various peers are
obviously autonomous in choosing the mechanisms for denoting the domain
elements. The issue of different vocabularies of constants in different peers
is addressed, for example, in [1], and we believe that our approach can be
extended in order to incorporate such kinds of techniques to deal with this
problem.

– Finally, in our current formalization, if the information that one peer pro-
vides to another peer is inconsistent with the information known by the
latter, the whole P2P system is logically inconsistent. Again, this is a strong



limitation when one wants to use the framework in real applications. Data
reconciliation and cleaning techniques may mitigate such a problem in some
cases. More generally, to deal with this problem, we are investigating suitable
extensions of the epistemic semantics presented here, in the line of [4].

References

1. P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and
I. Zaihrayeu. Data management for peer-to-peer computing : A vision. Proc. of
the 5nd Int. Workshop on the Web and Databases (WebDB’02), 2002.

2. A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration under
integrity constraints. Information Systems, 2003. To appear.

3. A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity of
query answering over inconsistent and incomplete databases. In Proc. of the
22nd ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2003), 2003. To appear.

4. A. Cal̀ı, D. Lembo, and R. Rosati. Query rewriting and answering under constraints
in data integration systems. In Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2003), 2003. To appear.

5. T. Catarci and M. Lenzerini. Representing and using interschema knowledge in
cooperative information systems. J. of Intelligent and Cooperative Information
Systems, 2(4):375–398, 1993.

6. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and
query answering. In Proc. of the 9th Int. Conf. on Database Theory (ICDT 2003),
pages 207–224, 2003.

7. M. Friedman, A. Levy, and T. Millstein. Navigational plans for data integration.
In Proc. of the 16th Nat. Conf. on Artificial Intelligence (AAAI’99), pages 67–73.
AAAI Press/The MIT Press, 1999.

8. S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can databases
do for peer-to-peer? In Proc. of the Int. Workshop on the Web and Databases
(WebDB’01), 2001.

9. A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data
management systems. In Proc. of the 19th IEEE Int. Conf. on Data Engineering
(ICDE 2003), 2003.

10. A. Y. Halevy. Answering queries using views: A survey. Very Large Database J.,
10(4):270–294, 2001.

11. R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective.
In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’97), pages 51–61, 1997.

12. K.Aberer, M.Punceva, M.Hauswirth, and R.Schmidt. Improving data access in
p2p systems. IEEE Internet Computing, 2002.

13. C. Koch. Query rewriting with symmetric constraints. In Proceedings of FoIKS-
02, number 2284 in Lecture Notes in Computer Science, pages 130–147. Springer,
2002.

14. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21st
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233–246, 2002.

15. H. J. Levesque and G. Lakemeyer. The logic of knowledge bases. The MIT Press,
2001.



16. Napster. World-wide web. www.napster.com, 2001.
17. J. D. Ullman. Information integration using logical views. In Proc. of the 6th Int.

Conf. on Database Theory (ICDT’97), volume 1186 of Lecture Notes in Computer
Science, pages 19–40. Springer, 1997.


