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ABSTRACT
This paper addresses the issue of peer profiles, i.e. compact
representations of a peer’s locally offered content, and their
use in P2P information retrieval and routing. Experiments
with different profile building and query expansion methods
show that compression of profiles is possible without losing
too much retrieval performance and that query expansion
using global co-occurrence data can improve results by ap-
prox. 10%.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Selection Process, C.2.4 [Dis-
tributed Systems]: Distributed Applications.

General Terms: Algorithms, Experimentation.

Keywords: Peer-to-peer information retrieval, profiles, que-
ry expansion, intelligent query routing, semantic topologies.

1. INTRODUCTION
The emergence and growing popularity of peer-to-peer

filesharing systems was chiefly motivated by the users’ in-
terest to share copies of music and other multimedia files.
However, recent considerations have been concerned with
the question whether the P2P paradigm can and should also
be adopted for ordinary information retrieval, i.e. for shar-
ing and searching text documents.

A number of strong arguments like scalability, availability
and easy and uncensored publishing were found in favour
of P2P information retrieval and led to the development of
technologies like those described in [7, 24, 16] or [19].

In this paper, we address the issue of peer profiles, i.e.
compact representations of a peer’s locally offered content.
Profiles have been used in a variety of settings in P2P infor-
mation retrieval (cf. for instance [9, 2, 7] or [17]), primarily
for facilitating the search process: using peer descriptions,
blind search methods like those applied in Gnutella [12] can
be avoided by selecting only those peers that seem to offer
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relevant content, i.e. whose profiles are similar to the query
under inspection.

Some P2P information retrieval approaches like [8], [19]
or [15] do not use profiles: instead of storing representations
of a peer’s content, they associate queries (search keys) with
peers that have answered these queries in the past. This al-
lows efficient retrieval of popular items. We argue, however,
that an information retrieval system should also be able to
satisfy requests for unpopular data, i.e. data that has rarely
or never been requested before.

1.1 P2P infrastructure within our project
Before going into details about how profiles can be built,

we would like to introduce an algorithm for restructuring
and search in P2P networks that completely avoids flood-
ing and thus ensures scalability. It has been developed as
part of a project supported by DFG1 and was described and
evaluated in detail in [27].

The algorithm is based on the concept of small worlds: by
searching for its own profile – i.e. sending out queries that
consist of the profile – and receiving answers from other
peers, each participant in the network fills up a part of its
routing table with addresses and profiles of neighbours that
offer content similar to its own. Peers thus organise into
clusters of semantic similarity.

Another part of the routing table is reserved for some ar-
bitrarily chosen neighbours (random shortcuts) that provide
links between different clusters of peers. The combination
of these two neighbour selection strategies is intended to
result in a small world network structure (see [18] for a the-
oretical model) that can be exploited for an efficient search
algorithm.

Each peer that receives a query, first scans its local in-
dex for matching documents and then forwards the message
to just one of its neighbours: the one whose profile best
matches the query, i.e. the one deemed most likely to have
an answer to it. This continues until the time-to-live (TTL)
of the query expires.

Because peers are organised into clusters of semantic sim-
ilarity, queries will find many relevant results once they have
reached the right cluster because peers that can contribute
answers to a given query are likely to know others that also
can.

Addresses of peers that have been visited are inserted
into the query’s Log so that circles can be avoided. How-
ever, backtracking is not performed: if there are no more
valid choices for forwarding the query (e.g. because all of
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a peer’s neighbours have already been visited) the query
is immediately returned to the requesting node. To avoid
dead ends, special attention has to be devoted to providing
a well-connected network.

1.2 Goals and Requirements
In this approach, profiles are used both to build semantic

clusters of peers (structure building) and to forward queries
(search). From this scenario, we can deduce some require-
ments that peer profiles have to meet. These characteristics
are general in that they are also useful in other approaches
that use compact peer representations, be it for searching or
for structure building.

• Completeness: when searching for an arbitrary item,
there should be a match between query and profile
whenever the corresponding peer has data that con-
tains or matches the item. This requires a profile to
contain complete knowledge of the contents offered by
that peer.

• Compactness: In order to be attached to messages and
stored in other peers’ routing tables, profiles should be
very compact.

• Generality: for structure building, profiles have to be
general: when applying a similarity measure to a pair
of profiles, this should yield non-zero values for two
peers that offer similar content. This normally re-
quires some sort of overlap between the two profiles
(no matter what they consist of). Overlap will only
occur frequently enough if the elements contained in
profiles are somewhat general.

These requirements seem contradictory at first glance:
when compressing the contents of a peer, we will obviously
loose information, i.e. completeness. Completeness also
calls for very specific data to be included into the profile
which contradicts generality.

On the other hand, we argue that query expansion can
offer solutions to this dilemma: by finding the right terms
by which to expand a given query, we can compensate for
the missing completeness of profiles.

In the rest of this paper, we will first examine some related
work and then describe and evaluate different profiling and
query expansion techniques.

2. RELATED WORK
Selecting information resources on the basis of so-called

resource descriptions (i.e. profiles) has been studied ex-
tensively as a part of distributed information retrieval (cf.
e.g. [1, 13]). In distributed IR the need for compactness
is rarely a problem because descriptions are exchanged be-
tween servers with high bandwith and storage resources.
However, work like [20] shows that pruning resource descrip-
tions can also be of interest in distributed IR and that it does
not greatly degrade precision.

Profiles in distributed IR often consist of a so-called uni-

gram language model, i.e. a complete list of words contained
in a resource’s document collection, together with their doc-
ument frequency. It has been shown in [28] that query ex-
pansion can greatly improve distributed IR.

There are also efforts in distributed IR that work with
more compact resource descriptions: The system Q-Pilot

presented in [23] offers access to specialised search engines.
As many of these do not allow complete unigram language
models to be obtained, Q-Pilot works with lists of terms ac-
quired from backlink pages, i.e. web pages that contain links
to the respective search engine. In this setting, the authors
find that query expansion can improve results by up to 40%.
These results indicate that query expansion can be particu-
larly useful when knowledge about information resources is
sparse. This is why we chose to use it in our experiments.

In P2P information retrieval, on the other hand, much
more attention has to be devoted to compressing peer de-
scriptions. In PlanetP [7], for example, these descriptions
consist of a complete unigram language model of a peer,
i.e. all the terms from its documents. There is no fre-
quency information, however, and profiles are compressed
using Bloom filters. Peers in PlanetP have complete knowl-
edge about all other participants in the network and their
term lists. This allows for a globally correct ranking algo-
rithm but is not designed for scaling to a large number of
participants.

Increasing the compactness of profiles often involves the
use of ontologies or keyword categorisations that subsume
multiple semantically related terms under one common cat-
egory or concept. In [2], for instance, Crespo and Garcia-
Molina use categories like ”databases” for building peer sum-
maries that are exchanged between peers. The authors do
not elaborate on where categories come from and how doc-
uments are classified.

Bibster, a P2P system for exchanging bibliographic data,
is described in [9]: Bibster uses ontologies built from biblio-
graphic metadata (e.g. obtained through local BibTeX en-
tries) and the ACM topic hierarchy to generate a so-called
”expertise model” – i.e. a very compact profile – for each
peer. Similar ways to represent peer contents can be found
in Edutella [11].

Ontologies derived from manually crafted topic hierarchies
often suffer from lack of flexibility and poor coverage (we
will elaborate on this later). Advanced indexing techniques
like Latent Semantic Indexing (LSI, [10]) allow for the auto-
matic extraction of semantic subspaces (or concepts) from
document collections. LSI was originally developed to solve
the synonymy problem. It does so by mapping synonymous
terms to the same dimension, i.e. it reduces the dimension-
ality of the original vector space. In [24], the use of pLSI is
proposed: peers are responsible for covering certain dimen-
sions of the reduced term space and query terms can also be
projected into this space which allows for extremely com-
pact peer descriptions but also poses other problems that
we will discuss later.

In the next section, we will weigh some of these profiling
methods against each other and later examine whether and
how they can be combined with effective query expansion.

3. PROFILE BUILDING METHODS
As we have seen in the last section, there seem to be two

major possibilities for building compact peer profiles:

1. Use terms that are actually contained in the peer’s doc-
ument collection. We may decide individually which
proportion of them to use and how to select the most
significant ones (see 3.1).

2. Classify documents according to some shared ontol-
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ogy or (keyword) categorisation and represent peers
by the most prominent categories of their documents
(see 3.2).

3.1 Vector space models
The first of these possibilities is normally based on the

vector space model (VSM) for information retrieval in which
the terms that occur in the documents of a given collection
(or a subset of them, or even a controlled indexing vocab-
ulary) form the basis of a vector space. This vector space
is used to represent documents and queries as a vector of
weights. Similarity between vectors is often measured as
the cosine of the angle between them.

As this vector space has a very high dimensionality, only
the non-zero entries of document and query vectors are nor-
mally stored. The famous TF/IDF measure [22] is often used
to compute weights which can be used to further reduce the
size of vectors by cutting off entries with low weights.

In a distributed environment, however, the calculation of
global IDF values is impossible since it involves counting the
document frequency of terms, i.e. the number of documents
in the whole collection that contain a given term. This is
not feasible because peers do not have a global view on the
entire collection.

Tang et al. [24] or Kronfol [19] have proposed to use
representative samples of collections to estimate IDF: Tang
suggests to periodically retrieve a sample of documents from
a randomly chosen set of peers in the system and then use
them to estimate IDF values. Kronfol calculates IDF values
in advance from a large and representative document collec-
tion and then equips each peer with a lexicon that associates
terms with their IDF.

In our experiments, we have opted for the latter of these
possibilities: by analysing a very large and well-balanced
corpus (which we will call reference corpus from now on), it
is possible to estimate the frequency of words in everyday-
language. Since language changes only very slowly, the sta-
tistical model we obtain can also be used in dynamic envi-
ronments.

Instead of calculating TF/IDF, however, we used a likeli-
hood ratio significance measure because of its proper math-
ematical foundation (cf. [5]). It compares the relative fre-
quency of a term in a given document to its relative fre-
quency in the reference corpus: terms whose relative fre-
quency p1 in the given document significantly surpasses the
one in the reference corpus p2, will be ranked highly:

sig(term) = 2(logL(p1, k1, n1) + logL(p2, k2, n2) −

logL(p, k1, n1) − logL(p, k2, n2))

where ki is the raw frequency of the term in the document
and reference corpus, respectively, ni is the size of these cor-
pora and logL(p, k, n) = klog(p)+(n−k)log(1−p). Finally,
we have p = (k1 + k2)/(n1 + n2).

When weighted document descriptions are available, pro-
files can be built by adding up the respective vectors and
then cutting off the least significant terms. The threshold
for cutoff, i.e. the length of the resulting profiles can be cho-
sen freely so that we can trade retrieval accuracy for storage
costs.

It should be mentioned that other methods for building
profiles with a VSM are thinkable: one could, for example
treat the whole set of text files shared by a peer (or clus-

ters of them) as one single document and then apply term
extraction methods (i.e. likelihood ratio statistics) to this
document. However, these procedures are computationally
much more expensive, which is why we chose to use the sim-
pler method of adding document vectors in our experiments.

3.2 Document classification
In many settings, documents can be classified according

to some shared ontology or topic hierarchy. Peers will be
equipped with an instance of this knowledge base which they
use to classify their documents. Hence, profiles consist of the
most prominent categories of a peer’s documents.

LSI can also be used in a similar fashion: LSI represen-
tations of documents can be interpreted as concept vectors

that indicate the importance of concepts for a given doc-
ument. Adding up concept vectors of documents (as used
by [4] in the TREC routing task) can be introduced as a
possibility to build profiles for peers.

The calculation of LSI representations, however, also re-
quires the knowledge of the complete document collection.
As this is never feasible, we might try to use the same strat-
egy as above: obtain an LSI basis (i.e. concept vectors for
each term in a large and representative collection) and use
it to fold in new documents by simply adding up the vectors
of the terms they contain.

It would be more correct to use SVD updating (which
is proposed by [24]) but as this requires to redistribute the
complete basis of the reduced vector space after the insertion
of new documents, it did not seem an interesting option to
us.

4. QUERY EXPANSION
The original idea behind query expansion was to solve

the so-called vocabulary mismatch problem: when searching
for a certain keyword (e.g. “elevator”), one is normally also
interested in all its synonyms (like “lift”) or maybe other
very closely related terms. By expanding the query, more
relevant documents can be found.

When working with radically pruned profiles, however, the
situation is slightly different: it is often desirable to expand
queries not only by synonyms, but also by other related
words – topic words as they are called in [28] – in order
to increase the probability of matching the query with any

profile that is similar enough to the query to start a gradient
ascent search.

Depending on the kind of profile that is used, different
query expansion methods are thinkable. We will now in-
troduce various of them and discuss their advantages and
drawbacks.

4.1 Categories
When working with ontologies or keyword classifications,

queries should be expanded with their corresponding cate-
gories.

Using categories yields extremely compact peer profiles
that are well human-readable. On the other hand, thesauri
are difficult to obtain and often suffer from poor coverage
(i.e. many queries cannot be expanded at all because key-
words are not contained). They have to be designed manu-
ally and often fail to adapt to varying contexts: a general-
purpose ontology will have very low coverage in an envi-
ronment where specialists work on topics like e.g. ”quantum
mechanics”. When designing ontologies, we are actually con-
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fronted with the problem of deciding which categories the
area of discourse consists of. This is often subjective and
therefore difficult to realize.

4.2 LSI
When peer profiles consist of LSI concepts, query terms

just have to be projected into the LSI semantic space. This
representation can then directly be compared to profiles by
applying the cosine similarity measure.

This too is very compact (since no strings are used) and
no manual effort is needed. However, one still has to specify
the dimensionality of the LSI space. As we have seen above,
keeping a distributed LSI basis up to date is prohibitively ex-
pensive and approximations might not work very well. Ad-
ditionally, LSI representations are not human-readable.

4.3 VSM
Profiles consisting of the statistically most significant key-

words from a peer’s document base are inherently incom-
plete. Multiple methods of query expansion have been pro-
posed in the literature: they all aim at enriching the original
query with words that are semantically closely related to the
query words and thus increase the probability of obtaining
a match with the (incomplete) profiles.

The use of manually crafted thesauri in this domain (as
proposed by [25]) suffers from the same problems as men-
tioned above. Using co-occurrence data to automatically
construct thesauri as suggested by [14, 21], however, seemed
more appealing to us: using the same sampling method as
for estimating word frequencies, one can analyse co-occurren-
ces of words in a large corpus that is representative of the
given domain 2 and store it in a co-occurrence matrix. This
matrix can be interpreted as an ”association thesaurus” (cf.
[14]).

The advantages of global co-occurrence data derive from
the fact that no manual work is involved (i.e. coverage is
expected to be high) and that it is not even necessary to
specify the number of concepts that should be used for “cat-
egorising the world”. It is also expected that this sort of sta-
tistical analysis generalises better than LSI, i.e. it should be
possible to calculate associations based on co-occurrences in
one document collection and use the data on a different one
as long as the two collections are sufficiently similar. How-
ever, there is still a piece of global knowledge in the P2P
network: the co-occurrence matrix has to be replicated on
each peer. This infers high storage costs because the matrix
will normally be very large. Dynamic environments where
data includes items from very different and special domains
also pose a problem because the collection from which co-
occurrences are computed is static and only representative
for a certain domain.

4.4 Local feedback
The only solution to query expansion that completely

avoids the maintenance of a shared knowledge base on each
peer is based on local feedback. The basic idea behind lo-
cal feedback originates from relevance feedback, which adds
terms to a query that appear in relevant documents. In-
stead of ”waiting” for the actual relevance judgement by the
user, Buckley et al. [6], for instance, propose to expand
queries with concepts found in the top-ranked documents in

2here, we assume document topics to be restricted to a cer-
tain domain

the initial result set of that query (which are assumed to
be relevant). This is sometimes also called pseudo relevance

feedback.
In a P2P scenario, expansion can be done on the fly: at

each peer, documents that are added to the result set can
be scanned and terms that appear in many of them can
be added to the query. Alternatively, peers that have con-
tributed many documents could add terms from their profile
to the query.

This approach is obviously very useful because no global
knowledge has to be computed and maintained. However, it
will only start to work when something has been found: due
to the incompleteness of profiles, the query might initially be
redirected to the wrong peers. Since these cannot contribute
any relevant documents, no expansion will take place, the
right peers can still not be found and so on. Another draw-
back results from the lack of real relevance judgements which
might lead to expansion with terms from totally irrelevant
documents.

As there are advantages and drawbacks to all methods de-
scribed so far, we decided to perform some experiments and
simulations in order to compare and evaluate them. These
will be described in the next sections.

5. EXPERIMENTAL SETUP

5.1 Two scenarios
Our experiments cover two scenarios:

• The first one is the case of classical distributed IR
where there is one central instance (often called bro-

ker or librarian) that has a global view on all peers’
profiles and redirects incoming queries with their help:
peers will be ranked according to their profile’s simi-
larity to the query and then visited in that order. This
scenario was examined in order to uncouple structure
building from search before analysing them jointly.

• The second scenario consists of real P2P information
retrieval. Using a simulation tool that implements the
algorithm sketched in section 1.13, profiles are first
used for structure building. In a second step, each peer
uses its acquaintances for routing: incoming queries
are treated just like in the first scenario, with the dif-
ference that only local knowledge (i.e. the peer’s direct
neighbours) is available.

In both cases, we measured (cumulative) recall as a func-
tion of the number of peers visited (number of hops). For
the second scenario, we were also interested in the charac-
teristics of the network graph that evolved.

5.2 Initialisation
As the basis of our experiments, we used a German news-

paper corpus consisting of 3429 texts, each of which was
labelled with exactly one of 10 semantic categories: {cars, fi-

nance, jobs, culture, politics, travel, sports, university, tech-

nology, science}. The corpus was split into a training set
(consisting of 2429 texts) and a test set (1000 texts). The
former served as a basis for calculating ”language models”,

3The tool was implemented using the network simulator
OMNeT++ (http://www.omnetpp.org)
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i.e. the LSI basis and co-occurrence data. The latter was
distributed among the peers. The distribution of categories
was balanced across the two sets. In the process of peer ini-
tialisation, we used the categories to simulate interest-based
peer collections: each of the 1000 peers in our simulation
first selected one or two of the categories as its ”interests”.
Now each peer P was assigned 10 documents, each of which
was chosen at random from all the documents that were
labelled with one of P ’s interests.

For the second scenario peers were additionally equipped
with three initial contacts, i.e. addresses of three other
peers, picked at random. Each participant was allowed to
have a maximum of 10 neighbours (three of which must be
random shortcuts). For the Baseline strategy (see below),
each peer was assigned 10 random neighbours.

Finally, we created three sorts of inverted lists for the
documents in the test collection by applying an indexing
technique based on likelihood ratio significances (see above).
The best 16, 32 or 48 terms were chosen for each document
and inserted into the inverted list. The inverted list consists
of pairs (ti, dj) each of which indicates that term ti occurs
in document dj .

In the following, the inverted list will be used as a substi-
tute for a user’s relevance judgements (which were not avail-
able): each document a query term occurs in is assumed to
be relevant to that query. Furthermore, the inverted list was
used to create a set of 200 test queries: as a very pessimistic
assumption, we chose queries to consist of only one word 4.
These words were picked at random from the left column of
the inverted list, which means that terms with high docu-
ment frequency (i.e. ti that occur in many pairs (ti, dj)) are
more likely to be selected as query terms.

In the following, we assumed all peers to have a local full-
text index, i.e. for a given query, each peer will correctly
return all relevant documents that it possesses.

5.3 Strategies
We evaluated five combined profiling/query expansion stra-

tegies. For each strategy, the length of profiles (and hence
the compression rate) was varied to cover the values 16, 32
and 48. These lengths were chosen because – for our practi-
cal work – we considered 50 items per profile an upper bound
and were interested in knowing whether this size could be
further reduced.

• Standard : in that case, the vector of document dj con-
sisted of all the terms ti for which an entry (ti, dj)
existed in the inverted list(s). Profiles were calculated
by adding up the vectors of a peer’s documents and
then cutting off terms with low significance values in
order to arrive at the respective profile length. Similar-
ities between vectors were computed by simply count-
ing the number of common terms. Queries were not
expanded.

• Dornseiff : As a second strategy, we combined these
term vectors with categories from a keyword classi-
fication: we used a German thesaurus called ”Dorn-
seiff” [3], which consists of words grouped together in
subject areas non-hierarchically. We reserved 1/8 of
each document and profile vector for categories (or

4This is pessimistic because coverage of thesauri will be
higher and disambiguation easier for longer queries

subject areas) that were derived by simply counting
the categories of terms that occurred in a document.
These vectors were then added and pruned as indicated
above, but separately for the keyword and subject area
part. Similarity was calculated according to:

sim(q, p) =
X

t∈q∩p

1 +
X

c∈q∩p

1

4
(1)

where t stands for a term and c for a category or sub-
ject area. Our intention behind this was to weigh di-
rect matches between keywords (4 times) higher than
matches between categories, i.e. to prefer specific mat-
ches to general ones. Query terms were expanded with
their subject area(s) from ”Dornseiff”.

• Cooccs: This strategy works very similarly to the Stan-

dard strategy, with the only difference that queries will
be expanded with words that often co-occur with query
words in the training corpus. Again, a likelihood ra-
tio measure was used for computing the significance of
co-occurrences. Similarities were computed using the
same formula as given in eq. 1, with c now represent-
ing a word that co-occurred frequently with one of the
query words (i.e. direct keyword matches are again
considered four times as valuable as matches arrived
at by query expansion).

• LSI : In this case, the first thing that we did was cal-
culate an LSI basis from the training set, i.e. obtain
concept vectors for each term in the training collec-
tion. Documents from the test set were represented
by projecting them onto that basis, i.e. by adding up
the vectors of the terms they contained. They were
then added to arrive at peer profiles and queries were
represented by the corresponding term vector from the
LSI basis. The cosine measure was used for calculating
similarities. As LSI provides very compact represen-
tations and as it has been reported to work best with
several hundred dimensions, we allowed vector lengths
of 100 and 200 in addition to those specified before (16,
32 and 48).

• Local Feedback : As a last strategy, we used the Stan-

dard strategy, this time expanding queries ”on the fly”
by local feedback: terms occurring in relevant docu-
ments were added to the query as these documents
were found on the peers. Those terms t, for which
the number nt of relevant documents they were con-
tained in surpassed a threshold of 2, were added to the
query, together with nt as a weight. Similarity between
queries and profiles was now obtained by calculating

sim(q, p) =
X

t∈q∩p

nt (2)

Note that again the original query word – being con-
tained in all relevant documents – receives the highest
importance when calculating similarity.

In addition to these strategies, we implemented two ”boun-
daries”: a Baseline where the next peer the query will be for-
warded to is picked at random and a fully Informed search
where profiles are not pruned and contain full frequency in-
formation. This means that for a given query word, a peer’s
profile indicates exactly how many relevant documents are
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available on that peer. Profiles in the Informed strategy had
an average length of 200 entries: this tells us how much in-
formation is lost when cutting to our predefined lengths of
16, 32 and 48.

6. RESULTS

6.1 First scenario
For the first scenario, we forwarded all 200 queries to the

central broker. Peers were then visited one after the other in
the order induced by the ranking that was returned by the
different algorithms, and the cumulative recall was recorded
for each step and averaged over all test queries. Note that
whenever two peers receive the same rank (i.e. the same
similarity value), they will be visited in a random order.

Figure 1 shows the recall curves for the two baselines and
the strategies Standard, Dornseiff, Cooccs and LSI for pro-
file lengths 16 and 48. We can see that using co-occurrence
data for query expansion outperforms all other strategies
whereas the use of keyword categories from Dornseiff is quite
useless: there is no visible difference between Standard and
Dornseiff strategies. This can be explained when looking
at Dornseiff coverage: only 45% of the query words were
contained in the thesaurus. For the rest of the queries, ex-
pansion with Dornseiff categories does not seem to increase
recall: many were assigned multiple (i.e. ambiguous) cate-
gories and there was no way to disambiguate.

LSI performs significantly worse, even when using 100 or
200 dimensions for the reduced space. This is probably due
to the suspicion we had before: LSI cannot be used for sam-
pling, i.e. for calculating a basis on a collection completely
different from the one that will be used for retrieval.

Another observation that can be made is the fact that dif-
ferences between strategies become less visible as the length
of profiles increases, which is obvious because longer profiles
are closer to completeness, i.e. data sparseness is not such
a problem here.

6.2 Second scenario

6.2.1 Graph analysis
The first thing we analysed for the second scenario were

the effects of structure building. As mentioned in section 1,
peers build the network structure by actively searching for
other peers that have profiles similar to their own. Profiles
are treated as queries in this process, which means that the
same strategies for query expansion could be applied.

Table 1 shows some figures that describe the different net-
work graphs obtained by structure building. Dornseiff was
omitted from this table for space reasons and because figures
were very similar to the Standard strategy.

The clustering coefficient of a graph G = (V, E) is defined
according to [26]: Given the neighbourhood Nv of a node
v, Nv = {u ∈ V |(v, u) ∈ E} we get the local clustering
coefficient Cv for node v:

Cv =
{(a, b) ∈ E|a, b ∈ Nv}

|Nv|(|Nv | − 1)
(3)

The global clustering coefficient is the mean of Cv-values,
averaged over all nodes v ∈ V .

Neighbour precision is a new measure which we introduce
on the basis of peer interests: for a given peer P , it denotes

Pr.
length

Base-
line

Stan-
dard

Co-
occs

LSI

Cluster Coeff. 0.015 0.15 0.2 0.46
16 # Components 1 51 108 896

Neighbour Prec. 0.21 0.997 0.978 0.29
Avg. distance 3.2 3.6 3.7 3.5
Cluster Coeff. 0.015 0.15 0.21 0.34

32 # Components 1 63 219 842
Neighbour Prec. 0.21 1 0.99 0.47
Avg. distance 3.2 3.6 3.8 3.4
Cluster Coeff. 0.015 0.16 0.21 0.34

48 # Components 1 88 230 697
Neighbour Prec. 0.21 1 0.994 0.5
Avg. distance 3.2 3.5 3.8 6.2

Table 1: Figures describing network structure

the percentage of P ’s neighbours (except random shortcuts)
that have at least one interest in common with P . Remem-
ber that interests were chosen in advance for each peer using
the 10 semantic categories of our newspaper corpus. Thus,
neighbour precision measures the purity of semantic clus-
ters formed by the structure building technique. Finally,
the number of strongly connected components and average
distances between nodes were calculated.

There are a number of interesting observations to be made:

• By looking at the number of components, we can see
that the tendency of the graph to break up increases as
more information is used, be it longer profiles or more
elaborate query expansion. We should mention that in
all cases there was one big strongly connected compo-
nent and a number of isolated nodes: for instance, a
number of 57 components indicates that there were 56
unreachable nodes and a big strongly connected com-
ponent consisting of 944 nodes. Distances are (reason-
ably) short in all graphs but note that they were only
computed using node pairs (A,B) where there is a path
connecting A and B.

• The ”semantic clustering”(neighbour precision) induced
by the structure building works well in all cases except
for LSI. That means that peers with common interests
are really grouped together.

• LSI performs significantly worse than all other strate-
gies as far as connectivity and neighbour precision are
concerned. For LSI, however, connectivity improves
as the number of dimensions grows. This continues for
100 and 200 dimensions (which is not shown here) and
indicates that LSI should really be used with at least
100 dimensions. Distances between nodes, however,
increase in that case, the average being 4.8 in the case
of 100 and 5.0 in the case of 200 dimensions.

The conclusion we can draw from these figures is quite
plain: for structure building, very simple methods should
be used. Profiles can be short and direct matches between
profiles are sufficient for building good semantic clusters
while preserving a good connectivity and short paths be-
tween nodes.
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Figure 1: Recall as a function of the number of peers visited, averaged over all queries for profile length of
(a) 16 and (b) 48

6.2.2 Recall
Finally, we measured recall as a function of the number of

hops a query made in the network graph that was previously
formed by our structure building algorithm. Each strategy
was applied in the graph that was built by using that same
strategy (we did not try any other combinations).

We selected 20 peers at random and then let each of them
search for all of our 200 test queries. Cumulative recall was
recorded for each hop the query made. Macro averaging
was then used, i.e. recall values were first computed for
each query instance separately and then averaged over all
instances.

Figure 2 shows the same curves as figure 1, this time for
the second scenario. It now also includes the fifth strategy
(Local Feedback).

We can see that the tendencies are very similar to the ones
observed in the first scenario.

Local feedback performs no better than the Standard or
Dornseiff strategies which can be explained as follows: ap-
prox. 50% of the queries have two or less matching doc-
uments, even though terms with high document frequency
were more likely to be chosen as query terms. This means
that in 50% of the cases, nothing happens: in order for Local

Feedback to start working, at least two relevant documents
have to be found. Table 2 shows some statistics on how
many relevant documents exist for each query.

# relevant documents # queries

1 73
2 25
3 16
4 12
>5 74

Table 2: Statistics on number of relevant documents
per query

We can also see that the effect of weak connectivity –
the graph breaking up into many components – affects the

final retrieval performance: recall stays below 90% for the
Cooccs strategy when using a profile length of 48 because
some documents reside on unreachable peers. The effect is
much stronger for LSI where the graph breaks up almost
completely.

But note that a recall of 100% is also never reached be-
cause circles are avoided by the algorithm and backtracking
is not performed when a query reaches a peer whose neigh-
bours have all been visited.

Finally, we see that the Informed strategy performs worse
in the second scenario, which indicates that this second task
is more difficult. We introduced searching in a semanti-
cally clustered graph as a hill-climbing exercise, i.e. a task
of first finding the right cluster of peers and then visiting
them one after the other. For some queries, however, this
seems to be difficult because they are not related to the
topics that are used to form semantic clusters. Consider,
for example, the query ”Schlapphut” (floppy hat). Even for
a human, it would be difficult to decide which of the cate-
gories introduced above it should be associated with (should
it be politics or travel?) and it is not likely for a peer that
has documents containing ”Schlapphut” to know others that
also have. This means that for a lot of queries, search will
be quite blind, even when fully expanded peer profiles are
available.

7. CONCLUSIONS
By analysing various techniques for profiling and query

expansion in P2P information retrieval and applying them
to structure building and searching, we found support for
our claim that query expansion is likely to enhance recall
in these distributed settings: when working with compact
and incomplete peer descriptions, query expansion using co-
occurrence data will improve recall by approx. 10%.

The use of thesauri did not prove fruitful in our setting
because of poor coverage. Local feedback techniques failed
because they only start to work when something has already
been found (which is often too late). LSI, when applied to
calculating a semantic basis and using it for calculating pro-
files, performed very poorly because LSI seems to be unable
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Figure 2: Recall as a function of the number of hops, averaged over all queries for profile lengths of (a) 16
and (b) 48

to generalise from one collection to the other. That means
that the use of co-occurrence data for query expansion seems
most promising to us.

As far as structure building is concerned, we found that
comparing very compact profiles by very simple methods is
sufficient for creating good semantic clusters of peers.

All in all, the task of routing queries using compact peer
profiles remains a difficult one with many problems unsolved.
However, the fact that a compression ratio of 1:4 (48 vs.
200) for profiles only led to a loss in recall of about 10%
(using the best of our strategies), makes us assume that
when building profiles, a large amount of terms can be safely
ignored without losing too much information.
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