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Abstract

We introdue PlanetR a content addessable pub-
lish/subscribeservicefor unstructued peerto-peer (P2P)
commuities. PlanetPsuppats cortentaddressingby pro-
viding (1) a gossipinglayer usedto glohally replicatea
membeshipdirectoryandanextremelycompactonter in-
dex, and (2) a completelydistributed contentsearch and
rankirg algorithm that helpsusess find the mostrelevart
informatian. PlandP is a simple yet powerful systenfor
sharinginformatian. PlanetPis simplebecawse eat peer
mustonly performa periodc, randamized,pointto-poirt
messge exchang with other pees. PlanetPis powerful
becaiseit maintainsa globally contert-ranked view of the
shaeddata Usingsimulationanda prototyeimplementa-
tion, we showthat PlanetPachievesranking accuiacy that
is compasble to a centralizedsolutionandscaleseasilyto
several thousand peess while remainirg resilientto rapid
membeshipcharges.

1 Intr oduction

Peerto-peer (P2P)comptuing is emeging asa power
ful paradign for collaboation over the Interret. The ad-
vartagesof this paradign include (a) the ability to leave
shared but distributed dataat their origin, ratherthanin-
curiing the cost, privacy andsafetyconcens of collecting
and maintaining themin a centralizedrepositoy, (b) ease
of incremental scalability and(c) the possibility of scaling
to extremely large sizes.

In this paper we proposea novel approah to the con-
structionof a contentaddressablpublish/sulscribeservice
that usesgossiping[4] to replicateglobal stateacressun-
structued comnunitiesof severalthousand,perhgs up to
tenthousand peers.Thesucces®f Interng searctengires
in indexing newsgoups and mailing lists (e.g., Goode
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Groups) aswell asthewebin geneal arguesthat cortent-
basedsearchandrankirg is a powerful modelfor locating
informationacrossdatacollectionsexhibiting awide range
of sizesandconten. We focus on unstricturedP2Pcom-
murnities becasetheundelying infrastructurecanbemade
resilientto unpredictableandrapidchang@sin membeship
without introducing undue comgexity. In contmast, typi-

cal implemenationsof structuredcomrmunities using dis-
tributedhashtablesmustimplemen very compex stabiliz-
ing algoithms[16].

Finally, we target thousand=f pees becausenostother
efforts have ignoredthis range in attemptingo scaleto mil-
lions of users(e.g.,[27, 20, 23]). (Although we discuss
severalideasfor scalingPlanetPwell beyond this level in
Section6.) Our tamge range can have significantimpad:
therearecurrently mary communitiesarownd this sizesuch
asthosesenedby YahooGroups,DalnetsIRC seners,and
thowsandsf otherUsenetseners aroundthe globe. Yahm
alonehostsmore thantwo million usergroups that share
filesandengaein puldic debatesOn a different front, our
appoachcanalsobe appliedto manag distributed com-
putingervironmers suchasgrid systemge.g.,maintairing
memlership,servicedescription andaggreate statistics);
recentwork shows the promiseof sucha P2Pmanagerant
appoach([24, 6]. Thus,our work exploresthe questionof
whethercertainfunctioralities,suchasconten rankng, that
areextremelydifficult to implemer in very large systems
beconespossibleto implemern at ourtargetscale.

Our appoachis compised of two major compaments:
(1) aninfrastructurabossipingayerto suppat thereplica-
tion of shareddatastructurs acrosgroupsof peersand(2)
anapproxmationof a state-ofthe-arttext-basedsearcrand
rank algoithm?®. The latter requirestwo small datastruc-
turesto bereplicatedglobally. amembeshipdirectay and
an extrenmely compactcontentindex. All memters agree
to contirually gossipaboutchangsto keeptheseshared

1our algorithm canbe usedto seart andrank multi-mediaaswell as
text documens sincetoday’s multi-media formatssuchasMP3 and AVI
supporttheembedling of descrptive text.
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datastructuesupdded andloosely corsistent. We explic-
itly chosegossipingbecase of its robustnessto the dy-
namicjoining andleaving of peersandindepenlencefrom
ary particula subsebf peersbeingon-line

We have realizedour proposedappoachin a protaype
systemcalled PlanetPwhich indexes shareddocunentsin
away thatallows peersacrossthe entirecomnunity to lo-
catespecificdocunentbasedntheir contentin anentirely
distributedfashion We armgue that PlanetPis a simple,yet
powerful systemfor sharinginformation. PlanetHs simple
becase eachpeermustonly agreeto perfom a periaic,
rancbmized, pointto-point messageexcharge with other
pees, ratherthancollabaateto correctly and consistently
maintaina comple distributed datastructue. PlanetPis
powerful for two reasos: (a) it canpropagateinformation
in boundedtimein spiteof theuncoadinatedcommural be-
havior, and(b) it maintainsa globally contet-ranked data
collection without depenihg on centralizedresourcesor
theonine presene of specificpeers.

In this paperwe addresseverd questionsincluding

o How effective is PlanetPs content searchandrankal-
gorithm giventhatit maintairs aglobalindex thatcon-
tains even lessinformation than previous relatedef-
forts[9, 3]?

e CanPlanetPmaintaina usabldevel of consisteng for
shareddatastructues given the rancdbmnessnherer
in gossipin@ Thatis, whenachangeoccurshow long
doesit take to reachall on-line peersanddoes it con-
sistentlyreachall on-linepeers?

e Are PlanetPs bandwidh and storagerequrements
consistentvith the constrénts of typical P2Pcomru-
nities?

We usesimulationandmeasurermntsfrom ourprotaype
implementationto answetthesequestionsin particular we
shav that PlanetPachieves searchand rank accurag that
is comparableto a centralizedsolutionandscaleseasilyto
several thousad peers.

2 Gossiping

PlanetPusesgossipingto replicatesharedstateacross
groupsof peerdgn aP2Pcommunity. PlanetPsgossipingal-
gorithm is a novel combination of analgorithmpreviously
introducedby Demerset al. [4] anda partial anti-entropy
algoithm that we have found improves perfamancesig-
nificantly for dynanic P2Pervironmetts. Briefly, Demers
et al!s algorithmworks as follows when synchonizing a
shareddatastructue thatis replicatedglobally. Suppcex
learnsof a chang to the replicateddatastructue. Every
T, secondsg would pushthis chang (calledarumoi) to a
peerchoserrancbmly from its directay; the directay is a

datastructue thatdescritesall peersan thecommunity and
is itself replicaed everywhereusinggossipim. If 4 hasnot
seerthisrumor, it record the chang andalsostartsto push
therumorjustlike z. x stopspushingtherumor afterit has
contactd n consective peersthat have alreadyheardthe
ruma. To avoid the possibility of rumas dying out befae
reachimy everyone, thereis alsoa pull compament (called
anti-ertropy): every T’ rounds,z would attemptto pull in-

formationfrom arandompeerinsteadof pushirg. In apull

messagey would askthetargety to reply with a summay
of its versionof thedatastructure. Thenx canasky for ary

new informationthatit doesnot have.

Unfortunately in a dynamic P2Pervironment,the time
requredto spreachew informationcanbecone highly vari-
able.Thisis becauseapidchangsin thememlershipleads
individual peersto have a lessaccurateview of the direc-
tory, elevatingthe problemof residualpees thatdo notre-
ceive rumas beforethey die out. The obvious solutionof
increasingthe rate of anti-entopy is quite expersive: ru-
morsareonly aslarge astheupdatethey carrybut pull mes-
sagegnustcontaina summarypropational to the comru-
nity size.

Thus,we insteadextendeachpushopeationwith a par
tial pull thatworksasfollows. Whenz sendsarumortoy, y
piggybackstheidentifiersof a smallnumter m of themost
recentrumorsthaty learnedabou but is nolongeractively
spreadig ontoits replyto z; thisallows x to pull any recent
ruma thatdid not reachit. This partial pull requires only
oneextra messagén the casethat y knowssomethinghat
2 doesnot sincethe nomal rumoring processs really im-
plemerted asa queryrequest/rely sequene usingunigue
ruma identifiersto save bandvidth whenthe tarmget hasal-
readyreceved theruma. Furthemore,theamoun of data
piggybacledony’s messagés of constansize,onorde of
tensof bytes.

Obsene that while the pushingof rumois hasa termi-
nationcondtion, pulling doesnot. To addessthis, Plan-
etP dynamically adjustsits gossipingintenal T',; if a peer
is not actively pushingary rumors, it slowly raisesits T,
(to somemaximum value). Whenit recevesa nen rumor,
it immedately resetsits gossipinginterval to the default.
This dynamic adaptatiorleadsto negligible bandwdth us-
ageshortlyafterglobalconsisteng hasbeenachieved.

Finally, notethatalthoudn in this paper we assumehat
sharediatastructurs areuniversally replicatecandaregos-
sipedwith asingleT), for simplicity, this is notthe general
case.In fact,ourimplenmentationallows eachdatastructure
to be associatedvith only a subsetof peersand gossiped
at a distinctrate. This allows partial replicationaswell as
rapid disseminatiorof time-sensitre information suchas
messagem group communicatiors without increaing the
overheadsof maintainirg moreslowly changng datastruc-
tures.
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3 Content Seaich and Retrieval

Peerspublishdocunentsin PlanetPby providing XML
snippés containirg pointersto theappopriatefiles. (A doc-
umert itself canbe embedéd in the XML snipget if it is
nottoo large.) PlanetPleavesthe sharedfiles in placebut
runs asimplewebsenerto supprt pees’ retrieval of these
files. PlanetPindexes eachpublisheddocument, maintain-
ing a detailedinvertedindex describingall documentspub-
lishedby apeerlocally. In addition PlanetPusesgossiping
to replicatea term-tepeerindex everywherefor commu-
nal searchandretrieval. Thisterm-topeerindex contairs a
mappng “t — p” if termt is in thelocalindex of peerp.

To find documentsthat containa setof queryterms,a
searchig peerfirst usesthe global index to derive the set
of peersthathave theseterms. Then it forwards the query
to thesepeersandasksthemto returnURLSs for any docu-
mentsthatarerelevart to the query Eachtarget peeruses
its local index to find the appopriatedocunents. PlanetP
usesthis two-stagesearchproessto perfam exhaustve
searchs while limiting the size of the globdly replicated
index. (We will referto theglobally replicatedndex asthe
global index, while the more detailedindex that describes
onlythedocumentspublishedocally by apeerwill refered
asthelocalindex.)

PlanetRalsoimplenentsaconter rankirg algorithm that
useghevecta spaceanking model[26]; userscanusethis
algoithm to find only docunentsthatarehighly relevant to
aquery In theremainetr of this section,we describehow
we have adaped a state-of-theart rankng algoiithm to use
PlanetPs two-level indexing scheme.

3.1 Background: TFxIDF

In a vector spaceranking model, eachdocunent and
quey is abstractlyrepreseted asa vecta, whereeachdi-
mensio is associatedvith a distinct term. The value of
eachcommnen of a vectoris a weight repesentingthe
importanceof thattermto the correspondiny docunentor
queay. Givena quel, we thencompue the relevance of
eachdocunentasthe cosineof the anglebetweerthe two
vectas usingthefollowing equation

_ DteQWQit X Wpy

Sim(Q,D) = 1

(@, D) O D] 1)

where@ is thequey, D is adocunent,|Q| and|D| arethe
numberof termsin ¢ and D, respectidy, wg ; repesents
the weight of term¢ for quey @, andw p ; the weight of
term¢ for docunent D. A similarity of O meansthat the

doaumentdoesnot have ary termin the quey while a 1

mears thatthe documentcontainsevery termin the ques.

TFxIDF is apopular methodfor assigningermweights.
Thistechniqe combiresthetermfrequencgy (TF) in adocu-

mentwith theinverseof how oftenthattermshavsupin the
entirecollection(IDF) to balarce: (a)thefactthattermsfre-
guenly usedin adocumentarelikely importari to describe
its meating, and(b) termsthatappearin mary documentsn
a collectionarenot usefulfor differentiatingbetweerthese
documents.

Thereare several acceptedvaysof implementing TFx-
IDF [21]. In our work, we adopt the following systemof
equatimsfrom [26]:

IDF, =log(1 + N¢/fe)

wpy = 1+1log(fp,t)

whereN¢ is the number of doaumentsin thecollection, f;
is thenumber of timesthatterm¢ appeas in thecollection,
andfp . is thenurberof timesterm¢ appeas in docunent
D.

This leadsto a similarity measuref

ZtEQ IDFt X (1 + IOg(fD,t))

VD]

where|Q| hasbeendrappedfrom the denoninator sinceit
is constanfor query(@ acrossall docunents.

wgy = IDF,

Sim(Q, D) =

(2)

3.2 Approximating TFxIDF

In desiging PlanetP we delibeately deciced not to
maintainthetermfrequenciesand“¢t — D" mappirgsnec-
essanyfor TFxIDFin ourglobd index to optimizespaceand
redicecommunication.In fact,with stopwordremaoval and
stemming, our globd index only containsthe baremini-
mum of mappirgs from “important” wordsto pees. We
thenappoximateTFxIDF by breakirg theranking prodem
into two sub-poblems:(1) rankng peersaccordng to their
likelihoad of having relevart documents,and(2) decidng
onthenumker of peergto contactandrankirg theidentified
documents.

Ranking Peers. To rank peers,we introduce a measure
calledtheinversepeerfrequery (IPF). For atermt, IPF; is
computedaslog(l + N/N,), whereN is nurber of peers
in the commuity and V; is the numker of peersthathave
oneor moredocunentswith termt in it. Similarto IDF, the
ideabehird this metricis thata termthatis presentin the
index of evely peeris notusefulfor differentiatingbetween
thepeerdfor aparticdar quey. Unlike IDF, IPF canconve-
niently be computedusingour corstrainedglobal index: N
is justthenunberof entriesin thedirectoy while N, is the
nunberof “¢t — p” entriesin theglobalindex.
Having definedIPF, we thenrankpees using:

2Stopword removal eliminateswordslike “the”, “of ", etc.; stemming
triesto redue wordsto their root, e.g.,“running” becanes‘run.”
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R,(Q= Y  IPF 3

{teQl(t—p)el}

whichis asumoverall querytermscortainedin atleastone
doaumentpublishedby peerp, weightedby the usefulness
of eachtermfor differentiatingbetweerpeers;t is aterm,
() isthequew, I istheglobal index, andR,, is therelevane
of peerp to (). Intuitively, this schemegives peersthat
cortain all termsin a quel the highestranking. Peerghat
cortain differentsubsetsof termsareranked accordng to
the“differentiatingpotential” of the subsets.

Selection. As communities grow, it becongesinfeasibleto
cortact large subsetf peersfor eachquery To address
this prodem, we assumeéhatthe userspecifiesalimit k£ on
thenumberof potentialdoaumentghatshouldbeidentified
in resposeto aquer (). Then,given a pair (@, k), Plan-
etPdoesthefollowing. (1) Rankpeersfor (). (2) Contact
pees in groups of m from top to bottomof the ranking .
(3) Eachcontactegeerretunsasetof documentURLs to-
gethe with their relevanceusingequatiom 2 with IPF, sub-
stitutedfor IDF;. This substitutionis sufficient sincepeers
maintainperdocumen term frequenciesin their local in-
dexes. (4) Stopcortactingpeerswhenthedocunentsiden-
tified by p consective peersfail to contibute to the top &
rankeddocunents.

The ideabehird our algoiithm is to getaninitial setof
k docunentsandthenkeepcontading peersonly if thereis
a goodcharce of acquirirg documentsmorerelevart than
the current k**-ranked one. Simulationresultsshav that
p shouldbe a function of the comnunity size N andk as
follows:

p=Co+[CiN] + |G| (4)

Thetuple(Cy, C1,C2) = (2,1/300,1/2.5) canseneas
a god initial valuefor equation4 sinceit works well for
the benchmark collectionsstudiedin this pager (seeSec-
tion 4). In generalwe assumehatuserswill adjustk when
the resultsare not satishctory (asthey do whenusingIn-
ternetsearchengine). If usershaveto incresek, thenwe
shoud increasep. If usersdecreasé or never accesshe
lowestranked docunentsidentifiedfor querieswe should
deceasep.

3.3 Implementing the Global Index

PlanetPs global index canbe implementedin a nunber
of ways[26]. We useBloom filters [1], whereeachpeer
summaizesthe setof termsin its local index in a Bloom
filter. Briefly, a Bloomfilter is anarrayof bits usedto rep-
resenta setof strings;in our case,the setof termsin the

3m representsa trade off betwveen paralklism in contating pees
againstpotertially contacting somepeersunnecassarily

peers local index. Thefilter is compued by usingn dif-
feren hashingunctionsto compue n indicesfor eachterm
andsettingthe bit at eachindex to 1. Givena Bloom filter,
we canask, is sometermt a membe of the setby com-
puting the n indicesfor ¢t andcheckirg whetherthosebits
arel. Bloom filters cangive false positivebut never false
negative

We choseBloom filters becase they give PlanetPthe
flexibility to adjustto different needsFor exanple,thecost
of replicatingtheglobal index canbereducedy simply de-
creasinghe gossipingrate; updatingthe globd index with
anew Bloomfilter requires constantime, regardlessof the
nunberof chargesintrodwced. Furthemore,Bloom filters
can be compessedand versioneél to achieve a single bit
perword average ratio. Memory-constraied Peersanalso
independentlytradeoff accuacy for storageby combiring
severalfiltersinto one.

4 Performance

Having describedthe two major compmentsof Plan-
etP we now turn to evaluatingPlanetPs performarce. We
startby assessinghe efficacy of PlanetPs contentsearch
andranking algorithm We then evaluate the costs,space
andtime, andthereliability of thesuppaeting infrastructure,
i.e.,thereplication of thedirectoly andtheglobalindex us-
ing gossiping Our perfamancestudyis simulation-lased
but mostof the parameerswere derived from a prototype
implementation. Also, we validaed our simulatoragairst
measurmentstakenfrom the pratotypewhenrunmingupto
severalhundedpeers.

4.1 Search Efficacy
We measurd’lanetPs searctperfamane usingtwo ac-

ceptedinformationretrieval metrics,recall (R) and preci-
sion(P) [26]. R and P aredefinedasfollows:

R(Q) = no. relevart docs.presentd to theuser
"~ total no. relevantdocs.in collection

(5)

_no.relevant docs.presentedo the user

PQ) = total no. docs.presetedto theuser ©)

where( is the quey postedby the user R(Q) captues
thefractionof relevantdoaumentsa searchandretrieval al-
gorithm is ableto identify and presentto the user P(Q)
describe how muchirrelevant materialthe usermay have
to look throudh to find the relevant material. Ideally, one
would like to retrieve all the relevantdocunents(R = 1)
andnotasingleirrelevart one(P = 1). In our distributed
contet, it would also be ideal to contactas few peersas
possibleto achi’’e R =1 andP = 1.



Appearsin the 12th |EEE International Symposium on High Performance Distributed Computing, 2003

100%

30%

100%

— T.W.100

—T.W.100

90% 90%

- P.W.100

- P.W.100 25%

80% 80%

70%

= P.U.100

= P.U.100

70% +P.W.30

-+ P.W.30 20%

_ 60%
g 0,

8 509 -
& 40% -

5 60%

‘B

2 509 4

o

& 40% -
30%

=

M%%

15% -

Recall

10% -

20%

— T.W.100

30% /

10% -

5%

-~ P.W.100 variable N []
> P.W.100 constant N
T T

0% 0%

20%
100 200 300
No. documents requested

10%
(@)

100 200
No. documents requested

0%

T
400 600
Number of nodes

(©)

T
300 0 200 800 1000

(b)

Figure 1. Average (a) recalland(b) precisionfor the AP89collectionwhendistributedacross400peess. Thelegends
X.Y.Z are decoadasfollows: X = {T: seach engire usingTFxIDF, P: Planet?, Y = {W Weibull, U: Uniform}, and
Z = {z: indexedthemostfrequetly appeaing z%of theuniquetermsin eac document; for example T.W100means
TFXIDF running on a Weihull distribution of docunents,whele all 100% of the unique termsof each documehwas
indexed.(c) Average recall asa functionof commuity size

Collection No. No. No. Unique | Size
Queries | Docs Terms (MB)
CACM 52 | 3204 7548 21
MED 30| 1033 83451 1.0
CRAN 152 | 1400 11778 1.6
Cisl 76 | 1460 84957 2.4
AP89 97 | 8467 1296@B | 266.0

Table 1. Characteistic of the collectionsusedto
evaluae PlanetPs seach andrankirg capabilities.

We asses®lanetPs rankng efficacy by simulatingand
comparing its performarce for five berchmarkcollectiors
(Table 1) aganst a centralized TFxIDF implemenation
(calledCENT).Eachcollectionhasasetof docunentsaset
of queies,anda binarymappng of whethera documentD
is relevant to a particdar quay @. Four of the collectiors,
CACM, MED, CRAN, andCISlI, werecollectedandused
by Buckley [2]. Thesecollectiors containsmallfragments
of text and summaris and so arerelatively smallin size.
The last collection AP89, was extraded from the TREC
collection[12] andincludesfull articlesfrom the Associ-
atedPresgpubishedin 1980.

We study PlanetPs performarce uncer two different
doauments-topeers distributions: (a) Uniform, and (b)
Weibhull. We studya Uniform distribution astheworstcase
for a distributed searchandretrieval algorithm The doc-
umers relevantto a queryarelikely spreadacressa large
nunberof peers.Thedistributedsearchalgorithmmustfind
all thesepeergo achieve highrecallandprecision Themo-
tivationfor studyirg a Weibull distributionarisefrom mea-
suremats of current P2Pfile-sharingcomnunities. Saroiu
etal. found that7% of the usersin the Gnutellacommunity
sharemorefilesthanall theresttogetter[22]. We have also

studieda local community compised of more than 1500
studentsharingmorethan10TB of data,which hasa sim-
ilar doaumentdistribution. Our Weibull distribution is pa-
rameteizedto apprximatethedistributionfound in thislo-
cal community.

Figure 1(a) and (b) plot averag recall and precision
over all provided queies as functions of £ for the AP89
collection We only shav resultsfor this collection be-
causeof spaceconstrais; these results are represen-
tative for all collections. We refer the readerto our
web site for resultsfor all collections: http://www.panic-
lab.rutgers.ed/Research/PlanetPFigure 1(c) plots Plan-
etPsrecallagairst community sizefor a corstantk of 100.
Finally, Figure 2 plotsthenumber of peerscontactedagairst
k.

We malke severd obsenations. First, PlanetPtradksthe
performarceof thecentalizedimplemetationclosely even
whenwe index only the mostfrequentlyappeaing 30% of
theunique termsin ead document Further PlanetPs per
formanceis independentof how the shareddocumentsare
distributed achieving nearlythesameperfomancefor Uni-
formandWeibull. For aWeibull distribution of docunents,
whenwe index all 100%o0f the unique terms,PlanetPs re-
call andprecisionis within 11%of CENT's (averag differ-
enceis 4%). Whenwe index only the 30% mostfrequently
appeang terms, PlanetPs recall and precisionis within
16%of CENT's, with anaverag differenceof 14%. These
smalldifferercesdemastratethatit is possibleto preseve
TFxIDF's perfomancewhile limiting the global index to
only aterm-to-geermaping. Thegoad perfamancegiven
whenwe only index the top 30% of the uniquetermsindi-
catethatwe canfurtherredu@thesizeof theglobal index at
theexpenseof only aslightlossin ranking accuray. More-
over when comparing the documentsreturred by PlanetP
andCENT at low recalllevels, we found an averag inter



Appearsin the 12th |EEE International Symposium on High Performance Distributed Computing, 2003 6

450
400
350
300
250 4
200
150 4

100 4
50
T T

300

— T.W.100
-~ P.W.100
< P.U.100

No. peers contacted

100 200

No. documents requested

Figure 2. Average numberof pees contactedin a
communityof 400peesvs. k.

sectionof 70%. (The intersectio appoachesl00% with

increasing recall.) This givesus corfidencethat our adap-
tationsdid not chan@ the essentialdeasbehindTFxIDF's
rankng

Second,PlaretP scaleswell, maintaininga relatively
corstantrecallandprecisionfor commnunitiesof upto 1000
pees. We have not studyscalabilitybeyond that point be-
causeahecollectiors arenot sufficiently large.

Third, PlangP’s adgptive stoppirg heuristicis critical
to its performance Figure 1(c) shaws that PlanetPs recall
would degrace with comnunity sizeif the stoppirg heuis-
tic werenot a fundion of community size. (The effect is
similar if the stoppingheuristicwas not a function of &.)
In addition PlanetPs adapive stoppingheturistic allows it
to perfom well indepeidentof how the docurentsaredis-
tributed Figure2 shavsthatthedynanic stoppingheuristic
allows PlanetPto searchmore widely amorg pees when
doaumentsare more widely distributed preservitg recall
andprecisionindepemnlentof documentdistribution.

PlanetPs good distributed searchand rankirg perfor-
mane doeshave a smallcost: PlanetPcontactamorepeers
thanCENT. We obsene from Figure 2 thatwhile this cost
is nottrivial, it doesnot seemunreasonableFor exanple,
PlanetPcontats only 30% more peersat £ = 150 for the
Weihull documentdistribution. Further the percetageof
pees contacteds small: PlanetPonly cortactsa little over
25%o0of the400peersat k = 150.

4.2 StorageCost

Having demamstratedthat PlanetPcan presere TFx-
IDF’s rankng accuncgy, we now turn to assesshe storag
requrementof ourapprach. In particdar, we estimatethe
size of the glohal index usingthe entire TREC collection
(944,651 documents, 256686,468 terms, 592052 unique
terms, 3,42841 MB) for the worst caseof uniform docu-
mentdistribution. Thisis theworstcasebecauseary other
distribution (e.g Weibull) would likely give a smallersum-
mation of unigue termsper node. Moreover, TREC is a

70000
60000
50000
40000
30000 -
20000 -
10000 -

| JAvg. no. unigue words per node
| ®Mem. Used to store all BF (KB)

1000 5000 1000 5000 1000 5000 1000 5000

R1.100 R1.100 R3.100 R3.100 R1.30 R1.30 R3.30 R3.30
Figure 3. Estimatingthe size of the global index
whenthe TREC collection is uniformly distributed
acrossa communityof N pees. Eac group of two
bars shows fromleft to right, the average numter of
uniguewords fourd on each peerandthe sizeof the
globalindex (in KB) if individual Bloomfilters were
big enogh to summarizehe per-node unique terms
with at most5% proballity of error. Each bar is
namedafter the commuity size the replicationfac-
tor (R1or R3), and the percentaye of perdocument
uniguetermsindexed.

collection of text docunents,so the ratio of unique terms
to collectionsizeis vely high. For collectiors with multi-
mediadoaumentsthisratiois likely to bemuchsmaller For
exanple,acollectionof 326913MP3filesrequring 1.4TB
of storagecollectedfrom an existing P2Pcomrrunity only
yielded55,%3 uniqLe terms.

In Figure 3, we countthe numter of unique words at
eachpeerandcompue the size of the globalindex if each
Bloom filter was sizedto summarizethe pernode unique
termswith lessthan5% prokability of error We alsoshov
whathappensif eachdocumentis replicated3 timesin the
community.

Obsene that at 1000 peers,the global index is quite
small: 16.IMB, whichis just0.5% of thecollection.If each
docunentwerereplicated3 times,the storagerequirenent
would increaseto 28.7MB, which is actuallyonly 0.3% of
the enlaged collection. At 5000 peers,the storagecost
is somavhat higher, rising to 62.3MB if eachdocunentis
replicated3 times. Obsere, however, thatif we sacrificea
little accuagy (perFigurel(a,h) by indexing only the 30%
mostfrequent unique termsin eachdoament,the storage
requrementis redwcedagainto 26 9MB, whichis just0.3%
of thereplicatedcollection.

Basedon theseresults we concluce that PlanetPshould
easily scaleto several thousandpeersin termsof the re-
quired perpeerstoragefor thereplicatedglobal index.

4.3 GossipingPerformance

Finally, we assesshe reliability andscalabilityof Plan-
etPs gossipingalgorithm By reliability, we meandoes
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| Parameter | Value |
CPUgossipingtime 5ms+ (transfertime x no. bytes)
Basegossipingintenal 30sec
Max gossipinginterval 60sec

| Network BW | 56Kb/sto 45Mb/s |
Messagéeadersize 3 bytes
1000termsBF 3000 bytes
20000termsBF 1600 bytes
BF summary 6 bytes
Peersummary 48 bytes

Table 2. Constantsusedin our simulationof Plan-
etP’s gossipingalgorithm.

eachcharge propagateto all ondine peers? We perfam
this study using a simulatorparametezed with measure-
mentsfrom our pratotype. Table 2 lists theseparametes.
We validatedour simulatorby compaing its resultsaganst
nunmbersmeasued on a clusterof eight 800 MHz Pentium
[l PCswith 512MB of memay, runring a Linux 2.2 ker-
nelandthe BlackDowvn JVM, versionl.3.0 Becausef the
JVM'’s resourcerequrementswe werelimited to 25 peers
permachne,allowing usto validateoursimulationfor com-
murity sizesof upto 200peers.

In our currert implemenationof PlanetPa globaldirec-
tory thatincludesthe list of peers their IP addresses,and
their Bloom filters is replicatedeverywhere. Events that
chamge the directoy and so requiregossipinginclude the
joining of anew membertherejoinof a previously off-line
memler, anda chang in a Bloom filter. We do not gossip
theleaving (tempaary or permamnt) of a peer Eachpeer
discoversthat andher peeris off-line when an attemptto
comrmunicatewith it fails. It marksthe peerasoff-line in
its directoly but does not gossipthis information. When
the peerxz comesback ondine, its presencewill evertu-
ally be gossipedto the entire comnunity; eachpeerthat
hasmarked z as off-line in its directory chargesz’s sta-
tus backto on-line. If a peerhasbeenmarked as off-line
cortinuouslyfor T'p..q time, thenall information abod it
is droppedfrom thedirectay undertheassumptiorthatthe
peerhasleft the community permantly.

Propagating new information. We begin by studyingthe
timerequiral to gossipanew Bloomfilter throughoutstable
comnunitiesof various sizes.Measuring propagatia time
isimportantbecausé represets thewindow of timewhere
pees’ directaies areincorsistent,sothatsomepeersmay
notbeableto find new (or modified)docunents.

In this expeiment, we use a Bloom filter with 1000
words. BecausePlanetPsendsdiffs of the Bloom filters
to save bandwidth, this scenariosimulatesthe addition of
100 new termsto somepeets inverted index. Note that,
while 1000new termsmay seemsmall, it actuallyis quite

€ 1000 X
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o
I .
. W' e ee et
LA N i
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No. new terms found

T T T T
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Perc. of words stored

Figure 4. Numberof new uniquetermsfourd per
million words vs. the percentaye of words already
storedat a node(TRECcollectior).

large. Figure4 shows thatif a peeralreadycontains0.4%
of the TREC collection it would have hadto addapproi-
mately300 moredocunents totaling800000moreterms,
to have found anadditioral 100 unique terms. (Thetrend
wefoundin Figure4 is consistentith thatfound by amuch
larger studyof word distribution [25].)

Figure5(a) plotsthe simulatedpropagatia timesfor six
scenaris:

LAN Peersare conneted by 45 Mbps links. Peersuse
PlanetPs gossipingalgoithm.

LAN-AE Peersare conrectedby 45 Mbps links. Peers
use only push anti-eriropy: each peer periodcally
pusha summay of its datastructue. The target re-
questsall new informationfrom this summary This
appoach hasbeensuccessfullyusedto synchramize
smallercomnunitiesin NameDropper[11], Bayou[5]
andDeno[14].

DSL-10,3,60 Peersare connectedby 512 Kbps links.
PeeraisePlanetPs gossipingalgotithm. Gossipingn-
tenalis 10,30,and60 secondsespectiely.

MIX Peersareconnetedby a mixtureof link speedsUs-
ing measuementsof the Gnutdla/Napstercommuni-
ties repoted by Saroiuet al. [22], we createa mix-
tureasfollows: 9% have 56 kbps, 21%have 512kbps,
50% have 5 Mbps, 16% have 10 Mbps, and4% have
45 Mbps links.

Figure5(b) shavsthe averagegossipingoandwidh used
per peerduiing the expeiment for DSL-10, DSL-30, and
DSL-6Q

Basedon thesegrapls, we make severd obsenations.
(1) Propagation timeis still a logarithmic function of com-
munitysize[4], implyingthatgossipingnew informationis
very scalable. For exanple, propagatio time for a com-
munity with 500 peersusingDSL-30is abaut 200seconds,
rising to only 250 for a community with 5000 peers. (2)
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Figure 5. (a) Time and(b) average per-peerbandvidth requiredto propagatea single Bloomfilter contairing 1000
termseverywhee vs. commuity size (c) Timerequiredfor z — 1000 pees to simultaneosly join the commuity of

1000stableonline peess, ead wishingto shale 20000terms.

Eventhowh a charge is gossipedthroughout the entire
commuity, the total numker of bytessentis very modest,
again implying that gossipingis very scalalde. For exam-
ple, propagationof a 1000 new termsthroughait a com-
murity of 5000peersrequiesanaggreatedtotal of abou
100MB to besent,eadingto a perpeeraverage bandvidth
requrementof lessthan100Bpswhenthe gossipingnter-
val is 30 second. (3) We caneasilytradeoff propagation
timeagainstgossipig bardwidthbyincreasingor deceas-
ing the gossipimg interval. And, (4) Our algarithm signifi-
cartly outperfeamsones that useonly pushanti-ertropyfor
both propagationtime and networkvolume Using rumor
ing enaltes PlanetPto reducethe amoun of information
exchangedbetweennodes while the mixture of pull (anti-
entrgoy) and push (rumors) rounds reducesconvergence
time. While we did not shav the differencein network vol-
ume,on averag, LAN-AE required2.3timesthe network
volume of LAN.

Joining of new members. We now assesshe experse of
having large groypsof new membersimultan@uslyjoin an
establishedommunity. Thisrepresentshetransiemcaseof
arapidlygrowing comnunity andis theworstcaseor Plan-
etP becausesachof thesenew membes hasto download
the entire global index. Our simulatorcurrerily assumes
that eachclient is single-theaded Thus, a nev member
thatis busy downloadingthe global index for a long time
can causesignificantvariationin the propagation time of
chamges;thismemler canrot recevve gossipmessagewhile
it is busydownloading

In this experiment, we starta comnunity of n pees and
wait until their views of memtershipis consistent. Then,
m new peerswill attemptto join the community simulta-
neaisly. We measurdhe time requred until all membes
have a consistentiew of the community agan aswell as
the requiredbandwidh during this time. For this experi-
ment,eachpeerwassetto share20000termswith therest
of the community through their Bloom filters. (Looking at

Figure3, obsere thatthis is the equivalentof having a col-
lectionlargerthantheentireTREC collectionsharedy this
community.)

Figure 5(c) plots the time to reachconsisteng vs. the
nunber of joining peersfor aninitial comnunity of 1000
nocks. Theseresultsshow that, if thereis sufficient bard-
width (LAN), consisteng is reachedvithin appraimately
600second (10 minutes).eavenwhenthecommunity grons
by 25%. In contrast to propagatinga chang, however, the
joining processs a muchmorebandvidth intensve one;a
joining memker mustretrieve 100 Bloom filters repesent-
ing a total of 20 million termsfrom the existing comnu-
nity. Also, having 250memtersjoin atoncemears that250
Bloomfiltersrepesenting million termsmustbegossiped
throughou the community. As aresult,corvergencetimes
for communitiesintercomectedonly with DSL-speedinks
are apprximately twice that of LAN-connectedcommu-
nities. Finally, corvergencetimesfor the MIX-connected
communitiesbecaneunaceptablepossiblyrequiing from
50 minutesto overtwo hous.

We draw two corclusionsfrom theseresults.First, even
in thisworst-casescenariofor PlanetPwhichwe donotex-
pectto occuroften,if peershave DSL or higher connetiv-
ity, thenPlanetPdoesquitewell. Secoul, we needto mod-
ify PlanetPif we areto accomnedateuserswith moden-
speedconrections. While the artificial lengthaing of gos-
siping corvergencetime canbe easilyfixedif pees areas-
sumedo be multi-threadedwhena new peerfirst join, the
timeto downloadtheentiredirectoy would still likely take
too long. Thus,we shouldeither exclude peerswith less
than DSL connedtivity or allow a new modemconrected
peerto acquirethe directol in piecesover a muchlonger
periad of time. Wewould alsoneedo suppet someform of
proxy searchwheremodemeonne&tedpeerscanaskpeers
with betterconrectiity to helpwith searchs.

We also decidel to modify our gossipingalgorithm to
be bardwidth-avare,assuminghat peerscanlearnof each



Appearsin the 12th |EEE International Symposium on High Performance Distributed Computing, 2003 9

othefs conrectiity speed.The motivationfor thisis thata
flat gossipingalgorithmpenalize the community to spread
informationonly asfastasthe slov memlerscango. Thus,

we modfy the basicPlanetPgossipingalgorithm for peers
with fasterconnectiity to prefeentially gossipwith each
otherand peerswith slower connectiity to prefeentially
gossipwith eachother This ideais implementé as fol-

lows. Peersaredividedinto two classesfastandslow. Fast
includes pees with 512 Kb/s conrectivity or better Slow

includes peersconneted by modems. Whenrumaing, a

fastpeermakesa binary decisionto talk to a fastor slow

peer Probabilityof choosimg a slow peeris 1%. Oncethe
binary decisionhasbeermade thepeerchooses particular
peerandonty fromtheappopriatepod. Whenperfaming

anti-eriropy, a fastpeeralways chamsesanothe fastpeer
Whenrumaing, a slow peeralways choosesanotherslow

peer sothatit canna slow down thetamgetpeer unlesst is

the sour@ of the rumor; in this casejt chosesa fastpeer
astheinitial target. Finally, whenperfoming anti-entopy,

a slow peerchoosesary nodewith equalprobaility. We

will studytheeffectsof this modifiedalgorithm below.

Dynamic operation. Finally, we study the perfamane@
of PlanetPs gossipingwhena community is opeating in
steadystate,with memtersrejoining andleaving dynami-
cally but without massie, simultaneos joins of new peers
needng the entireglobd index. We expectthis to be the
comnon operatimal casefor PlanetPWe begin by study-
ing the potentialfor interfererce betweerdifferert rumas
aspeersrejoin the community at differenttimes. This ex-
perimentis asfollows. We have a stablecommurity of 1000
ondine peers;100peergoin the conmunity accodingto a
Poissonproesswith an averageinter-arival rate of onae
evely 90 secondsPeersaareconnetedat LAN speedEach
ondine peerhasaBloomfilter with 1000termsthatoff-line
pees do not have. Eachjoining peersharesa Bloom fil-
ter with 1000terms. Again, this repesentghe casewhere
off-line peerswill have somenew informationto share put
they haveto collectnew informationthatmayhave accrued
sincethey have beenoff-line. Figure 6(a) plotsthe cumula-
tive percemageof eventsaganstthecorvergercetime—the
time requira for an arrival eventto be known by every-
onein the on-line commuiity—for PlanetPs gossipimg al-
gorithm againstwhat hagpensif the partial anti-entrqy is
notincluded Obsene thatwithout the partial anti-entopy,
overlappirg rumas caninterfere with eachother causing
muchlarger variatian in the corvergencetimes.

To comgete our exposition we study a dynamic com-
munty with the following behaior. The comnunity is
compisedof 1000 memlers. 40% of the memlersareon-
line all thetime. 60% of the membes areonlinefor anav-
erage of 60 minutes andthenoffline againfor anaverageof
140minutes.Bothonlineandofflinetimesaregeneratd us-
ing a Poissomprocess.20%of thetime, whenapeerrejoins

theon-linecommuiity, it sendsa Bloom filter diff cortain-
ing 100 new terms. Theseparaneterswere againbased
rouchly onmeasurmentsrepotedby Saroiuetal. [22] (ex-
ceptfor thenunberof new termsbeingsharedccasioally)
andaremear to berepresetative of realcommnunities. We
noteagan that1000new uniquetermstypically represets
thesharingof asignificant setof new doauments.(We have
alsostudieda moredynamic community, where50%of the
time, a peercoming back on-line shares100 newv words.
Theresultsaresimilar to thosepresenbelow.)

Figure 6(b) plots the cumulatize percemage of everts
agairst the corvergerce time. We obsenre that with suffi-
cientbandvidth, corvergencetime is vely tight around 400
second. For the MIX commuity we separatéhe CDF in
two classes:the time it takesfor fastnodesto propagate
everts to otherfastnodes(MIX- F) andthetime it takesfor
slow nodesto reachthe whole comnunity (MIX-S). The
graph shows thatour bandvidth awaregossipingalgoiithm
allows fastnodes to propagateeverts asin the LAN case
without harming the speedof propayationto slow nodes.
Althoughiit is not shavn on the graph the slowv nodesare
equallyfastwhen propagatimg to fastnodes (becase they
canrumorto a fastnodeonceandthenlet the fastnodes
contiruethe propagatia).

Figure 6(c) plots the aggregate bandwidh aganst time.
This graphshows that the normal opeation of a comru-
nity requres very little bandvidth, rangingfrom between
10KB/s to 100KB/s acrosshe entirecommunity.

5 RelatedWork

While currert P2P systemssuch as Gnutella[8] and
KazZaA [13] have beentremenausly successfufor music
andvideo sharingcomrnunities, their searchandinforma-
tion diffusion capabilitieshave beenfrustratirgly limited.
Our goal for PlanetPis to increasethe power with which
userscan locateinformation in P2P communities by pro-
viding conten basedsearchandranking capaliities.

Several efforts parallel to PlanetPhave also looked at
betterqueryng mechaisms[7, 19. Theirfocus,however,
is on servingvery largescalecomnunities. In orderto be
scalablethesesystemdradeoff perfaomanceandfunction-
ality by usingiterative queriesanddistributedinverted in-
dexes. None of this previous work suppats cortentrank-
ing.

Numerows researchefforts have produced highly scal-
abledistributed hashtables(DHT) over P2Pcomnunities
[27, 20, 23, 18]. In geneal DHTs spreadkey, value)pairs
acrossthe community and provide retrievd mechaisms
basedon the key. Although this abstractiorhasbeensuc-
cessfullyusedto build file systemserviceqd17, 15, we be-
lieve it is lesssuitablefor the type of commuiities stud-
ied in this pape. The high costof pulishing thousand of
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Figure 6. (a) CDF of gossipingconvergencetime in a communityof 1000whenthere are 100 Poissonarrival (New
arrivals shawe 1000keys). LAN-NFA is our gossipimg algorithmwithoutthe partial anti-entopy compoent. (b) CDF
of gossipingconvergencetime during the normd opemtion of a dynamiccommunitywith 1000 membes. MIX-F is
thetimeit takesa fastnoce to reac all otherfastnodesand MIX-Sis timeit takesa slow nodeto read the whole
community(c) Aggregated bandvidth usage while running (b).

keys perfile andthelack of updatepropayationmale it dif-
ficult to implement contentaddressablgublish/subcribe
system®o©n DHTSs. PlanetPovercomesthesedifficulties us-
ing gossipingto propagateinformation and replicatirg a
compmctinvertedindex onevely peer

Gossipinghasbeenusedin a variety of settingssuchas
memlership[11], information aggr@ation [24], and P2P
DHTs [10], becase of its robustressto failures. In Plan-
etPwe have adaptedhemfor betterbandvidth usageand
propagatia time stability in scenariosverenodesjoin and
leave constantlyandin an unantrolledmanner(similar to
thework doneby Liben-Nawell et.al.[16] for DHTS).

More relatedto PlanetPs information retrieval goals,
Cori[3] andGloss[9] addresshe problems of databasse-
lectionandranking fusion on distributedcollectiors. Both
systemsuse senersto keepa reducedindex of the con-
tent storedby otherseners. BecausePlanetPis tamgeted
towardcommunitiesthatarelarger, more dynanic, yetdoes
nothave ary centralizedesouces,we have choserto keep
evenlessinformationin theglobd index to minimize com-
murication as well as storage. We have shavn that our
distributed searchand rank algoithm using this minimal
global index is nearly as effedive as a centralizedimple-
mentatia of TFXIDF,

6 Conclusionsand Future Work

The nurber of on-line communities hasexploded with
the growth of the Interret. Traditiorally, thesecomnu-
nities have beenhostedon centralizedseners, even when
the informationbeingsharedexists (andis collectednatu-
rally) in a distributedform. In this paper we seekto pro-
vide apowerful alternative for avoiding centralizatiorwhen
centrdization is costly or presets privacy andsafetycon-
cerrs. In particular we have presentedPlanetPa P2Ppub-

lish/subscribenformation sharinginfrastructwe that sup-
portsdistributed cortent searchyrank andretrieval. Plan-
etPusegyossipimgy to robustly disseminat@ew information,
evenunderrapidmemiershipchangs, andreplicae alim-
ited amoun of global stateto suppet contentsearch.This
combination allows PlanetPto suppat a powerful content
addessingmodé without requiiing pees to maintaincom-
plex distributeddatastructues.

We have shavn thatPlanetPs extremelycompactglobal
index doesnotaffectits ranking accuray: onaverage, Plan-
etPs ranking performane is only a few percem lessthan
thatof acentralizedmplemenationof TFxIDF. Furtherthe
overall requred storageandgossipingbandvidth aremod-
estenoud thatPlanetRcaneasilyscaleto severd thousand
peers.Ourrealtargetis arourd tenthousandpeers.

While we did not startthis work with the intention of
scalingto millions or billions of users,we believe that it
is possibleto scalePlanetPbeyond our initial targetof ten
thowsandpeersif desired.One possibleapprachis to di-
vide the comnunity into a numbe of groups. Peerswithin
the samegroupopente asdescribd here. Peersfrom dif-
feren groyswill gossipanattenuatedloomfilter thatis a
summay of the globalindex for their groups. Peeramostly
gossipwithin their groyps but, occasionallywill gossipto
peersirom othea grous. Whensearchiy, if theattenuated
Bloom filter of group g contairs termsrelevart to a quay
@, thenthe searchingpeer saya, would contacta rancom
peerin growp g, askingit to returnarankedlist of peersn g
thatmight have documentsrelevart to (). a canthencontact
thesepeerausingthe currert algorithmfor rankirg. Indeed,
Guptaet. al.[1Q recentlypropasedusing a hierarcly of
peersn averysimilar manne, althoudn their systemusesa
distributedhashtableacrosgrouys insteadof gossiping

Finally, we arein the proces®f building anumbe of ap-
plicatiors to validatethe utility of PlanetPSpecifically we
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have built a protaype semantidile systemandchatappli-
cationontop of PlanetPOtherapgicationsareuncerway.
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