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ABSTRACT
We present SETS, an architecture for efficient search in
peer-to-peer networks, building upon ideas drawn from ma-
chine learning and social network theory. The key idea is
to arrange participating sites in a topic-segmented overlay
topology in which most connections are short-distance, con-
necting pairs of sites with similar content. Topically focused
sets of sites are then joined together into a single network by
long-distance links. Queries are matched and routed to only
the topically closest regions. We discuss a variety of design
issues and tradeoffs that an implementor of SETS would
face. We show that SETS is efficient in network traffic and
query processing load.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering,
Search process, Selection process; H.3.4 [Systems and Soft-

ware]: Distributed Systems, Performance Evaluation (effi-
ciency and effectiveness)

General Terms
Algorithms, Performance, Design

Keywords
Peer-to-Peer (P2P), distributed information retrieval, small
world networks, topic-driven query routing, topic segments.

1. OVERVIEW
Peer-to-peer (P2P) networks have received considerable

attention recently. Such networks are characterized by a
very large number of participating sites that span wide area
networks and cooperatively share content with each other.
The first generation of P2P networks focused on collections
of music files. However, the real potential for such networks
lies in the sharing of valuable enterprise documents.

As a first step towards building P2P applications, re-
searchers have proposed protocols for performing efficient
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key lookups by constructing Distributed Hash Tables (DHTs)
[25, 30]. A DHT is simply a hash table that is partitioned
among a collection of sites. A lookup for a key is routed
efficiently to that site which is responsible for storing that
key. However, a search query is more complex than simple
key lookups. It is not clear how a key lookup service could
be used to build an efficient search application.

Distributed Information Retrieval [4] has studied prob-
lems associated with searching distributed heterogeneous
repositories. Researchers have focused on identifying archi-
tectures [2, 10, 15] and models [5, 28, 37] that can search
hundreds of repositories. In this context, researchers have
investigated common resource description languages [29],
schemes for repository selection [12] and merger of ranked
lists [36]. Heterogeneity in search interfaces has led imple-
mentors to converge on mediator-based architectures [1, 3,
23] in which wrappers for each participant repository rewrite
the query and interpret the ranked lists returned.

P2P networks are distributed. However, their character-
istics are markedly different from Distributed Information
Retrieval systems: (a) The number of participants (usually
PCs) is in tens to hundreds of thousands, (b) Each site down-
loads a common binary. This allows an architect to enforce
a common resource description language and search inter-
face, (c) P2P networks are dynamic. Site lifetimes are short
(a few hours) and arbitrary (whims of the site owner), and
(d) P2P networks are low-cost systems built on the principle
of utilizing unused computing resources. Often, there is no
central server that acts as a mediator for statistics collation,
repository selection, query rewriting and ranked list merg-
ing. A common strategy adopted by popular P2P networks
like Gnutella, KaZaa and Morpheus is to retrieve results by
flooding a query to as many participants as possible. This
clearly wastes network resources.

In this paper, we bridge the gap between Distributed In-
formation Retrieval and P2P networks by proposing SETS,
a topic-segmentation based network that provides efficient
search on P2P networks. The architecture is modular and
allows advances in distributed information retrieval to be
“plugged” in cleanly. We provide a rigorous evaluation of
SETS. In the course of such analysis, we are able to assign a
measure of the quality of document clustering that is simple,
precise and exact in our context.

1.1 Topic-Segmented Networks
The philosophy underlying SETS is to arrange sites in a

network such that a search query probes only a small subset
of sites where most of the matching documents reside. In
particular, SETS partitions sites into topic segments such



that sites with similar documents belong to the same seg-
ment. Each topic segment has a succinct description called
the topic centroid. Sites are arranged in a segmented net-
work that consists of two kinds of links. Short distance links
connect sites within a segment. Long distance links connect
pairs of sites from different segments. When a search query
is initiated, it is forwarded to other sites using a topic-driven

routing protocol. First, topic centroids are used to select a
small set of relevant topic segments. Next, the selected seg-
ments are probed in sequence. A probe to a particular seg-
ment proceeds in two steps: First, the query is routed along
long distance links to reach a random site belonging to the
target segment. Next, the short distance links are used to
propagate the query to all/most/few sites within a segment.

Can the above philosophy enable efficient search over P2P
networks? The answer depends on (a) the quality of the
topic segments and (b) the efficiency of topic-driven routing.
The two goals can be met only if we architect each of the
following building blocks efficiently:
A Topic Segment Construction: How do we partition sites

into topic segments?
B Topic Segment Maintenance: How are segments main-

tained as sites join and leave, and/or their document
collections change over time?

C Topic Segment Selection: Which segments (and in what
sequence) do we probe to answer a query?

D Global Routing: How is a query forwarded to (some mem-
ber of) a particular segment?

E Local Routing: Once a query reaches some site within a
specific segment, how is it propagated to all/most/few
sites within that segment?

The first three building blocks relate to topic segments
and the last two to topic-driven query routing. Each build-
ing block poses interesting problems that we discuss next.

A. Topic Segment Construction
We need to group sites with similar content together into
topic segments. Heterogeneity and autonomy of sites pose
challenges to good topic segmentation. Sites often have doc-
uments drawn from diverse topics. Autonomy of sites im-
plies that the system cannot dictate the placement of doc-
uments. A good segmentation should yield high recall from
low query processing cost, i.e., the average number of sites
that are probed to evaluate a query.

Note that topic segmentation poses a complex cluster-
ing problem with a surprisingly clean objective function —
query processing cost. We emphasize that the objective func-
tion is simple and exact. Typical studies of clustering formu-
late it as an optimization work with objective functions that
require a leap of faith for interpretation in the application
domain. Our measure remains cleanly related to our ap-
plication even though our methodology envelops issues like
connections and routing that go beyond clustering.

B. Topic Segment Maintenance
In a P2P network sites leave and join without notice. More-
over, the set of documents at each site changes over time.
Maintaining consistent global knowledge of topic centroids
in the face of such changes is challenging.

Two issues that arise due to centroid re-computation are
that (a) new centroids have to be disseminated to all the
sites, and (b) sites re-assign themselves to new segments if
they discover that they no longer belong to their current seg-

ment. The first problem requires an efficient mechanism for
informing all sites about new centroids. The second prob-
lem requires a solution that ensures that site re-assignment
is done smoothly over time. For stability, it should not so
happen that a large set of sites suddenly decide to migrate.

C. Topic Segment Selection
When a query is initiated, we need to identify a small set
of topic segments that will be probed. The challenge lies in
designing an algorithm for ranking segments by matching
a given query against their descriptions. Recall depends
crucially on the choice of segments identified for probing.

Once a small set of segments are identified, the query is
forwarded to each segment in the set in two steps: Global
Routing forwards the query to some site in the target seg-
ment. Then, Local Routing propagates the query to a subset
of sites within the segment.

D. Global Routing
The goal of Global Routing is to forward a query to a target
topic segment using long distance links. The challenge lies
in designing a scheme that maintains network connectivity
and routes queries in few hops without requiring too many
long distance links per site. Moreover, the scheme should
work in the presence of frequent arrival and departure of
sites without notice.

E. Local Routing
Once a query reaches some site within a segment, it is prop-
agated to a carefully chosen subset of sites within that seg-
ment using short distance links. The design of intra-segment
routing protocols is an interesting problem by itself. The
protocol depends upon the particular domain of documents
and the expectations from the search system on the whole.
Layout of the Paper: Section 2 explores related work.
Section 3 describes the SETS architecture. Section 4 dis-
cusses the experimental methodology. Section 5 contains
experimental results. Section 6 concludes the paper.

2. RELATED WORK
Gnutella and Freenet are the best-known examples of P2P

search networks. SETS retains many of the best aspects
of these systems (decentralized operation, sites operating
as true peers and fully dynamic sites). Gnutella relies on
broadcasts to answer queries. Since broadcast is unscalable,
Gnutella adopts heuristics (e.g., time-to-live fields) that con-
strain query propagation radius and result in reduced recall.
Freenet replicates documents across the network in the hope
that documents matching a query can be located close to the
querying site. Other improvements have been suggested [7,
9, 22, 38]. However, there are no guarantees on recall.

Distributed Hash Tables (DHTs) [18, 25, 30] arrange the
network to answer lookup queries. pSearch [31] proposes us-
ing DHTs for search. A global index for each term is placed
at the site that is responsible for the term. It remains to be
seen if network traffic for index updates necessitated by site
joins, leaves and document movements can be supported.

The preferred architecture for Distributed Information Re-
trieval has been mediator-based. A mediator collects meta-
data from different participating collections. Queries are
sent to the mediator who selects relevant collections, rewrites
the query for each collection and forwards the rewritten



query to the selected collections [1, 3, 23]. This architecture
was shown to scale to tens of thousands of collections with
best performance under a domain-influenced “logical” orga-
nization [8]. Correspondingly, sites have also been clustered
around “global concepts” [20, 24] and clusters arranged in
a hierarchy [27, 35] to allow retrieval through navigation
or search. Information about each cluster is collected at a
mediating router which then routes queries to relevant clus-
ters. P2P networks tend to be characterized by the absence
of such stable infrastructural units.

The principle of topic segmentation in SETS is based on
the cluster hypothesis which states that “closely associated
documents tend to be relevant to the same requests” [32].
Our measure of efficacy is analogous to cluster retrieval [26]
but goes beyond it to concretely quantify and explore the
trade-offs between cost and quality entailed.

Xu et. al. [37] demonstrated that organizing collections
into topics when combined with language models improves
retrieval. As in [26], the assumption is that collections at a
single site are large enough that organizing them into clus-
ters is meaningful. We observe that individual collections in
P2P networks are small. Documents are already partitioned
into sites and cannot be migrated from one site to be placed
at another.

Social network theory hypothesizes that information flows
occur along ties in a networked society. The theory distin-
guishes between “strong ties” between close associates and
“weak ties” between acquaintances. While strong ties are
“short distance” as they stay within groups [11], weak ties
are “long distance” connecting people with different social
characteristics [14]. In SETS, a site maintains both short
and long distance links to discover information.

A social network typically exhibits the small-world phe-

nomenon [19]. Pairs of individuals are connected through
short chains of acquaintances. Moreover, individuals can of-
ten discover such chains. Kleinberg [16] proposed a network
topology which allows messages to be routed between arbi-
trary pairs of sites in few hops. In SETS, topic segments
are organized into a similar network.

3. SETS: ARCHITECTURE
A distinguished site A in a P2P network is responsible

for specific administrative tasks while it participates in the
network as a peer. For example, it pushes out and maintains
code-bases, provide an inlet to the network by supplying
addresses of a small set of currently active peers, etc. Note
that A runs in the background providing passive support
and is not involved in active run-time operations.

3.1 Topic Segment Construction
Deducing a compact representation of documents at a

site is an interesting problem by itself. A robust solution
is the unigram model [4] wherein the representation is either
a list of words with their frequencies of occurrence [5, 15]
or a statistic derived from them [34]. Better results were
obtained recently by using a set of representative related
words [13] or using language modeling with collections or-
ganized by clustering documents [37]. However, we use the
simpler unigram model of representation as follows.

Each document is represented as a term vector normalized
to unit length. The terms of a document are the stemmed
words that occur within it. Stop words and highly frequent
words are removed from the term vector. Each remaining

term is assigned a value in the vector equal to its weighted

term frequency [26] which is 1+log tf . This statistic has two
advantages as compared to the tf -idf measure: (a) it pro-
duces higher quality clusters [26], and (b) it does not require
global information for computation. A site has a collection
of documents and is represented by a term vector of unit
length called the site vector. It is formed by normalizing
the sum of all term vectors for documents at that site.

We experimented with two ideas for generating topic seg-
ments: (a) cluster document vectors, and (b) cluster site
vectors. In either case A generates C clusters where C is a
parameter fixed at the outset. Each cluster corresponds to
a topic segment and their centers constitute topic centroids.
Knowledge of the C topic centroids is global.

When a new site joins the network, it obtains the cur-
rent set of C topic centroids from A. It then computes its
own site vector and identifies the segment whose centroid is
closest to its site vector. The site then uses Global Routing
(Section 3.4) to obtain the identity of some site that current-
ly belongs to this segment. Short distance links are estab-
lished within this segment as described in Section 3.5. Long
distance links are established as described in Section 3.4.

3.2 Topic Segment Maintenance
The set of C topic centroids changes over time as sites

join/leave and their document collections change. We now
discuss how centroids are recomputed and disseminated.

For dynamic maintenance of centroids, two pieces of in-
formation are exchanged between A and all other sites: (a)
Every site sends its initial site vector (and changes over time
to its site vector) to A and (b) A hands the new topic cen-
troids to all sites. Clearly, recomputing and disseminating
topic centroids for every change in topology or document
collection at a site is impractical. If each site communicat-
ed each small update to A individually, A would easily be
swamped. Also, A would require very high bandwidth to
disseminate recomputed clusters for each change. We pro-
pose a simple and clean solution for these problems: leases.

Leases
Topic centroids are recomputed at regular intervals of time
at A. The interval between successive re-computations is
a tunable parameter T . Whenever the current set of topic
centroids is made known to a site, the set is tagged with a
lease: a random number drawn uniformly from the interval
[1, T ]. A site contacts A only when its lease expires. At that
time, it informs A about changes in its site vector, and A
hands it the current set of centroids, along with a new lease.

What do leases yield? A site now contacts A roughly twice
every T time units rather than for every small update. Since
leases are drawn uniformly from [1, T ], the times at which
sites contact A are staggered. The bandwidth requirements
at A are thus spread over the entire lease period. At any
moment, sites belong to at most two different sets of topic
centroids (corresponding to successive incarnations of cen-
troids). From the perspective of global consistency, there is a
problem: sites that remember the old set of centroids might
no longer be assigned to the closest topic segment (among
the new set of centroids). This may result in increased query

processing load as the number of sites probed per query is
likely to increase because of an imperfect view of the clus-
tering. There is also a loss in recall because the cluster to
which a site is currently (incorrectly) assigned might not be



probed at all for queries that match documents at this site.
Provided T is chosen such that successive sets of centroids
do not differ significantly, the increase in query processing
load and loss in recall is not significant.

Migration to New Segment
When a site receives a new set of centroids, it might real-
ize that it no longer belongs to the topic segment that it
currently lies in. The site then deletes itself from the net-
work and re-joins. Deletions and joins are carried out as
per Global Routing and Local Routing protocols (Sections
3.4 and 3.5). We assume that T was chosen such that topic
centroids do not move significantly. This means that over
T time units, only a small fraction of sites would have to
migrate to new topic segments. The use of leases makes the
load on the network due to such migration fairly uniform
over the network lifetime. It is very unlikely that a large
collection of sites suddenly decides to migrate together.

3.3 Topic Segment Selection
A query is a set of terms and can be represented by a nor-

malized term vector called the query vector. When a query
is issued, the similarity between the query vector and each
topic centroid is computed. The similarity scores are used
to rank the C segments in descending order with ties bro-
ken arbitrarily. The top R ≤ C segments are then deemed
relevant, where R is a tunable parameter.

The similarity function used has immense bearing on re-
call. The CORI algorithm [5, 12] has been shown to perform
well, but requires global information and high maintenance
traffic when documents have been clustered [33]. We ex-
perimented with the simpler cosine distance function which
needs minimal information for computation.

A query message consisting of the query vector and the
target topic segment id is composed, one for each of the R
relevant segments. The R query messages are issued in par-
allel. Each is first routed to some site in the target segment
using Global Routing. Next, Local Routing further propa-
gates the query within a segment. We experimentally show
(Section 5) that a small value of R suffices for high recall.

3.4 Global Routing
Given a collection of sites, the goal of Global Routing is to

forward a query message along long distance links to some
site that belongs to the target segment. In a companion
paper, we describe a randomized protocol [18] for Global
Routing. The key idea is to arrange the sites in a unit ring,
ordered by segment id. Each site has a link to each of its
immediate neighbors and a small number of long distance
links drawn from a family of harmonic distributions. We
show that if each site has k links, then a query message can
be routed in O((log2 n)/k) hops, where n is the total number
of sites. The protocol is simple yet scalable that provides
low latency even when sites join and leave frequently. Global
Routing is further investigated in [17].

3.5 Local Routing
Once a query reaches some site within a target segment,

Local Routing propagates the query further within the seg-
ment. We argue that Local Routing is heavily influenced by
the specific domain in which SETS is deployed.

Different domains have different expectations and impose
different constraints on the search systems employed. For

example, when sharing music files, users are satisfied with
tens of results. In contrast, a network for sharing patent
information requires close to 100% recall. Similarly, when
a network is formed on PCs with 56Kbps modems, users
require search to be efficient in its bandwidth usage. SETS

implementors would devise Local Routing tuned to their do-
main. We believe that the rest of SETS is flexible enough to
impose very few restrictions on the design of Local Routing.

We now describe one possible architecture for Local Rout-
ing. The idea is to arrange sites within a topic segment as a
random graph with constant degree m, where m is a param-
eter fixed at the outset. Our evaluations (Section 5) were
performed assuming such a Local Routing architecture:
• Site Insertion: A new site establishes short distance links

with m sites chosen uniformly at random from among the
current members of the segment, where m is a parameter
fixed at the outset. With high probability, a random site
to connect to can be discovered by carrying out a random
walk of size O(log n) over short distance links [21], where
n is the current number of sites in the segment.

• Site Deletion: A departing site simply terminates its
short distance links. Its former neighbors establish links
with other members of the segment.

• Query Propagation: Queries are forwarded to all mem-
bers of a segment by flooding: each site that receives a
query first checks if it has seen this query before. If so,
the query is dropped. Otherwise, the query is forwarded
to each of its neighbors except the one from which the
query was just received.

• Query Evaluation: Upon receiving a query, a site eval-
uates it against its documents. Matches are directly re-
ported to the site where the query originated. Failure to
produce any matches is not reported to any site.

4. EVALUATION METHODOLOGY
SETS has two major components: topic segmentation

and topic-driven query routing. In this section, we discuss
how the quality of each is evaluated.

Our evaluation differs from previous research in distribut-
ed retrieval in several ways. First, we utilize testbeds with
tens of thousands of sites (albeit with fewer documents per
site) for our experiments. Second, whereas other efforts have
studied the effect of organizing documents in the testbed cor-
pus by source, publication date, etc. [12, 33, 34], we study
the impact of having documents organized into sites accord-
ing to the humans who created them. Finally, we quantify
and explore aspects of cost vs quality tradeoff in vector-space
retrieval when less than 100% recall is acceptable.

Performance Metrics
Our focus is not on providing better merging functions to
improve precision, but rather on topic segmentation and its
effect on search efficiency for any given level of recall. Given
this focus on the efficacy of topic segmentation, we restrict
ourselves to studying recall. Specifically, we measure recall
as a function of network load under a simple (binary) notion
of whether a document matches a query.

The quality of topic segmentation is measured by query

processing cost, defined as the average number of sites that
are probed to evaluate a query. If the quality of topic-
segmentation is poor, irrelevant sites will evaluate the query.
Thus more topic segments are explored for a given level of
recall. A good segmentation, on the other hand, would as-



sign relevant sites to the same segment yielding the same
level of recall from exploring a few segments.

The quality of topic-driven query routing is measured by
bandwidth and latency per query. Bandwidth requirements
are proportional to the total number of messages sent. La-
tency is the time elapsed from query issue to the time at
which the first answer is received.

Document Sets
We evaluated SETS over three different datasets:
A TREC-1,2-AP: Documents from AP Newswire in TREC

CDs 1 and 2 include text and author fields. We deemed
each author to be a site and associated documents to
sites in the natural manner. Documents that did not
have a valid author field were excluded. The text of an
article was used to construct its document vector. This
resulted in 79, 180 documents shared by 1, 834 sites.

B Reuters: The news articles that comprise the Reuters
Corpus (Vol. 1) include text and author fields. We
deemed each author to be a site and associated docu-
ments to sites as above. The text of an article was used
to construct its document vector. This led to 109, 500
documents shared by 2, 368 sites.

C CiteSeer: Since the above datasets are not large enough
to evaluate SETS at the truly large scales it is capable
of, we compiled a new dataset as follows. We crawled the
Computer Science Directory of the CiteSeer Library [6]
to obtain a list of research papers. For each paper, we
recorded its title, abstract and URL from which Citeseer
obtained it. We deemed each unique URL to denote a
site. The set of papers available off a URL is the col-
lection of documents for the corresponding site. This
resulted in 478, 256 documents shared by 83, 946 sites.

Query Generation and Answer Determination
The queries for TREC-1,2-AP were obtained from TREC-
3 ad hoc topics (151-200). The text in the title fields was
stemmed and stop-words were removed to obtain a conjunc-
tion query. This query set thus had 50 queries with average
length 3.56 and standard deviation 1.03. The answer for
a query comprised of documents in the dataset that were
determined to be relevant for the corresponding topic by
TREC-3 ad hoc query assessors. We note that topics 151-
200 were chosen because relevance judgments for each of
these included documents in TREC-1,2-AP.

Each query for Reuters and CiteSeer was obtained by first
choosing a document at random and then choosing 3 terms
uniformly at random from its vector. Our query set com-
prised of 100 such queries. The answer for a query comprised
of all documents that contained every term in the query.

5. PERFORMANCE EVALUATION
All tests were run on all the datasets; where the results are

similar we present results on one of the datasets for brevity.

5.1 Topic Segment Construction
Our measure of quality of topic segmentation is query pro-

cessing cost. We note that this cost is tied to the Segment
Selection and Local Routing scheme used. Given a query,
the Segment Selection first ranks the centroids by similar-
ity to the query and then chooses a small set of segments
to probe. It is Local Routing that determines which sites
within a segment will actually be probed. Here we assume
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Figure 1: Topic-segmentation on TREC-1,2-AP ob-

tains higher recall by processing queries at fewer

but relevant sites.

that when the Segment Selection decides to probe a segment,
Local Routing will probe all sites within that segment.

Recall vs Query Processing Cost
We studied three Segment Selection schemes: a) random:
topic segments were ordered randomly, b) cosine: segments
were ordered by the cosine similarity between the query vec-
tor and topic centroids and c) optimal: For each query,
segments were ordered by the ratio (number of matching
documents) : (number of sites in segment). The random

ordering serves as a baseline to compare gains against a sys-
tem (e.g., Gnutella) that does not use topic segmentation.
The optimal ordering on the other hand is derived from
an omniscient central server with complete knowledge of all
documents and segments and is further allowed to pick the
best ordering for each query at run-time. Clearly such order-
ing is infeasible in practice, but serves as a useful benchmark
for comparisons as a theoretical limit.

Figure 1 plots recall vs query processing cost. The topic
segments used in the experiment were constructed by clus-
tering site vectors of TREC-1,2-AP. The curves are drawn
for various choices of the number of topic segments C rang-
ing from 32 to 256. We observe that cosine outperforms
random substantially, returning 65 − 75% recall by explor-
ing only 30% of the network. We discuss the optimal or-
dering curves in Section 5.3.

Basis of Clustering: Documents versus Sites
In Figure 2, we plot recall vs query processing cost for Cite-

Seer with C ranging from 64 to 512. The curves are drawn
for two methods for topic segment construction: (a) Cluster-
ing of document vectors, and (b) Clustering of site vectors.
The optimal, site-based cosine and random curves are
drawn for corresponding Segment Selection schemes on a
network clustered by sites. The document-based cosine

curve is drawn for cosine Segment Selection on a network
clustered by documents. We see that site vector cluster-
ing outperforms document vector clustering across a broad
range of C values — it consistently returns higher recall for
the same processing cost.

Why does site vector clustering outperform document vec-
tor clustering? The reason is that the documents at a site are
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Figure 2: Topic-segmentation on CiteSeer reposi-

tory shows that site-based clustering outperforms

document-based clustering.
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Figure 3: Left: Skew in segment site population.

Right: Skew in segment document population. Both

are for site-based clustering of CiteSeer repository.

often drawn from diverse topics. If clusters are derived from
document vectors, a site tends to get assigned to that topic
that dominates its document collection. Since site classifica-
tion is influenced greatly by the dominant topic, queries for
documents corresponding to subordinate topics suffer. Site
vector clustering alleviates the situation by accommodating
this heterogeneity. Clusters that are formed now can reflect
a mix of topics and sites are assigned according to their ag-
gregate collections. Documents at such sites can be easily
located leading to improved performance.

We also observe that the site-based curves are marked-
ly similar to those obtained on TREC-1,2-AP in Figure 1.
Henceforth, we report only on results obtained on the larger
scale CiteSeer noting that similar results were obtained on
TREC-1,2-AP and Reuters datasets.

Quality of Clusters
In Figure 3, we plot the distribution of segment populations
for CiteSeer using site-based clustering. The number of topic
segments C is varied from 32 to 256. We observe that for
small values of C the distribution of both site and paper
populations is skewed. However, as C increases the skew
decreases and segments tend to become equi-sized.

In Table 4, we depict the 5 most significant terms in a
sample of 4 topic segment for C=32 with site-based clus-
tering. The labels indicated in parentheses were manually
assigned. As can be observed, site-based clustering is quite
successful in forming focussed segments.

1 (Compilers) 2 (Crypto) 3 (Databases) 4 (Internet)
compil secur queri java
garbag attack databas web

polymorph authent retriev server
haskell cryptograph xml internet
loop encrypt schema client

Figure 4: Sample topic segments obtained by clus-

tering site vectors for the CiteSeer repository.
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Figure 5: Left: Recall curves pull up for increasing

C, however with diminishing returns. Right: Values

of R for 70% recall increase almost linearly with C.

Choice of Number of Clusters, C

In the left sub-figure of Figure 5, we plot recall vs query
processing cost for CiteSeer using site-based clustering and
cosine Segment Selection. The number of topic segments C
is varied from 32 to 512. We observe that recall increases as
C increases but with diminishing returns. As C increases,
topic segments become smaller and more focussed resulting
in lowered cost of probing a segment. However, such gains
come at the cost of increased processing load at adminis-
trator site A. Thus fixing C involves a trade-off between
increased recall and increased resource consumption at A.

5.2 Topic Segment Maintenance
SETS requires an administrative site A that provides pas-

sive support for maintaining a topic-segmented network. Let
us study the communication and processing demands that
SETS imposes on A. Suppose there are n sites participat-
ing in the network. Each of the n sites will send changes
in their site vector to A and accept C new topic centroids
over a duration of T minutes. The administrator A has to
cluster site vectors into C clusters during this time.

Assume an average of t terms per site, 4B term ids, and
no compression of term vectors. As described in Section 3.2,
on average each site contacts A twice in T minutes. On
average, A has an in-bound traffic of 2× 4t× n = 8tn bytes
in T minutes. Similarly, assuming an average of t′ terms
per topic segment description, A has an out-bound traffic of
2 × 4t′ × C = 8t′C bytes in T minutes.

Let us assume that t = t′ = 1, 000 terms, T = 15 min-
utes, C = 256 and 1.54M bits per second T1 line. As-
suming that 20% of the bandwidth is consumed by net-
working overhead (TCP/IP headers), A can support n =
80%×1.52Mbps×Tmins

8×8(t+t′)
−C = 8, 827 sites. For a corporate set-

ting with a 44.736M bits per second T3 line, A can support
n = 256, 418 sites. We note that these numbers are in fact
pessimistic as they do not account for any optimizations.
For example, most site vectors will not change in successive
T = 15 minutes. Such sites can save bandwidth by sending
a “no change” message to A. The bandwidth requirements
for A are thus reasonable.



Let us now consider processing costs at A. Suppose A uses
k-means algorithm to cluster site vectors into C clusters.
Folklore has it that k-means converges in 5-6 iterations. We
implemented a cache-aware disk-resident k-means algorithm
that produces C=32 clusters in about 5 minutes, and C=512
clusters in about 15 minutes for 83, 946 sites on a Pentium
II processor with 256MB memory. Fresh clusters can thus
be generated within the time-scales involved.

5.3 Topic Segment Selection
When a query is generated, Segment Selection selects a

small subset of topic segments that appear most promising.
Ranking of topic segments is done by comparing the query
vector with topic centroids. The segments could be probed
in sequence or in parallel.

Impact of Ranking Function
We have already mentioned the three methods studied for
ordering segments for probing. Figure 1 shows that the per-
formance of the optimal is extremely good, with recalls
between 90% and 99% being obtained from evaluating the
query at just 30% of the network. The gap in the optimal

and cosine curves indicates the difference between the dis-
tributed implementation in SETS and an omniscient central
ordering that can compute the best ordering for each query
and topic segmentation. There is no guarantee that a dis-
tributed system like SETS can attain the performance of
optimal, but we do note that no approach based on topic
segmentation can exceed the performance of optimal.

Choice of R, the Number of Relevant Segments
Once an ordering of cluster segments has been determined,
queries are issued in parallel to explore the most relevant R
topic-segments. Users are often satisfied with the top few
answers. The implementor then has the choice of stopping
the query after exploring just the initial R topic-segments.
The remaining topic-segments can be explored if the user
really would like to obtain more results. Thus, the choice of
R depends on the expectations of users in the domain.

What is a good value for R, the number of relevant seg-
ments? Consider a network over CiteSeer with site-based
clustering and cosine Segment Selection. Let us fix recall
at 70%. We simulated SETS for different values of C and
computed the number of topic-segments R that were neces-
sary to obtain 70% recall. The results are shown in the right
sub-figure of Figure 5. We observe that R increases almost
linearly with C over a large range of values for C. We also
note that R is roughly a quarter the value of C for C ≥ 200.
This observation suggests a useful rule-of-thumb to us: we
can set R ≡ C/4 in this design.

5.4 Global Routing
Figure 6 plots the bandwidth and latency used by Glob-

al Routing on CiteSeer repository. We simulated Global
Routing with 4 long distance links per site and a random
ordering of topic segments along the ring. We assumed that
queries originate from any site at random. We let Segment
Selection identify the top ten topic segments for each query
(R=10). The union of these segments gives a query profile,
i.e., a distribution over topic segments. The average latency
per query is 8 hops. Latency increases with C, the number
of clusters. This is because average cluster size diminish-
es with increasing C. As a consequence, Global Routing
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Figure 6: Bandwidth and latency requirements for

Global Routing on 83, 946 sites in CiteSeer repository.
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Figure 7: Bandwidth and latency requirements for

Local Routing on 83, 946 sites in CiteSeer repository.

has to home in on a smaller subset of sites, requiring more
hops. The average bandwidth shows high variance. This is
an artifact of the routing protocol and is discussed in [18].

5.5 Local Routing
We argued earlier that the design of Local Routing is influ-

enced by the particular domain in which SETS is deployed.
Yet, its design is of importance as the bandwidth and laten-
cy observed here dominate the total cost as we show below.

We simulated Local Routing using the scheme detailed in
Section 3.5 with m=4 neighbors per site. For each query
in the query set, we let Segment Selection determine the
relevance of topic segments and then probed the segments in
sequence. Figure 7 plots bandwidth and latency vs observed
recall on CiteSeer with 83, 946 sites.

Bandwidth for a given recall decreases with increasing C.
As C increases, topic segments become smaller and more fo-
cussed. Fewer segments have to be explored leading to lower
bandwidth usage. Also notice that bandwidth costs here are
substantially higher than Global Routing. Latency increas-
es with increasing C. The reason is that topic segments are
probed in sequence. As C increases, there are more topic
segments that need to be probed to provide the same recall.
The plot also indicates that response times are low as the
first answers are received quickly.

Notice also that 70% of recall is attained at a quarter of
the total bandwidth and latency costs. Thus, if we altered
our scheme to probe just R=C/4 top segments, the band-
width and latency costs would be correspondingly smaller.
Hence we conjecture that domain requirements will heavily
influence the optimal design for Local Routing.

6. CONCLUSIONS AND FUTURE WORK
We presented SETS, an architecture for efficient search in

P2P networks. The underlying philosophy is to arrange par-
ticipating sites into an overlay network such that queries can
quickly reach small regions of the network where most of the
matching documents reside. Towards this end, SETS builds



a topic-segmented network and employs a topic-driven query
routing protocol. We discussed a variety of design issues
and trade-offs that an implementor of SETS would face.
Through a series of systematic experiments, we showed that
SETS provides good recall with good network (small laten-
cy and bandwidth per query) and query processing perfor-
mance. These results clearly suggest that SETS is a viable
architecture for organizing content sharing P2P networks.

As future work, we plan to adapt SETS to handle large
swings in population characteristics, and develop protocols
to change the number of topic-segments at run-time.
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