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Abstract

We introduce PlanetP, a content addressable pub-
lish/subscribeservicefor unstructured peer-to-peer (P2P)
communities. PlanetPsupports contentaddressingby pro-
viding: (1) a gossipinglayer usedto globally replicatea
membershipdirectoryandanextremelycompactcontent in-
dex, and (2) a completelydistributed contentsearch and
ranking algorithm that helpsusers find the mostrelevant
information. PlanetP is a simple, yet powerfulsystemfor
sharinginformation. PlanetPis simplebecauseeach peer
mustonly performa periodic, randomized,point-to-point
message exchange with other peers. PlanetPis powerful
becauseit maintainsa globally content-rankedview of the
shareddata. Usingsimulationanda prototypeimplementa-
tion, weshowthat PlanetPachievesranking accuracy that
is comparable to a centralizedsolutionandscaleseasilyto
several thousand peers while remaining resilient to rapid
membershipchanges.

1 Intr oduction

Peer-to-peer (P2P)computing is emerging asa power-
ful paradigm for collaboration over the Internet. The ad-
vantagesof this paradigm include: (a) the ability to leave
shared, but distributed, dataat their origin, ratherthanin-
curring the cost,privacy andsafetyconcerns of collecting
andmaintaining themin a centralizedrepository, (b) ease
of incremental scalability, and(c) thepossibilityof scaling
to extremely largesizes.

In this paper, we proposea novel approach to the con-
structionof acontentaddressablepublish/subscribeservice
that usesgossiping[4] to replicateglobal stateacross un-
structuredcommunitiesof several thousand,perhapsup to
tenthousand,peers.Thesuccessof Internet searchengines
in indexing newsgroups and mailing lists (e.g., Google�
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Groups)aswell astheweb in general arguesthatcontent-
basedsearchandranking is a powerful modelfor locating
informationacrossdatacollectionsexhibiting a wide range
of sizesandcontent. We focus on unstructuredP2Pcom-
munities becausetheunderlying infrastructurecanbemade
resilientto unpredictableandrapidchangesin membership
without introducing undue complexity. In contrast, typi-
cal implementationsof structuredcommunities usingdis-
tributedhashtablesmustimplement verycomplex stabiliz-
ing algorithms[16].

Finally, we target thousandsof peers becausemostother
effortshaveignoredthis range in attemptingto scaleto mil-
lions of users(e.g., [27, 20, 23]). (Although we discuss
several ideasfor scalingPlanetPwell beyond this level in
Section6.) Our target range canhave significantimpact:
therearecurrentlymany communitiesaroundthissizesuch
asthoseservedbyYahooGroups,Dalnet’sIRC servers,and
thousandsof otherUsenetservers aroundtheglobe.Yahoo
alonehostsmore than two million usergroups that share
files andengagein public debates.On a different front, our
approachcanalsobe appliedto manage distributedcom-
putingenvironmentssuchasgrid systems(e.g.,maintaining
membership,servicedescription, andaggregatestatistics);
recentwork shows thepromiseof sucha P2Pmanagement
approach[24, 6]. Thus,our work exploresthequestionof
whethercertainfunctionalities,suchascontent ranking, that
areextremelydifficult to implement in very large systems
becomespossibleto implement at our targetscale.

Our approachis comprised of two major components:
(1) aninfrastructuralgossipinglayerto support thereplica-
tion of shareddatastructuresacrossgroupsof peers,and(2)
anapproximationof astate-of-the-arttext-basedsearchand
rank algorithm1. The latter requires two small datastruc-
turesto bereplicatedglobally: a membershipdirectory and
an extremely compactcontentindex. All members agree
to continually gossipaboutchanges to keeptheseshared

1Our algorithm canbeusedto search andrankmulti-mediaaswell as
text documents sincetoday’s multi-media formatssuchasMP3 andAVI
supporttheembedding of descriptive text.
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datastructuresupdatedandlooselyconsistent.We explic-
itly chosegossipingbecause of its robustnessto the dy-
namicjoining andleaving of peersandindependencefrom
any particular subsetof peersbeingon-line.

We have realizedour proposedapproachin a prototype
systemcalledPlanetP, which indexesshareddocumentsin
a way thatallows peersacrosstheentirecommunity to lo-
catespecificdocumentbasedon their contentin anentirely
distributedfashion. We argue that PlanetPis a simple,yet
powerful systemfor sharinginformation.PlanetPis simple
becauseeachpeermustonly agreeto perform a periodic,
randomized, point-to-point messageexchange with other
peers, ratherthancollaborateto correctly andconsistently
maintaina complex distributeddatastructure. PlanetPis
powerful for two reasons: (a) it canpropagateinformation
in boundedtimein spiteof theuncoordinatedcommunalbe-
havior, and(b) it maintainsa globally content-ranked data
collection without depending on centralizedresourcesor
theon-line presenceof specificpeers.

In this paper, we addressseveral questions,including:� How effective is PlanetP’s content searchandrankal-
gorithm giventhatit maintainsaglobalindex thatcon-
tains even less information than previous relatedef-
forts [9, 3]?� CanPlanetPmaintainausablelevel of consistency for
shareddatastructuresgiven the randomnessinherent
in gossiping? Thatis, whenachangeoccurs,how long
doesit take to reachall on-linepeersanddoes it con-
sistentlyreachall on-linepeers?� Are PlanetP’s bandwidth and storagerequirements
consistentwith theconstraints of typical P2Pcommu-
nities?

Weusesimulationandmeasurementsfromourprototype
implementationto answerthesequestions.In particular, we
show that PlanetPachieves searchandrank accuracy that
is comparableto a centralizedsolutionandscaleseasilyto
several thousand peers.

2 Gossiping

PlanetPusesgossipingto replicatesharedstateacross
groupsof peersin aP2Pcommunity. PlanetP’sgossipingal-
gorithm is a novel combinationof analgorithmpreviously
introducedby Demerset al. [4] anda partial anti-entropy
algorithm that we have found improves performancesig-
nificantly for dynamic P2Penvironments. Briefly, Demers
et al.’s algorithmworks as follows whensynchronizing a
shareddatastructure that is replicatedglobally. Suppose �
learnsof a change to the replicateddatastructure. Every���

seconds,� wouldpushthis change (calleda rumor) to a
peerchosenrandomly from its directory; thedirectory is a

datastructure thatdescribesall peersin thecommunity and
is itself replicatedeverywhereusinggossiping. If 	 hasnot
seenthisrumor, it records thechangeandalsostartsto push
therumorjust like � . � stopspushingtherumor afterit has
contacted 
 consecutive peersthat have alreadyheardthe
rumor. To avoid thepossibilityof rumors dying out before
reaching everyone, thereis alsoa pull component (called
anti-entropy): every

���
rounds, � would attemptto pull in-

formationfrom a randompeerinsteadof pushing. In a pull
message,� would askthetarget 	 to replywith a summary
of its versionof thedatastructure.Then� canask 	 for any
new informationthatit doesnothave.

Unfortunately, in a dynamicP2Penvironment,the time
requiredto spreadnew informationcanbecomehighlyvari-
able.Thisis becauserapidchangesin themembershipleads
individual peersto have a lessaccurateview of the direc-
tory, elevatingtheproblemof residualpeers thatdo not re-
ceive rumors beforethey die out. The obvious solutionof
increasingthe rateof anti-entropy is quite expensive: ru-
morsareonly aslargeastheupdatethey carrybut pull mes-
sagesmustcontaina summaryproportional to thecommu-
nity size.

Thus,we insteadextendeachpushoperationwith a par-
tial pull thatworksasfollows.When� sendsarumor to 	 , 	
piggybackstheidentifiersof a smallnumber  of themost
recentrumorsthat 	 learnedabout but is no longeractively
spreading ontoits replyto � ; thisallows � to pull any recent
rumor that did not reachit. This partial pull requires only
oneextra messagein thecasethat 	 knowssomethingthat� doesnot sincethenormal rumoring processis really im-
plemented asa query/request/reply sequence usingunique
rumor identifiersto save bandwidth whenthetarget hasal-
readyreceived therumor. Furthermore,theamount of data
piggybackedon 	 ’smessageis of constantsize,onorder of
tensof bytes.

Observe that while the pushingof rumors hasa termi-
nationcondition, pulling doesnot. To addressthis, Plan-
etPdynamicallyadjustsits gossipinginterval

���
; if a peer

is not actively pushingany rumors, it slowly raisesits
���

(to somemaximum value). Whenit receivesa new rumor,
it immediately resetsits gossipinginterval to the default.
This dynamicadaptationleadsto negligible bandwidth us-
ageshortlyafterglobalconsistency hasbeenachieved.

Finally, notethatalthough in this paper, we assumethat
shareddatastructuresareuniversallyreplicatedandaregos-
sipedwith a single

���
for simplicity, this is not thegeneral

case.In fact,our implementationallowseachdatastructure
to be associatedwith only a subsetof peersandgossiped
at a distinct rate. This allows partial replicationaswell as
rapid disseminationof time-sensitive information suchas
messagesin group communications without increasing the
overheadsof maintaining moreslowly changing datastruc-
tures.
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3 Content Search and Retrieval

Peerspublishdocumentsin PlanetPby providing XML
snippetscontainingpointersto theappropriatefiles. (A doc-
ument itself canbe embedded in the XML snippet if it is
not too large.) PlanetPleavesthe sharedfiles in placebut
runsasimplewebserverto support peers’ retrieval of these
files. PlanetPindexes eachpublisheddocument,maintain-
ing a detailedinvertedindex describingall documentspub-
lishedby apeerlocally. In addition, PlanetPusesgossiping
to replicatea term-to-peerindex everywherefor commu-
nal searchandretrieval. This term-to-peerindex contains a
mapping “ ����� ” if term � is in thelocal index of peer� .

To find documentsthat containa setof query terms,a
searching peerfirst usesthe global index to derive the set
of peersthathave theseterms.Then, it forwards thequery
to thesepeersandasksthemto returnURLs for any docu-
mentsthatarerelevant to thequery. Eachtarget peeruses
its local index to find the appropriatedocuments. PlanetP
usesthis two-stagesearchprocessto perform exhaustive
searches while limiting the sizeof the globally replicated
index. (We will referto theglobally replicatedindex asthe
global index, while the moredetailedindex that describes
onlythedocumentspublishedlocally by apeerwill referred
asthelocal index.)

PlanetPalsoimplementsacontent rankingalgorithm that
usesthevector spaceranking model[26]; userscanusethis
algorithm to find only documentsthatarehighly relevant to
a query. In theremainder of this section,we describehow
we have adapteda state-of-the-art ranking algorithm to use
PlanetP’s two-level indexing scheme.

3.1 Background: TFxIDF

In a vector spaceranking model, eachdocument and
query is abstractlyrepresented asa vector, whereeachdi-
mension is associatedwith a distinct term. The valueof
eachcomponent of a vector is a weight representingthe
importanceof that term to the corresponding document or
query. Given a query, we thencompute the relevance of
eachdocumentasthecosineof theanglebetweenthe two
vectors usingthefollowing equation:

��� �������� ��! "$#&%('�) '�* #,+ ).- * #/ 0 � 0 + 0 � 0 (1)

where � is thequery, � is a document,
0 � 0 and

0 � 0 arethe
numberof termsin � and � , respectively,

) '�* #
represents

the weight of term � for query � , and
) - * #

the weight of
term � for document � . A similarity of 0 meansthat the
documentdoesnot have any term in the query while a 1
means thatthedocumentcontainsevery termin thequery.

TFxIDF is apopularmethodfor assigningtermweights.
Thistechniquecombinesthetermfrequency (TF) in adocu-

mentwith theinverseof how oftenthattermshowsupin the
entirecollection(IDF) to balance: (a)thefactthattermsfre-
quently usedin a documentarelikely important to describe
its meaning,and(b) termsthatappearin many documentsin
a collectionarenot usefulfor differentiatingbetweenthese
documents.

Thereareseveral acceptedwaysof implementingTFx-
IDF [21]. In our work, we adopt the following systemof
equationsfrom [26]:1 �32 # !547698:�<;>=@?BA,CED # �)F- * # !G;>=H47698:��D - * # � ) '�* # ! 1 �32 #
where?IA is thenumber of documentsin thecollection, D #
is thenumber of timesthatterm � appears in thecollection,
and D - * # is thenumberof timesterm � appears in document� .

This leadsto asimilarity measureof��� ����J�K� ��! " #&%(' 1 � 2 # + �L;>=M4N6(8���D - * # ���/ 0 � 0 (2)

where
0 � 0 hasbeendroppedfrom thedenominatorsinceit

is constantfor query � acrossall documents.

3.2 Approximating TFxIDF

In designing PlanetP, we deliberately decided not to
maintainthetermfrequenciesand“ �O�P� ” mappingsnec-
essaryfor TFxIDF in ourglobal index tooptimizespaceand
reducecommunication.In fact,with stopwordremoval and
stemming2, our global index only containsthe baremini-
mum of mappings from “important” words to peers. We
thenapproximateTFxIDF by breaking theranking problem
into two sub-problems:(1) ranking peersaccording to their
likelihood of having relevant documents,and(2) deciding
onthenumberof peersto contactandranking theidentified
documents.

Ranking Peers. To rank peers,we introduce a measure
calledtheinversepeerfrequency (IPF).For aterm � , IPF

#
is

computedas 4N6(8��<;Q=$?3CR? # � , where ? is numberof peers
in thecommunity and ? # is thenumber of peersthathave
oneor moredocumentswith term � in it. Similar to IDF, the
ideabehind this metric is that a term that is presentin the
index of every peeris notusefulfor differentiatingbetween
thepeersfor aparticular query. Unlike IDF, IPFcanconve-
nientlybecomputedusingourconstrainedglobal index: ?
is just thenumberof entriesin thedirectory while ? # is the
numberof “ ����� ” entriesin theglobalindex.

Having definedIPF, we thenrankpeers using:

2Stopword removal eliminateswordslike “the”, “of ”, etc.; stemming
triesto reduce wordsto their root,e.g.,“running” becomes“run.”
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SQT ���U��! VW #&%('OX YZ#\[ T^] %(_a` IPF
#

(3)

whichis asumoverall querytermscontainedin at leastone
documentpublishedby peer� , weightedby theusefulness
of eachtermfor differentiatingbetweenpeers;� is a term,� is thequery,

1
is theglobal index, and

SBT
is therelevance

of peer � to � . Intuitively, this schemegives peersthat
contain all termsin a query thehighestranking. Peersthat
contain differentsubsetsof termsareranked according to
the“dif ferentiatingpotential”of thesubsets.

Selection. As communities grow, it becomesinfeasibleto
contact large subsetsof peersfor eachquery. To address
this problem,we assumethattheuserspecifiesa limit b on
thenumberof potentialdocumentsthatshouldbeidentified
in responseto a query � . Then,given a pair ���J�cbd� , Plan-
etPdoesthe following. (1) Rankpeersfor � . (2) Contact
peers in groupsof  from top to bottomof the ranking3.
(3) Eachcontactedpeerreturnsasetof documentURLs to-
gether with their relevanceusingequation 2 with IPF

#
sub-

stitutedfor IDF
#
. This substitutionis sufficient sincepeers

maintainper-document term frequenciesin their local in-
dexes.(4) Stopcontactingpeerswhenthedocumentsiden-
tified by � consecutive peersfail to contribute to the top b
rankeddocuments.

The ideabehind our algorithm is to getan initial setofb documentsandthenkeepcontacting peersonly if thereis
a goodchance of acquiring documentsmorerelevant than
the current b #\e -ranked one. Simulationresultsshow that� shouldbe a functionof the community size ? and b as
follows:

�f!hg>i,=kj\gFlR?nm,=poqg,rts bvu (4)

Thetuple �wg.i9�cg.lE�Kg,rx�O!y�wz{�^;|C|}9~(~d��;tC(z{���(� canserveas
a good initial valuefor equation4 sinceit works well for
the benchmark collectionsstudiedin this paper (seeSec-
tion 4). In general,weassumethatuserswill adjust b when
the resultsarenot satisfactory(asthey do whenusingIn-
ternetsearchengines). If usershave to increase b , thenwe
should increase� . If usersdecreaseb or never accessthe
lowestrankeddocumentsidentifiedfor queries,we should
decrease� .
3.3 Implementing the Global Index

PlanetP’s global index canbeimplementedin a number
of ways [26]. We useBloom filters [1], whereeachpeer
summarizesthe setof termsin its local index in a Bloom
filter. Briefly, a Bloom filter is anarrayof bits usedto rep-
resenta setof strings; in our case,the setof termsin the

3 � representsa trade off between parallelism in contacting peers
againstpotentially contacting somepeersunnecessarily.

peer’s local index. The filter is computed by using 
 dif-
ferent hashingfunctionsto compute 
 indicesfor eachterm
andsettingthebit at eachindex to 1. Givena Bloom filter,
we canask, is someterm � a member of the setby com-
puting the 
 indicesfor � andchecking whetherthosebits
are1. Bloom filters cangive falsepositivebut never false
negative.

We choseBloom filters because they give PlanetPthe
flexibility to adjustto different needs.For example,thecost
of replicatingtheglobal index canbereducedby simplyde-
creasingthegossipingrate;updatingtheglobal index with
a new Bloom filter requires constanttime, regardlessof the
numberof changesintroduced. Furthermore,Bloom filters
can be compressedand versioned to achieve a single bit
perwordaverageratio. Memory-constrainedPeerscanalso
independentlytrade-off accuracy for storageby combining
severalfilters into one.

4 Performance

Having describedthe two major componentsof Plan-
etP, we now turn to evaluatingPlanetP’s performance. We
start by assessingthe efficacy of PlanetP’s contentsearch
andranking algorithm. We thenevaluate the costs,space
andtime,andthereliability of thesupporting infrastructure,
i.e., thereplication of thedirectory andtheglobalindex us-
ing gossiping. Our performancestudyis simulation-based
but mostof the parameterswerederived from a prototype
implementation. Also, we validated our simulatoragainst
measurementstakenfrom theprototypewhenrunningupto
severalhundredpeers.

4.1 Search Efficacy

We measurePlanetP’ssearchperformanceusingtwo ac-
ceptedinformationretrieval metrics,recall (

S
) andpreci-

sion( � ) [26].
S

and � aredefinedasfollows:

S ���U��! no. relevant docs.presented to theuser
total no. relevantdocs.in collection

(5)

�����U��! no. relevant docs.presentedto theuser
totalno. docs.presentedto theuser

(6)

where � is the query postedby the user.
S ���U� captures

thefractionof relevantdocumentsa searchandretrieval al-
gorithm is able to identify andpresentto the user. �����B�
describes how muchirrelevant materialthe usermay have
to look through to find the relevant material. Ideally, one
would like to retrieve all the relevant documents(

S !�; )
andnot a singleirrelevant one( ��!�; ). In our distributed
context, it would alsobe ideal to contactas few peersas
possibleto achieve

S !�; and �y!G; .
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Figure 1. Average(a) recall and(b) precisionfor theAP89collectionwhendistributedacross400peers. Thelegends
X.Y.Z are decodedasfollows: X = � T: search engine usingTFxIDF, P: PlanetP� , Y = � W: Weibull, U: Uniform� , and
Z = � z: indexedthemostfrequently appearing z%of theuniquetermsin each document� ; for example, T.W.100means
TFxIDF running on a Weibull distribution of documents,where all 100%of theunique termsof each document was
indexed.(c) Averagerecall asa functionof community size.

Collection No. No. No. Unique Size
Queries Docs Terms (MB)

CACM 52 3204 75493 2.1
MED 30 1033 83451 1.0
CRAN 152 1400 117718 1.6
CISI 76 1460 84957 2.4
AP89 97 84678 129603 266.0

Table 1. Characteristic of the collectionsusedto
evaluate PlanetP’s search andranking capabilities.

We assessPlanetP’s ranking efficacy by simulatingand
comparing its performance for five benchmarkcollections
(Table 1) against a centralizedTFxIDF implementation
(calledCENT).Eachcollectionhasasetof documents,aset
of queries,anda binarymapping of whethera document �
is relevant to a particular query � . Four of thecollections,
CACM, MED, CRAN, andCISI, werecollectedandused
by Buckley [2]. Thesecollections containsmall fragments
of text andsummaries andso are relatively small in size.
The last collection, AP89, was extracted from the TREC
collection[12] andincludesfull articlesfrom the Associ-
atedPresspublishedin 1989.

We study PlanetP’s performance under two different
documents-to-peers distributions: (a) Uniform, and (b)
Weibull. We studya Uniform distributionastheworstcase
for a distributedsearchandretrieval algorithm. The doc-
uments relevant to a queryarelikely spreadacrossa large
numberof peers.Thedistributedsearchalgorithmmustfind
all thesepeersto achievehighrecallandprecision. Themo-
tivationfor studying aWeibull distributionarisesfrommea-
surementsof current P2Pfile-sharingcommunities. Saroiu
etal. found that7%of theusersin theGnutellacommunity
sharemorefiles thanall theresttogether[22]. Wehavealso

studieda local community comprised of more than 1500
studentssharingmorethan10TB of data,which hasa sim-
ilar documentdistribution. Our Weibull distribution is pa-
rameterizedto approximatethedistributionfound in this lo-
calcommunity.

Figure 1(a) and (b) plot average recall and precision
over all provided queries as functions of b for the AP89
collection. We only show resultsfor this collection be-
causeof spaceconstraints; these results are represen-
tative for all collections. We refer the reader to our
web site for resultsfor all collections: http://www.panic-
lab.rutgers.edu/Research/PlanetP/.Figure1(c) plots Plan-
etP’s recallagainst communitysizefor a constant b of 100.
Finally, Figure2plotsthenumberof peerscontactedagainstb .

We make several observations. First, PlanetPtracksthe
performanceof thecentralizedimplementationclosely, even
whenwe index only themostfrequentlyappearing 30%of
theunique termsin each document. Further, PlanetP’s per-
formanceis independentof how theshareddocumentsare
distributed, achieving nearlythesameperformancefor Uni-
form andWeibull. For aWeibull distributionof documents,
whenwe index all 100%of theunique terms,PlanetP’s re-
call andprecisionis within 11%of CENT’s(averagediffer-
enceis 4%). Whenwe index only the30%mostfrequently
appearing terms, PlanetP’s recall and precisionis within
16%of CENT’s,with anaverage differenceof 14%.These
smalldifferencesdemonstratethat it is possibleto preserve
TFxIDF’s performancewhile limiting the global index to
only a term-to-peermapping. Thegood performancegiven
whenwe only index the top 30%of theuniquetermsindi-
catethatwecanfurtherreducethesizeof theglobal index at
theexpenseof only aslight lossin ranking accuracy. More-
over whencomparing the documentsreturned by PlanetP
andCENT at low recall levels,we found anaverage inter-
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Figure 2. Average numberof peers contacted in a
communityof 400peers vs. b .

sectionof 70%. (The intersection approaches100%with
increasing recall.) This givesus confidencethatour adap-
tationsdid not change theessentialideasbehindTFxIDF’s
ranking

Second,PlanetP scaleswell, maintaininga relatively
constantrecallandprecisionfor communitiesof upto 1000
peers. We have not studyscalabilitybeyond thatpoint be-
causethecollections arenotsufficiently large.

Third, PlanetP’s adaptive stopping heuristic is critical
to its performance. Figure1(c) shows thatPlanetP’s recall
woulddegrade with community sizeif thestopping heuris-
tic werenot a function of community size. (The effect is
similar if the stoppingheuristicwasnot a function of b .)
In addition, PlanetP’s adaptive stoppingheuristic allows it
to perform well independentof how thedocumentsaredis-
tributed. Figure2 showsthatthedynamic stoppingheuristic
allows PlanetPto searchmore widely among peers when
documentsare more widely distributed, preserving recall
andprecisionindependentof documentdistribution.

PlanetP’s good distributed searchand ranking perfor-
mance doeshavea smallcost:PlanetPcontactsmorepeers
thanCENT. We observe from Figure2 thatwhile this cost
is not trivial, it doesnot seemunreasonable.For example,
PlanetPcontacts only 30% more peersat bH!�;t�E~ for the
Weibull documentdistribution. Further, the percentageof
peers contactedis small: PlanetPonly contactsa little over
25%of the400peersat bI!G;x�(~ .
4.2 StorageCost

Having demonstratedthat PlanetPcan preserve TFx-
IDF’s ranking accuracy, we now turn to assessthe storage
requirementof ourapproach.In particular, we estimatethe
sizeof the global index using the entireTREC collection
(944,651documents,256,686,468 terms,592,052 unique
terms,3,428.41 MB) for the worst caseof uniform docu-
mentdistribution. This is theworstcasebecauseany other
distribution (e.g. Weibull) would likely givea smallersum-
mation of unique termsper node. Moreover, TREC is a
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Figure 3. Estimatingthe size of the global index
when the TREC collection is uniformly distributed
acrossa communityof ? peers. Each groupof two
bars shows,fromleft to right, theaverage number of
uniquewords found on each peerandthesizeof the
global index (in KB) if individual Bloomfilters were
big enough to summarizethe per-node unique terms
with at most5% probability of error. Each bar is
namedafter the community size, the replicationfac-
tor (R1 or R3), and the percentage of per-document
uniquetermsindexed.

collectionof text documents,so the ratio of unique terms
to collectionsizeis very high. For collections with multi-
mediadocuments,thisratiois likely tobemuchsmaller. For
example,acollectionof 326,913MP3files requiring 1.4TB
of storagecollectedfrom anexisting P2Pcommunity only
yielded55,553unique terms.

In Figure 3, we count the number of unique words at
eachpeerandcompute thesizeof theglobal index if each
Bloom filter wassizedto summarizethe per-nodeunique
termswith lessthan5% probability of error. We alsoshow
whathappensif eachdocumentis replicated3 timesin the
community.

Observe that at 1000 peers,the global index is quite
small:16.1MB, whichis just0.5% of thecollection.If each
documentwerereplicated3 times,thestoragerequirement
would increaseto 28.7MB, which is actuallyonly 0.3%of
the enlarged collection. At 5000 peers,the storagecost
is somewhathigher, rising to 62.3MB if eachdocumentis
replicated3 times. Observe, however, that if we sacrificea
little accuracy (perFigure1(a,b)) by indexing only the30%
mostfrequent unique termsin eachdocument,the storage
requirementis reducedagainto 26.9MB, whichis just0.3%
of thereplicatedcollection.

Basedon theseresults,we conclude thatPlanetPshould
easily scaleto several thousandpeersin termsof the re-
quired perpeerstoragefor thereplicatedglobal index.

4.3 GossipingPerformance

Finally, we assessthereliability andscalabilityof Plan-
etP’s gossipingalgorithm. By reliability, we meandoes
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Parameter Value

CPUgossipingtime 5ms+ (transfer-time � no. bytes)
Basegossipinginterval 30sec
Max gossipinginterval 60sec

Network BW 56Kb/sto 45Mb/s

Messageheadersize 3 bytes
1000termsBF 3000 bytes
20000termsBF 16000 bytes
BF summary 6 bytes
Peersummary 48 bytes

Table 2. Constantsusedin our simulationof Plan-
etP’sgossipingalgorithm.

eachchange propagateto all on-line peers? We perform
this studyusinga simulatorparameterized with measure-
mentsfrom our prototype. Table2 lists theseparameters.
We validatedoursimulatorby comparing its resultsagainst
numbersmeasuredon a clusterof eight800MHz Pentium
III PCswith 512MB of memory, running a Linux 2.2 ker-
nelandtheBlackDown JVM, version1.3.0. Becauseof the
JVM’s resourcerequirements,we werelimited to 25 peers
permachine,allowingustovalidateoursimulationfor com-
munity sizesof upto 200peers.

In ourcurrent implementationof PlanetP, aglobaldirec-
tory that includesthe list of peers,their IP addresses,and
their Bloom filters is replicatedeverywhere. Events that
change the directory andso requiregossipinginclude the
joining of anew member, therejoinof apreviously off-line
member, anda change in a Bloom filter. We do not gossip
the leaving (temporary or permanent)of a peer. Eachpeer
discovers that another peeris off-line whenan attemptto
communicatewith it fails. It marksthe peerasoff-line in
its directory but does not gossipthis information. When
the peer � comesback on-line, its presencewill eventu-
ally be gossipedto the entire community; eachpeerthat
hasmarked � as off-line in its directorychanges � ’s sta-
tus backto on-line. If a peerhasbeenmarked asoff-line
continuouslyfor

� -O�L�a�
time, thenall information about it

is droppedfrom thedirectory under theassumptionthatthe
peerhasleft thecommunity permanently.

Propagating new information. We begin by studyingthe
timerequired to gossipanew Bloomfilter throughoutstable
communitiesof varioussizes.Measuring propagation time
is importantbecauseit representsthewindow of timewhere
peers’ directories areinconsistent,so thatsomepeersmay
notbeableto find new (or modified)documents.

In this experiment, we use a Bloom filter with 1000
words. BecausePlanetPsendsdiffs of the Bloom filters
to save bandwidth, this scenariosimulatesthe additionof
1000 new termsto somepeer’s inverted index. Note that,
while 1000new termsmayseemsmall, it actuallyis quite
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Figure 4. Numberof new uniquetermsfound per
million words vs. the percentage of words already
storedat a node(TRECcollection).

large. Figure4 shows that if a peeralreadycontains0.4%
of theTRECcollection, it would have hadto addapproxi-
mately3000 moredocuments,totaling800,000moreterms,
to have found anadditional 1000 unique terms.(Thetrend
wefound in Figure4 isconsistentwith thatfoundbyamuch
larger studyof worddistribution [25].)

Figure5(a)plotsthesimulatedpropagation timesfor six
scenarios:

LAN Peersare connected by 45 Mbps links. Peersuse
PlanetP’s gossipingalgorithm.

LAN-AE Peersare connectedby 45 Mbps links. Peers
use only push anti-entropy: each peer periodically
pusha summary of its datastructure. The target re-
questsall new informationfrom this summary. This
approachhasbeensuccessfullyusedto synchronize
smallercommunitiesin NameDropper[11], Bayou[5]
andDeno[14].

DSL-10,30,60 Peersare connectedby 512 Kbps links.
PeersusePlanetP’sgossipingalgorithm. Gossipingin-
terval is 10,30,and60secondsrespectively.

MIX Peersareconnectedby a mixtureof link speeds.Us-
ing measurementsof the Gnutella/Napstercommuni-
ties reported by Saroiuet al. [22], we createa mix-
tureasfollows: 9%have56kbps,21%have512kbps,
50%have 5 Mbps,16%have 10 Mbps,and4% have
45Mbps links.

Figure5(b)showstheaveragegossipingbandwidth used
per peerduring the experiment for DSL-10, DSL-30, and
DSL-60.

Basedon thesegraphs, we make several observations.
(1) Propagation timeis still a logarithmic function of com-
munitysize[4], implyingthatgossipingnew informationis
very scalable. For example, propagation time for a com-
munity with 500peersusingDSL-30is about 200seconds,
rising to only 250 for a community with 5000peers. (2)
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Figure 5. (a) Timeand(b) average per-peerbandwidth requiredto propagatea singleBloomfilter containing 1000
termseverywhere vs. community size. (c) Timerequiredfor ���5;x~(~(~ peers to simultaneously join thecommunity of
1000stableonlinepeers,each wishingto share20000 terms.

Even though a change is gossipedthroughout the entire
community, the total number of bytessentis very modest,
again implying that gossipingis very scalable. For exam-
ple, propagationof a 1000new termsthroughout a com-
munity of 5000peersrequiresanaggregatedtotal of about
100MB to besent,leadingto aper-peeraveragebandwidth
requirementof lessthan100Bpswhenthegossipinginter-
val is 30 seconds. (3) We caneasilytradeoff propagation
timeagainstgossiping bandwidthbyincreasingor decreas-
ing thegossiping interval. And, (4) Our algorithm signifi-
cantly outperformsones thatuseonlypushanti-entropyfor
bothpropagation time andnetworkvolume. Usingrumor-
ing enables PlanetPto reducethe amount of information
exchangedbetweennodeswhile the mixture of pull (anti-
entropy) and push (rumors) rounds reducesconvergence
time. While we did notshow thedifferencein network vol-
ume,on average, LAN-AE required2.3 timesthenetwork
volume of LAN.

Joining of new members. We now assessthe expenseof
having largegroupsof new memberssimultaneouslyjoin an
establishedcommunity. Thisrepresentsthetransient caseof
arapidlygrowing communityandis theworstcasefor Plan-
etPbecauseeachof thesenew members hasto download
the entireglobal index. Our simulatorcurrently assumes
that eachclient is single-threaded. Thus, a new member
that is busy downloadingthe global index for a long time
cancausesignificantvariation in the propagation time of
changes;thismembercannot receivegossipmessageswhile
it is busydownloading.

In this experiment,we starta community of 
 peers and
wait until their views of membershipis consistent.Then, new peerswill attemptto join the community simulta-
neously. We measurethe time required until all members
have a consistentview of the community again aswell as
the requiredbandwidth during this time. For this experi-
ment,eachpeerwassetto share20,000termswith therest
of thecommunity through their Bloom filters. (Looking at

Figure3, observe thatthis is theequivalentof having a col-
lectionlargerthantheentireTRECcollectionsharedby this
community.)

Figure5(c) plots the time to reachconsistency vs. the
number of joining peersfor an initial community of 1000
nodes. Theseresultsshow that, if thereis sufficient band-
width (LAN), consistency is reachedwithin approximately
600seconds(10minutes),evenwhenthecommunity grows
by 25%. In contrast to propagatinga change, however, the
joining processis a muchmorebandwidth intensive one;a
joining membermustretrieve1000 Bloomfilters represent-
ing a total of 20 million termsfrom the existing commu-
nity. Also,having250membersjoin atoncemeansthat250
Bloomfilters representing5 million termsmustbegossiped
throughout thecommunity. As a result,convergencetimes
for communitiesinterconnectedonly with DSL-speedlinks
are approximately twice that of LAN-connectedcommu-
nities. Finally, convergencetimes for the MIX-connected
communitiesbecomeunacceptable,possiblyrequiring from
50minutesto over two hours.

We draw two conclusionsfrom theseresults.First,even
in thisworst-casescenariofor PlanetP, whichwedonotex-
pectto occuroften,if peershave DSL or higher connectiv-
ity, thenPlanetPdoesquitewell. Second, we needto mod-
ify PlanetPif we areto accommodateuserswith modem-
speedconnections.While theartificial lengthening of gos-
sipingconvergencetime canbeeasilyfixedif peers areas-
sumedto bemulti-threaded,whena new peerfirst join, the
time to downloadtheentiredirectory wouldstill likely take
too long. Thus,we shouldeitherexclude peerswith less
than DSL connectivity or allow a new modem-connected
peerto acquirethe directory in piecesover a muchlonger
period of time. Wewouldalsoneedto support someformof
proxy search,wheremodem-connectedpeerscanaskpeers
with betterconnectivity to helpwith searches.

We also decided to modify our gossipingalgorithm to
bebandwidth-aware,assumingthatpeerscanlearnof each
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other’s connectivity speed.Themotivationfor this is thata
flat gossipingalgorithmpenalizes thecommunity to spread
informationonly asfastastheslow memberscango. Thus,
we modify thebasicPlanetPgossipingalgorithm for peers
with fasterconnectivity to preferentially gossipwith each
otherandpeerswith slower connectivity to preferentially
gossipwith eachother. This idea is implemented as fol-
lows. Peersaredividedinto two classes,fastandslow. Fast
includespeers with 512 Kb/s connectivity or better. Slow
includespeersconnected by modems. Whenrumoring, a
fastpeermakesa binary decisionto talk to a fastor slow
peer. Probabilityof choosing a slow peeris 1%. Oncethe
binary decisionhasbeenmade,thepeerchoosesaparticular
peerrandomly fromtheappropriatepool. Whenperforming
anti-entropy, a fastpeeralwayschoosesanother fastpeer.
Whenrumoring, a slow peeralwayschoosesanotherslow
peer, sothatit cannot slow down thetargetpeer, unlessit is
thesource of therumor; in this case,it choosesa fastpeer
astheinitial target. Finally, whenperforming anti-entropy,
a slow peerchoosesany nodewith equalprobability. We
will studytheeffectsof this modifiedalgorithm below.

Dynamic operation. Finally, we study the performance
of PlanetP’s gossipingwhena community is operating in
steadystate,with membersrejoiningandleaving dynami-
cally but without massive,simultaneous joins of new peers
needing the entireglobal index. We expect this to be the
common operational casefor PlanetP. We begin by study-
ing thepotentialfor interference betweendifferent rumors
aspeersrejoin the community at different times. This ex-
perimentis asfollows. Wehaveastablecommunity of 1000
on-line peers;100peersjoin thecommunity according to a
Poissonprocesswith an averageinter-arrival rateof once
every 90seconds.PeersareconnectedatLAN speed.Each
on-line peerhasaBloomfilter with 1000termsthatoff-line
peers do not have. Eachjoining peersharesa Bloom fil-
ter with 1000terms.Again, this representsthecasewhere
off-line peerswill havesomenew informationto share,but
they haveto collectnew informationthatmayhaveaccrued
sincethey havebeenoff-line. Figure 6(a)plotsthecumula-
tivepercentageof eventsagainst theconvergencetime—the
time required for an arrival event to be known by every-
onein theon-linecommunity—for PlanetP’s gossiping al-
gorithm againstwhat happensif the partial anti-entropy is
not included. Observe thatwithout thepartialanti-entropy,
overlapping rumors caninterfere with eachother, causing
muchlarger variation in theconvergencetimes.

To complete our exposition, we studya dynamic com-
munity with the following behavior. The community is
comprisedof 1000 members. 40%of themembersareon-
line all thetime. 60%of themembers areonlinefor anav-
erageof 60minutes andthenoffline againfor anaverageof
140minutes.Bothonlineandofflinetimesaregeneratedus-
ing aPoissonprocess.20%of thetime,whenapeerrejoins

theon-linecommunity, it sendsa Bloom filter diff contain-
ing 1000 new terms. Theseparameterswereagainbased
roughly onmeasurementsreportedby Saroiuetal. [22] (ex-
ceptfor thenumberof new termsbeingsharedoccasionally)
andaremeant to berepresentativeof realcommunities.We
noteagain that1000new uniquetermstypically represents
thesharingof asignificant setof new documents.(Wehave
alsostudiedamoredynamic community, where50%of the
time, a peercomingbackon-line shares100 new words.
Theresultsaresimilar to thosepresentbelow.)

Figure 6(b) plots the cumulative percentage of events
against the convergence time. We observe that with suffi-
cientbandwidth, convergencetime is very tight around400
seconds. For theMIX community we separatetheCDF in
two classes:the time it takes for fast nodesto propagate
events to otherfastnodes(MIX- F) andthetime it takesfor
slow nodesto reachthe whole community (MIX- S). The
graph shows thatourbandwidth awaregossipingalgorithm
allows fastnodes to propagateevents as in the LAN case
without harming the speedof propagation to slow nodes.
Although it is not shown on thegraph, the slow nodesare
equallyfastwhenpropagating to fastnodes(becausethey
canrumor to a fastnodeonceandthenlet the fastnodes
continuethepropagation).

Figure6(c) plots theaggregatebandwidth against time.
This graphshows that the normaloperation of a commu-
nity requires very little bandwidth, rangingfrom between
10KB/s to 100KB/s acrosstheentirecommunity.

5 RelatedWork

While current P2P systemssuch as Gnutella [8] and
KaZaA [13] have beentremendously successfulfor music
andvideo sharingcommunities, their searchandinforma-
tion diffusion capabilitieshave beenfrustratingly limited.
Our goal for PlanetPis to increasethe power with which
userscan locateinformation in P2Pcommunities by pro-
viding content basedsearchandranking capabilities.

Several efforts parallel to PlanetPhave also looked at
betterquerying mechanisms[7, 19]. Their focus,however,
is on servingvery large-scalecommunities. In orderto be
scalablethesesystemstradeoff performanceandfunction-
ality by usingiterative queriesanddistributedinverted in-
dexes. Noneof this previous work supports content rank-
ing.

Numerous researchefforts have producedhighly scal-
abledistributedhashtables(DHT) over P2Pcommunities
[27, 20, 23, 18]. In general DHTs spread(key, value)pairs
acrossthe community and provide retrieval mechanisms
basedon the key. Although this abstractionhasbeensuc-
cessfullyusedto build file systemservices[17, 15], we be-
lieve it is lesssuitablefor the type of communities stud-
ied in this paper. Thehigh costof publishing thousands of
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Figure 6. (a) CDF of gossipingconvergencetime in a communityof 1000whenthere are 100Poissonarrival (New
arrivals share 1000keys). LAN-NPA is our gossiping algorithmwithoutthepartial anti-entropy component. (b) CDF
of gossipingconvergencetime during the normal operation of a dynamiccommunitywith 1000 members. MIX-F is
the time it takesa fast node to reach all other fast nodesandMIX-S is time it takesa slow nodeto reach the whole
community. (c) Aggregatedbandwidth usagewhile running (b).

keysperfile andthelackof updatepropagationmake it dif-
ficult to implement content-addressablepublish/subscribe
systemson DHTs. PlanetPovercomesthesedifficulties us-
ing gossipingto propagateinformation and replicating a
compactinvertedindex onevery peer.

Gossipinghasbeenusedin a varietyof settingssuchas
membership[11], information aggregation [24], and P2P
DHTs [10], becauseof its robustnessto failures. In Plan-
etPwe have adaptedthemfor betterbandwidth usageand
propagation time stability in scenarioswerenodesjoin and
leave constantlyandin anuncontrolledmanner(similar to
thework doneby Liben-Nowell et.al.[16] for DHTs).

More relatedto PlanetP’s information retrieval goals,
Cori [3] andGloss[9] addresstheproblemsof databasese-
lectionandranking fusionon distributedcollections. Both
systemsuseservers to keepa reducedindex of the con-
tent storedby other servers. BecausePlanetPis targeted
towardcommunitiesthatarelarger, moredynamic, yetdoes
nothaveany centralizedresources,we havechosento keep
evenlessinformationin theglobal index to minimize com-
munication as well as storage. We have shown that our
distributed searchand rank algorithm using this minimal
global index is nearlyas effective as a centralizedimple-
mentation of TFxIDF.

6 Conclusionsand Futur e Work

The number of on-line communitieshasexplodedwith
the growth of the Internet. Traditionally, thesecommu-
nities have beenhostedon centralizedservers, even when
the informationbeingsharedexists (andis collectednatu-
rally) in a distributedform. In this paper, we seekto pro-
videapowerful alternativefor avoiding centralizationwhen
centralization is costly or presents privacy andsafetycon-
cerns. In particular, we have presentedPlanetP, a P2Ppub-

lish/subscribeinformation sharinginfrastructure that sup-
portsdistributedcontent search,rank, andretrieval. Plan-
etPusesgossiping to robustlydisseminatenew information,
evenunderrapidmembershipchanges,andreplicate a lim-
ited amount of global stateto support contentsearch.This
combination allows PlanetPto support a powerful content
addressingmodel without requiring peers to maintaincom-
plex distributeddatastructures.

We haveshown thatPlanetP’sextremelycompactglobal
index doesnotaffectits rankingaccuracy: onaverage,Plan-
etP’s ranking performance is only a few percent lessthan
thatof acentralizedimplementationof TFxIDF. Further, the
overall required storageandgossipingbandwidth aremod-
estenough thatPlanetPcaneasilyscaleto several thousand
peers.Ourrealtarget is around tenthousandpeers.

While we did not start this work with the intentionof
scalingto millions or billions of users,we believe that it
is possibleto scalePlanetPbeyond our initial targetof ten
thousandpeersif desired.Onepossibleapproachis to di-
vide thecommunity into a number of groups.Peerswithin
thesamegroupoperateasdescribed here. Peersfrom dif-
ferent groupswill gossipanattenuatedBloomfilter thatis a
summary of theglobalindex for their groups.Peersmostly
gossipwithin their groups but, occasionally, will gossipto
peersfrom other groups. Whensearching, if theattenuated
Bloom filter of group � contains termsrelevant to a query� , thenthesearchingpeer, say � , would contacta random
peerin group � , askingit to returnarankedlist of peersin �
thatmight havedocumentsrelevant to � . � canthencontact
thesepeersusingthecurrent algorithmfor ranking. Indeed,
Guptaet. al.[10] recentlyproposedusing a hierarchy of
peersin averysimilarmanner, although theirsystemusesa
distributedhashtableacrossgroups insteadof gossiping.

Finally, wearein theprocessof buildinganumber of ap-
plications to validatetheutility of PlanetP. Specifically, we
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have built a prototypesemanticfile systemandchatappli-
cationon topof PlanetP. Otherapplicationsareunderway.
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