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Abstract

We present an architecture for a data sharing
peer-to-peer system where the data is shared
in the form of database relations. In gen-
eral, peer-to-peer systems try to locate exact-
match data objects to simple user queries.
Since peer-to-peer users generally tend to sub-
mit broad queries in order to find data of their
interest, we develop a P2P data sharing ar-
chitecture for computing approximate answers
for the complex queries by finding data ranges
that are similar to the user query. Thus this
paper represents the first step towards solving
the general range lookup problem over P2P
systems instead of exact lookup operations.

1 Introduction

In recent years there has been a significant interest
in peer-to-peer data sharing systems. Most of the re-
search has concentrated on sharing of file objects such
as music or video files. In general, users who wish
to participate in a peer-to-peer system register their
machines to become part of the peer-to-peer system.
Hence, a user machine becomes a peer node in the sys-
tem. Users at a peer can submit a query string that is
the name of the file they are looking for. The system
finds a peer that has a copy of the requested object and
directs the querying peer to the peer that can provide
the requested object. There are two design challenges
that arise in the context of building P2P systems. The
application level problem is to locate a peer that stores
the requested object. The system level problem is to
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route the query from the requesting peer to the peer
where the object is stored. The critical issue is to lo-
cate a peer that can provide the requested object.

One solution to this problem is building a central-
ized index (e.g. Napster [12]). The Napster model,
due to its centralized design, is able to handle the two
design challenges easily. In particular, every peer reg-
istered in the system knows the identity of the cen-
tralized index node. This index node has a directory
of all objects currently available. But a centralized in-
dex does not scale very well and is a central point of
failure.

A completely distributed approach is to have each
peer build an index over its own files, and queries are
flooded into the peer-to-peer network (e.g. Gnutella
[4]). In this approach, a peer needs to maintain infor-
mation only about its own data for the object lookups
and information about its neighboring peers for re-
quest routing. A request from a peer is flooded via
the neighboring peers. This approach has the advan-
tage that peer nodes only maintain local information
and the system does not have a central point of failure.
However, flooding the network for every user query re-
sults in significant network and system overhead and
hence the approach is not scalable.

Another approach that falls in between Napster
and Gnutella is of building a superpeer network (e.g.
KaZaA [8]) where smaller peers connect to a superpeer
that builds an index over the objects shared by its set
of peers. In addition to this, each superpeer keeps in-
formation about neighboring superpeers in the system.
A peer can submit a query to its superpeer and the su-
perpeer can lookup its index to see if another peer in
its own territory can provide the object. Otherwise,
it forwards the query to neighboring superpeers in the
network. Recent literature on P2P systems [11] classi-
fies these approaches as unstructured P2P systems.

Another interesting approach of indexing available
data objects in the system, is to build a distributed
hash table(DHT) [16, 14, 13]. Chord [14] hashes the
objects into a ring formed by the peers in the system.



The peers maintain routing information about other
peers at logarithmically increasing distance in the ring.
A querying peer hashes the name of requested object
and then uses the routing information to forward the
query to an appropriate peer. CAN [13] hashes the
objects into a d-dimensional coordinate space, where
parts of the space are owned by peers. The peers main-
tain routing information about the 2d neighbors in the
coordinate space. When a peer asks for an object,
the object name is hashed and then the peer hold-
ing the desired hash key is located taking advantage
of the structure of the hash space. The query is for-
warded to this peer via neighbors and the peer can
send the requested object to the querying peer. Ad-
vantages of these schemes are that they are completely
distributed and highly scalable. Moreover they do not
flood the network and direct the request toward a peer
that holds the relevant information. These approaches
are classified as highly structured P2P systems [11].

These P2P architectures, however, are confined to
support file sharing applications over the Internet.
The basic functionality that is supported by these P2P
architectures is to provide exact-match query facility.
Although the implementations are significantly differ-
ent, all these systems support a hash-table interface
of put(key, value) and get(key). In general these
systems are highly scalable; lookups can be resolved in
O(logN) or O(dN

1
d ) for small d overlay routing hops

for an overlay network with N peers. The fundamental
limitation of these systems is that they only support
exact-match lookups.

Since P2P systems provide scalable storage and
efficient retrieval (at least for exact-match queries),
database researchers have begun to ponder if P2P sys-
tems can be designed to provide complex query fa-
cilities on top of these DHT-based P2P systems. In
particular, Gribble et al. [5] in their position pa-
per provocatively titled “What can peer-to-peer do for
databases, and vice versa?” outline some of the com-
plexities that need to be overcome to gainfully exploit
P2P systems for database query processing.

Similarly, Harren et al. [6] explore the issue of sup-
porting complex queries in DHT-based P2P networks.
Harren et al. report the implementation of database
join operation over CAN [13], by performing a hash
join of two relations R and S using DHT. They leave
the question of developing range predicate selection
over current DHTs as an open problem.

The work reported in this paper is similar in spirit
to that of Harren et al. [6], in that we are interested
in supporting database query processing over P2P net-
works. We specifically address the problem of execut-
ing a selection operation over a database relation using
the information that is cached at different peers in the
system. The main motivation for this is that the selec-
tion operation is typically involved at the leaves of the
query plan and hence is a fundamental operation to

retrieve data from the database. Assuming that such
data partitions of a relation are extensively replicated
at the peers due to prior queries, we would like to re-
trieve the desired data partition from the P2P system
instead of fetching it from the base relation at the data
source. Another motivation for our approach is that
P2P users often ask broad queries even when they are
only interested in a few results and therefore do not
expect perfect answers [6].

In this paper, we present an architecture for a peer-
to-peer system that shares data in the form of rela-
tional objects. In its simplest form peers can cache
horizontal partitions of various relations. A peer can
submit a query in the form of an SQL statement. The
system tries to locate peers that have the most relevant
partitions for the submitted query. We use a scheme
based on Locality Sensitive Hashing [10, 7] to locate
partitions of relations that are relevant to the query.
Our main contributions are an architecture for a rela-
tional data sharing peer-to-peer system and a hashing
based mechanism to locate data partitions relevant to
a query. This paper constitutes an initial step to en-
able general query processing over P2P data sharing
architectures.

2 Data Sharing in P2P Systems

We consider a system consisting of peers connected
to each other via connections over a TCP/IP network.
The peers form a data sharing system where the shared
data is in the form of database tuples and relations.
We assume a global schema that is known to all the
peers in the system. Sources of data are part of the
peer-to-peer system (i.e., they are also peers in the sys-
tem), and are known to all the peers. However, access
to the base relations may in general be undesirable
due to load and connectivity reasons. In addition to
the sources, other peers are allowed to cache horizon-
tal partitions of relations. Peers are allowed to submit
SQL queries to the system. We pose the following re-
striction on the queries: the selects on a relation can
be only on one attribute at a time. The peer converts
the query into a plan where all the selects are moved
toward the leaves as much as possible. This is a well
known algebraic optimization technique [15]. In such a
plan, the peer can now request to locate relevant rela-
tion partitions in the system that can help answer the
query. The located peers caching relevant partitions
can send the data over to the requesting peer which
can now compute the remaining query locally using
the available data.

To illustrate the behavior of the system, let us
consider the following example. Assume that the
following relations exist in the global schema:
Patient(patient id, name, age),
Diagnosis(patient id, diagnosis, physician id, pre-
scription id),
Physician(physician id, name, age, specialization),



and
Prescription(prescription id, date, prescription, com-
ments).
Suppose a peer wishes to find out what prescriptions
have been provided to patients diagnosed with Glau-
coma and with age in 30 to 50 between Jan 2000 and
Dec 2002. More formally, in SQL the query can be
written as:
Select Prescription.prescription
from Patient, Diagnosis, Prescription
where 30 ≤ age ≤ 50
and diagnosis = “Glaucoma”
and Patient.patient id = Diagnosis.patient id
and 01− 01− 2000 ≤ date ≤ 12− 31− 2002
and Diagnosis.prescription id
= Prescription.prescription id.

σ σ

σ

π prescritption

01−01−2000<=date<=12−31−2002

diagnosis="Glaucoma" Prescription30<=age<=50

Patient Diagnosis

Figure 1: A possible query plan

Figure 2: System Overview

A possible plan for the above query is shown in
Figure 1. The peer can now ask the system to locate
partitions of relations Patient, Diagnosis and Prescrip-
tion which match the selection conditions. See Figure
2. The node labeled Q is the peer at which the query
is initiated. It produces the above plan and hashes on
the desired partitions to locate peers that can provide

relevant data 1, i.e., Patient tuples with 30 ≤ age ≤ 50,
Diagnosis tuples for Glaucoma and Prescriptions with
01− 01− 2000 ≤ date ≤ 12− 31− 2002. Once peer Q
has obtained the data from the peers that have the de-
sired partitions, it can now perform the join operations
and project the desired attribute. Hence, in general,
the problem of answering any SQL query depends crit-
ically on the efficient retrieval of selected partitions of
the desired relations in the system. In this paper we
focus on this problem, and in our future work we ex-
tend this approach to general queries.

3 Locating Relevant Partitions

The problem of locating relevant data partition of a
relation can be formulated as follows: Given a relation
R and the selection range (start, end) over an attribute
of the relation, find out if there is a peer that caches
a partition of relation R that can help us compute the
desired selection.

3.1 Motivation

We start by considering the simpler problem of dis-
tributing and retrieving specific tuples of a relation
with a given requested key. Any of the distributed
hash tables(DHT), e.g., CAN [13] or Chord [14], can
be used for this purpose. In particular, consider a
query of the form:
Select * from Patient where age = 30.
In this case we consider the key to be age with value
30. The first time this query with this specific param-
eter setting (age = 30) is posed, the query must be
routed to the source to retrieve the set of tuples in Pa-
tient with age = 30. Now we use a DHT to store this
partition of Patient at a peer in the system. Subse-
quent queries with age = 30 would immediately map
to that peer and hence would not need to overload the
source site. This approach can be easily extended to
support exact matches of ranges (or selection queries
with predicates). Consider the following query:
Select * from Patient where 30 ≤ age ≤ 50.
In this case, we could use the specific range [30 − 50]
as a key, which is used to hash the qualifying tuples.
When a query is later posed with exactly the age range
of [30− 50], this cached partition at a peer can be re-
trieved instead of going to the source relation.

This approach although simple, only supports key-
range lookup for exact matches. However, even if the
requested query partition [start, end] does not exist
there may be another partition [start − ε, end + ε′]
which could have easily satisfied the query. In partic-
ular a query asking for all patients with ages between
30 and 49 would not hash to the same peer and hence
would not benefit from the stored partition although

1A query specifies a range over an attribute of a relation. We
refer to the resulting set of tuples defined by this range as a data
partition.



this new query is very similar to the previous one. In
fact the entire answer set is contained in the cached
partition.

In a centralized system all the data partitions are
at one location and the problem of finding a data par-
tition that contains the query selection range can be
solved by building an index over the stored data par-
tition ranges. In a P2P system the data partitions are
distributed over various peers across a wide area net-
work, and the problem becomes more complicated be-
cause in addition to finding the right data partition we
also need to find where the partition is. Unfortunately
the problem of discovering partitions in a P2P system
that contain the selection range is extremely hard to
solve exactly. In general, the problem of determining
containment of a query in a given set of views is NP-
complete [9]. Furthermore, P2P users often ask broad
queries in order to find data of their interest and do not
expect exact answers for their queries [6]. We therefore
approach this problem by trying to develop techniques
that provide approximate answers. Our approach is
based on DHTs where similar ranges are hashed to
the same peer with high probability and hence we can
potentially benefit from previously cached partitions.
Our solution is based on Locality Sensitive Hashing
introduced by Motwani and Indyk [7] for the nearest
neighbor problem. The existence of such hash func-
tions was first shown by Linial and Sasson [10]. In
the following we take a slightly different definition of
locality sensitive hashing than [10]. We have adapted
the definitions from [7, 2].

3.2 Locality Sensitive Hashing

If A,B are two sets of values from domain D then a
family of hash functions H is said to be locality pre-
serving if for all h ∈ H we have:

Pr[h(A) = h(B)] = sim(A, B)
where sim(A,B) is a measure of similarity of the
sets A and B. If Q,R represent the range sets in
the query and the matched answer respectively, then
we would like to use a similarity measure defined by
containment, i.e.,

sim(Q,R) = |Q∩R|
|Q| .

In [2], Charikar shows that if a similarity measure
sim(Q,R) admits a locality sensitive hash family then
the corresponding distance function ∆(Q,R) = 1 −
sim(Q,R) satisfies the triangle inequality:

∆(Q,R) + ∆(R, S) ≥ ∆(Q, S)
It turns out that the similarity measure based on

containment of sets as defined above does not sat-
isfy the triangle inequality. Hence no locality sensi-
tive hash functions exist for the containment similar-
ity measure. On the other hand, for the Jaccard set
similarity measure

0key

integer

1 1 0 1 0 1 0

1 0 1 0 0 0 1 0

integer’ 0 1 0 1 1 0 0 0

(a) first iteration

integer’ 0 1 0 1 1 0 0 0

0 0 1 1 0 0 1 1key

integer’’ 0 1 0 1 0 0 1 0

(b) next iteration

integer’’ 0 1 0 1 0 0 1 0

0 1 0 1 0 1 0 1key

integer’’’ 1 0 1 0 0 0 0 1

(c) last iteration

Figure 3: Iterations of the permutation operation

sim(Q, R) = |Q∩R|
|Q∪R|

1− sim(Q,R) does satisfy the triangle inequality and
there exists a locality sensitive hash function family for
this similarity measure given by min-wise independent
permutations [2, 1].

3.3 Min-wise Independent Permutations

The hashing scheme given by min-wise independent
permutations is as follows. Given a domain D, con-
sider a random permutation π of D. Assume that the
elements of D are totally ordered. Given a range set
Q ⊆ D, the hash function hπ is defined as:

hπ(Q) = min{π(Q)}
Then the property satisfied by this hash function

family is that

Prπ[hπ(Q) = hπ(R)] = |Q∩R|
|Q∪R|

which is the Jaccard set similarity measure.
For an integer in Q, the permutation operation is

performed as described below. Assume we are dealing
with sets of 8-bit integers. Take an 8-bit key that has
exactly 4 random bits set to 1. For an integer in the



set, move the bits corresponding to the position of 1’s
in the key to upper half and the others to the lower
half in order. The operation is illustrated in Figure
3(a) for an 8-bit number and key.

Next, choose a 4-bit key with exactly 2 random bits
set to 1. Again permute the bits in the 8-bit integer
using this key for each of the 4-bit halves. This is il-
lustrated in Figure 3(b). And so on, until each pair of
2 bits has been permuted (see Figure 3(c)). The keys
for this permutation function are representable as two
8-bit integers. The permutation operation produces
integer′′′ as the final output. The hash function hπ(Q)
applies the above permutation operation on each inte-
ger in the range Q and then takes the minimum of the
resulting integers.

4 System Architecture

Given a selection operation for a relation we wish to lo-
cate the peers that have cached relation partitions that
are a nearby match for the selection range of the given
query. Instead of flooding the network with the query
or going to various distributed indices as in a superpeer
network, we want to use hashing to locate the peers
that have relevant data partitions. So a distributed
hash table needs to be maintained over the peers in
the system. And since nearby matches of data parti-
tions are to be located we use locality sensitive hashing
to hash data partitions. Let us call the integer value
produced by the hash function as identifier. An ap-
propriate family of locality sensitive hash functions is
used to map the data partitions to a 32-bit identifier
space. These identifiers identify the buckets in the
distributed hash table. Because of the property of lo-
cality sensitive hashing similar data partitions hash to
nearby identifiers.

The next problem is how to store the distributed
hash table over the peers in the system. Our general
approach for locating relevant partitions for a given
selection query can be summarized as follows:

1. The query range is hashed to the identifier space
using an appropriate locality sensitive hash(LSH)
family.

2. Peers in the system are also mapped to the same
identifier space using any randomly distributed
hash function (e.g. SHA-1 [3]).

3. We use Chord [14] to map data partition iden-
tifiers to peer node identifiers, and provide the
lookup and routing facility.

Figure 4 illustrates how the distributed hash table
is created. The identifier space (in this paper we will
use a 32-bit space) is organized as a ring. The peer
nodes are hashed using a hash function (such as SHA-1
[3]) over their IP address into the identifier space. The

range specifying a data partition is also hashed into the
same identifier space using locality sensitive hashing.
From the properties of locality sensitive hashing(LSH)
similar ranges are hashed to the same identifier with
high probability. Since the domain of data partitions
is much larger than the number of peer nodes in the
system, we use Chord [14] to consistently map multiple
data partitions to the same peer node. This mapping
is based on Chord’s circular structure. Each data par-
tition identifier i is mapped to the peer node with the
least identifier greater than or equal to i in the circular
identifier space. A peer is thus responsible for all hash
buckets corresponding to identifiers from the identifier
of its predecessor node (excluding it) to itself.

To locate a given identifier, each peer in Chord also
maintains information about other peers in the iden-
tifier ring that are at logarithmically increasing dis-
tances. Using this information, the peer holding a re-
quested identifier can be located in O(logN) lookups
where N is the number of peers in the system. Once
the peer is located, the bucket corresponding to the
requested identifier is searched for the most similar
range.

1
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m
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m
−2

SHALSH

0

Figure 4: Structure of the Distributed Hash Table

We now discuss in more detail how data partitions
corresponding to range selections are hashed into the
identifier space. Given a selection query range Q we
consider the range as the set of values from which the
identifier is computed, e.g., for the range 30 ≤ age ≤
50, the set of values is {30, 31, 32, . . . , 50}. Using a
min-wise independent permutation hash function hπ,
we derive the identifier for this set. From the proper-
ties of these hash functions we know that this identi-
fier maps to a similar identifier (which corresponds to
a range partition R) with probability p = sim(Q,R),
where sim(Q, R) is the Jaccard set similarity measure.

Since, this is a probabilistic approach, we would
like to hash similar ranges to the same identifier with
high probability, and have a low probability of colli-
sion for dissimilar ranges. This could be done follow-
ing an approach suggested in [7]. Consider a group g =
{h1, h2, . . . , hk} of k hash functions selected uniformly
at random from the family of hash functions. Then the
probability that the two sets hash to the same value
for all k hash functions, i.e., Pr[g(Q) = g(R)] = pk.
Now, lets say we have l such groups g1, g2, . . . , gl of



hash functions. The probability that Q and R do not
agree for a group gi is 1 − pk. And the probability
that they do not agree for all l groups is (1 − pk)l.
So, the probability that Q and R agree on at least
one of l groups is 1− (1− pk)l. Therefore, if we use l
groups each of k randomly selected hash functions we
can obtain l hash values for sets of tuples identified
by their selection range and store them at peers that
are responsible for the obtained hash values. Then
depending on the values of parameters k and l, with
high probability at least one of those l peers will have
a data partition that contains data relevant to the de-
sired range. Let Q denote the range of selection for
the relation partition. Here is a rough sketch of the
procedure followed.

At the querying peer:
For each g[l] do
\\g[l] is a group of hash functions
identifier[l] = 0;
For each h[i] in g[l] do

identifier[l] ^= h[i](Q);
done

done
For each identifier[l] do

Send a request to peer holding
the identifier for the desired
partition.

done
Get replies from all the peers.
Select the best match from all
the replies you have got.

If none of the match is exact,
also store the computed
partition at the peers holding
the computed identifiers.

In the above procedure, l identifiers are computed
for a range set and peers holding those identifiers are
contacted. There can be at most l different peers hold-
ing the identifiers. Each contacted peer checks the list
of partitions that it has associated with the identifier
and finds the best match for the query partition in the
list and sends the best match to the requesting peer.
The requesting peer can now choose the best match
from the l replies it gets, and contact the peer with
that partition for the data of the partition.

5 Experimental Results

In this section we analyze the performance of the pro-
posed range selection in P2P systems in terms of the
quality of matched partitions obtained and in terms of
the scalability of the system.

5.1 Performance of Hash Functions

As shown in Section 4 we can use l groups of k hash
functions to find matching partitions for a given query

range with probability 1 − (1 − pk)l, where p is the
similarity of the queried range and the matched par-
tition measured with Jaccard set similarity measure.
For our experiments we chose the values for parame-
ters k and l to be 20 and 5 respectively, because these
values make the function 1 − (1 − pk)l to reasonably
estimate a step function with a step at 0.9.

The min-wise independent permutations from Sec-
tion 3.3 can be computationally expensive. Hence, we
have also explored the family of linear permutations
given by π(x) = ax + b mod p, a 6= 0 [1]. In ad-
dition to linear permutations, we also tried another
family of approximate min-wise independent permuta-
tions which are just the first iteration (Figure. 3(a))
of the min-wise independent permutations. This ap-
proximate family is representable with a single 32-bit
integer key and is computationally less expensive.
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Figure 5: Execution times for the hash function fami-
lies.

Figure 5 shows the execution times in milliseconds
on a 900 MHz Pentium for the l × k (100) hash func-
tions for query range sets with sizes varying from 10
to 1500. On the average, linear permutations are 1000
times faster than min-wise independent permutations.
And, approximate min-wise independent permutations
are about 10 times faster than min-wise independent
permutations.

We used a set of 10,000 integer ranges with inte-
gers in 0 and 1000 as our query selection ranges. The
range sets were generated uniformly at random and
had only 0.2% repetitions. We start with an empty
system and cache any query range if it is not already
stored. We measured the similarity of the matched
data partition for a given query range, where the sim-
ilarity measure is the Jaccard set similarity measure.
Figures 6 and 7 presents the results for the three hash
function families described above with a warmup pe-
riod of first 20% of the queries removed. The x-axis in
the graphs represents the similarity between the range
in the query partition and the range of the matching
partition found. The similarity of two data partitions
is 0 if they do not have any tuples in common, and it is
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Figure 6: Performance of hash functions
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Figure 7: Performance of Linear Permutations

1.0 if they are identical. The y-axis is the percentage
of total queried partitions that found a match with the
given similarity measure.

From Figure 6(a) we can see that almost 50%
of the queried partitions found a matching partition
with similarity between 0.9 and 1.0. The queried
ranges contain only 0.2% repetitions, hence the iden-
tical matches are very low. But as we see there are al-
most 25% of the queries that did not find good matches
at all. This is so because min-wise independent per-
mutations are very good hash functions and they try
to imitate the ideal step function with a step at sim-
ilarity 0.9. Therefore, for quite a few queries they do
not find matches that may exist but are not as similar
as 0.9. Furthermore, since the query ranges are uni-
formly distributed there are always new query ranges
for which there are no stored similar data partitions.

Figure 6(b) shows the quality of matches obtained
by approximate min-wise independent permutations.
Approximate min-wise independent permutations find
good matches for almost 35% of the queries. Un-
like min-wise independent permutations though, they
do try to find matches for queries even though the

matches may not be as good as 0.9. Also, they are
much faster to compute than min-wise independent
permutations because they only need to perform the
first iteration of the complete permutation operation
as described in Section 3.3.

Linear permutations are easily representable and
very efficiently computable. As the graph in Figure
7 shows the quality of matches obtained by them is
not good. Although, they do find an identical match
if it exists. As the system evolves, the probability that
identical queries had been asked earlier goes higher
and linear permutations will tend to produce better
results.

5.2 Recall

The previous section measured the performance of
hash function families in terms of Jaccard similarity
measure, but from a user perspective we are more in-
terested in how useful the match is for answering the
query. A measure of the usefulness of the matched
data partition is recall, which is a measure of how
much of the desired answer is given by the matched
partition. Figure 8 shows the recall of matched data
partitions for the three hash function families. The x-
axis in the graph is the portion of the desired answer
obtained by the matched partition. The y-axis is the
percentage of queries that are answered upto a given
portion.

The min-wise independent permutations are able to
answer almost 30% of the queries completely. The ap-
proximate min-wise independent permutations answer
about 35% of the queries completely. Linear permuta-
tions answer 50% of the queries completely. Approx-
imate min-wise independent permutations and linear
permutations lead to better containment results than
min-wise independent permutations because they are
not too strict about finding data partitions that are
similar. Hence, they match broader partitions which
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contain more of the desired answer. However, this
looser matching property of linear permutations re-
sults in poorer recall quality for rest of the queries
when compared to the other two hash families. In gen-
eral, min-wise independent permutations and approxi-
mate min-wise independent permutations have similar
recall. They answer at least 0.8 of 90% of the queries,
and about 98% of the queries get at least half of their
answers.

As we saw earlier in Section 3.2, we cannot use the
containment similarity measure

sim(Q, R) = |Q∩R|
|Q|

to define our locality sensitive hash function families
because it does not satisfy the triangle inequality. But
once we have hashed a selection range to an identifier
using a hash family defined according to the Jaccard
set similarity measure, we can use containment similar-
ity to find the best match from the hash bucket. Figure
9 shows the recall when we use containment matching
in conjunction with approximate min-wise indepen-
dent permutations. Both of the schemes use approxi-
mate min-wise independent permutations for hashing
the selection ranges. Using the containment similar-
ity measure the percentage of queries completely an-
swered improves from approximately 35% to almost
60% of the queries, and for approximately 85% of the
queries the recall is better with the more realistic sim-
ilarity measure. However, for the remaining 15% the
mismatch between the principle the hashing is based
on and the actual measure used shows in improved
performance for the Jaccard similarity measure.

Since P2P users often ask broad queries and do not
expect exact answers [6], the system can present the
user the part of the answer it is able to find fast, and
can also let them know what selection ranges this an-
swer corresponds to. If the user is not satisfied with
the answer, they have a choice to go to the source for
the rest of the answer. We have also explored the op-
tion of submitting a padded query. Instead of going to
the source, the system evaluates the user query with
its selection ranges expanded. Figure 10 shows the re-
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Figure 9: Recall with Containment Similarity match-
ing

call when the selection ranges are expanded 20% on
the edges and approximate min-wise independent per-
mutations are used for the hash functions. With query
padding a little over 70% of the queries are answered
completely. This represents a doubling of the queries
completely answered when compared with no padding
with Jaccard similarity measure (compare with Fig-
ure 9). However, padding does have a cost. Although
approximately 78% of the queries benefit and show im-
proved performance over no padding, for the rest of the
queries, the extended range results in lesser recall than
without padding. This shows that there is a tradeoff
between getting complete containment for queries ver-
sus total recall for all the queries. Padding is beneficial
for the former whereas no padding for the latter. In
future, we will explore dynamically adjusting padding
for better overall performance.
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Figure 10: Recall with 20% Query Padding

5.3 System Scalability

We analyze the scalability of the system using simula-
tion of the distributed P2P system. For the purpose
of our simulation experiments we have modified the
simulator of Chord [14] in the following manner. The
find operations in our simulations take a query range
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(a) Load distribution when the system stores 50,000
partitions.
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(b) Load distribution in a 1000 node system.

Figure 11: Load balancing in the system.
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Figure 12: Path lengths for lookup operations

set instead of a document id and hash the range set to
5 32-bit identifiers using the approximate min-wise in-
dependent permutations. The peer nodes holding the
identifiers are discovered using the Chord lookup algo-
rithm [14]. These peers then look up the corresponding
buckets for the identifiers they hold and find the best
match for the query range set using the Jaccard set
similarity measure. If the match is not exact, the new
query range is also stored at those peers. There are no
explicit insert operations in our simulation and the
system starts with no partitions stored.

For analyzing the scalability of the system as the
number of peer nodes grow we consider a system that
stores 5× 104 partitions. There are 104 unique parti-
tions, and each is stored with five different identifiers
computed by five different sets of hash functions. The
number of peers in the system vary from 100 to 5000.

Figure 11(a) shows the mean and the 1st and 99th per-
centiles of the number of partitions stored per node in
the system as the number of peer nodes in the system
increases. The load distribution gets linearly better
with the increase in the number of peers. Figure 11(b)
shows the mean and the 1st and 99th percentiles of the
number of partitions stored per node in a 1000 node
system where the number of total partitions stored in
the system varies from 35000 to 180000. The mean val-
ues for the load distribution grow superlinearly with
the increasing number of partitions but the 99th per-
centiles show a sublinear increase.

Path length is a measure of the number of hops
in the overlay network that are required to route a
query to the destination peer. We ran simulations with
varying number of peers in the system and storing 5×
104 partitions. Figure 12(a) shows the mean and 1st



and 99th percentiles of path lengths for systems with
number of peers varying from 100 to 5000. The mean
path lengths are of the order 1

2 log N where N is the
number of peers in the system. Figure 12(b) shows
the probability distribution function of path lengths
in a 1000 node network. For most lookups with high
probability the path length is 2. In general, the results
are consistent with the results for exact-match queries
[14].

Locality sensitive hashing hashes similar ranges to
nearby identifiers. In the ring structure formed by the
peers in Chord all identifier buckets falling between
two peers get stored at the successor peer [14]. Po-
tentially, we could now build up an index over all the
partitions that get stored in various buckets at a peer.
When we need to find a similar match for a query se-
lection range, we can search through this index after
locating the peer that holds the identifier for the se-
lection range instead of just looking at the ranges in
the bucket of the identifier. Interestingly, with this
approach the recall will be best when there is just one
peer in the system, since all partitions will be stored
at that peer, and for a lookup we would be search-
ing through the index at that peer. As the number
of peers in the system grows, the partitions will get
distributed at the peers and for each search we would
be looking at a smaller index. But in the worst case,
a peer would hold buckets for at most one identifier,
in which case we would look through the partitions in
only that bucket, and the recall would still be as good
as the results presented in Section 5.2.

6 Conclusions and Future Work

We have presented an architecture for a peer-to-peer
data sharing system that shares data in the form of
database relations. Peers in the system cache hori-
zontal partitions of the relations based on the queries
executing in the system. We have also presented a
novel approach for locating relevant data partitions in
the peer-to-peer system using locality sensitive hash-
ing. The benefit of such an approach is that it not
only finds exact partitions in the system if they exist,
but also can help locate partitions that nearly match
the ones required by the query.

In the future, we will address the problem of lo-
cating horizontal partitions obtained by multiattribute
selections. We would also like to investigate caching
general query results in the system in addition to hor-
izontal partitions of relations. Furthermore, the prob-
lem of planning a query in a peer-to-peer system based
on available statistics of the system is worth exploring.
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