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Abstract
Efficient query processing in P2P systems poses
a variety of challenges mainly resulting from
the strict decentralization and limited knowledge.
Particularly with regard to queries involving rank-
ing, top-N or skylines, existing approaches for
centralized systems cannot be applied easily to
P2P environments. In this paper, we focus on the
problem of efficiently processing skyline queries
in large-scale P2P systems, where it is nearly im-
possible to guarantee complete and exact query
answers without exhaustive search, i.e., flooding
the network. Thus, applying approximate query
answering techniques, that are also typical for pro-
cessing top-N queries in centralized database en-
vironments, seems to be the natural choice. We
address this problem by presenting an approach
that allows for reducing the number of queried
peers as well as for giving probabilistic guaran-
tees for the correctness of the answer.

1 Introduction
Schema-based Peer-to-Peer (P2P) systems, also called Peer
Data Management Systems (PDMS), are a natural exten-
sion of federated database systems. In addition to the char-
acteristics evolving from the P2P paradigm (namely au-
tonomous peers with equal rights and opportunities, self-
organization as well as avoiding global knowledge), each
peer in a PDMS provides its own data with its own schema.
All peers can answer and process queries and are linked
to a small number of neighbors via mappings representing
schema correspondences.

The expected advantages of such a structure like robust-
ness, scalability and self-organization come not for free: In
a large-scale, highly dynamic P2P system it is nearly im-
possible to guarantee a complete and exact query answer.
The reasons for this are among others possibly incomplete
or incorrect mappings, data heterogeneities, incomplete in-
formation about data placement and distribution and the
impracticality of an exhaustive flooding. Therefore, best
effort query techniques such as similarity selection and
join, nearest neighbor search, top-N operators and skyline
queries are most appropriate. By ”best effort” we mean,

that we do not aim for exact results or guarantees but in-
stead try to find the best possible solution w.r.t. the avail-
able local knowledge. However, even if we relax exactness
or completeness requirements we still need estimations or
predictions about the error rate. This means for example
giving a probabilistic guarantee that none of those peers
that have not been asked could contribute to the result.

For illustration purposes we use an example of a virtual
astronomical observation scenario, where each participat-
ing observatory represents a peer offering data about sky
observations. A simplified query in this scenario might ask
for a set of astronomical objects that are both, as bright
as possible and situated as close as possible to a specified
point in space that is defined by a set of coordinates. In
most situations it is not obvious, whether the user would
prefer (i) an object that is situated very close to the given
coordinates but that is not as bright as others, or (ii) a rather
bright object that is situated farther away than others. As
such, it is important to present all interesting answers that
might fulfill the user’s needs, so that he or she can choose
the most promising one. This set of interesting answers is
called the skyline. Note that in contrast to distributed infor-
mation retrieval we have to deal with search in structured
data instead of distributed keyword search in text data.

Formally speaking, given a set of data items the skyline
comprises all those data items that are not dominated by
any other item. One data item dominates another if it isas
good as or betterin all dimensions andbetterin at least one
dimension. In the example stated above this means,object1
is dominated byobject2if object2is brighter and situated
at least as close to the given coordinates asobject1.

We assume XML to be the underlying data format and
XQuery to be the common query language. Based on a
possible extension of XQuery the example skyline query
introduced above could be formulated as follows:
for $s in fn:doc("sky.xml")//objects
skyline of MIN distance($s/rascension,

$s/declination, 160, 20)
MAX $s/brightness

return ...
The remainder of this paper is structured as follows: at first,
in section 2 we have a closer look at the state-of-the-art al-
gorithms revealing why they cannot be applied to P2P sys-
tems. After having presented a new probabilistic approach
for processing skyline queries in section 3, we finally give
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a short summary of our current state of research and an out-
look on our future work in section 4.

2 Why Do We Need New Algorithms for
Computing Skylines in P2P systems?

As stated in [3], which was the first paper to introduce the
skyline operator into the field of database research, comput-
ing the skyline was known as the maximum vector problem
[9, 12] before. Along with a corresponding SQL extension,
which allowed MIN, MAX, and DIFF as annotations, [3]
presented some basic algorithms for computing the skyline
in centralized databases. Before discussing their applica-
bility to P2P systems, let us summarize the main problems
that we have to deal with:
• Working with massively distributed environments

with large numbers of peers that are autonomous and
can leave or join the network at any time.

• There is no central instance that provides information
about data distribution and localization. A peer only
has limited knowledge about neighboring peers in a
horizon defined by a finite hop count.

• Qll peers are equal: Each of them has the ability to
initiate and process queries.

• Additionally for PDMS: There is no global schema.
Thus, when forwarding a query it has to be translated
into the receiving peer’s local schema.

Application of Existing Algorithms
BNL (Block Nested Loops) and D&C (Divide & Conquer)
were two of the first algorithms proposed for application in
database environments [3]. They were designed for reduc-
ing main memory consumption and CPU cost in centralized
RDBMS, where one peer processes the entire skyline with
all required data being available locally. Obviously, com-
paring each data item to all the others is only feasible when
collecting all data at one central unit, e.g., at the initiating
peer. Then, just like in centralized databases, the BNL or
D&C algorithm can be applied on the collected data. Ap-
parently, this naive approach is not efficient because col-
lecting data locally requires high network bandwidth and is
likely to exceed local memory.

Applying the D&C paradigm on P2P systems results in
a strategy where the network is flooded and each peer pro-
cesses the query locally. The results are merged on their
way to the initiator. Although the algorithm only needs one
round-trip it has a major drawback that consists in the need
for flooding the network, which is not acceptable with re-
gard to large-scale P2P systems.

Index based algorithms as proposed in [13] (Bitmap and
B-tree) require specialized index structures for processing
skyline queries. These pre-computed indexes are designed
for indexing data that is available locally and describe ev-
ery queried dimension of each single data item. Due to the
characteristics of P2P systems, dynamic behavior in partic-
ular, such index structures are not feasible. The reasons for
this are among others the need for global knowledge and
high maintenance costs.

The main advantage of algorithms like NN-search
(Nearest Neighbor) [8] and BBS (Branch and Bound Sky-
line) [11] is that they can give an overview describing the
final result after short time of processing. In principle, the
basic idea of partitioning the data space and looking re-
cursively for a nearest neighbor in each of these partitions
would also work in P2P systems. However, applying this
basic approach without modifications results in one round-
trip for each nearest neighbor lookup. Developing efficient
techniques for reducing a round-trip’s costs, e.g., based on
query refinement techniques, as well as reducing the num-
ber of round-trips (especially considering duplicate elimi-
nation) might be worth investigating in future work.

The first algorithm that considered processing skyline
queries in distributed environments was proposed in [2] and
enhanced in [1]. Principally, both algorithms are based on
the TA algorithm by Fagin [10]. The algorithms are opti-
mized for use in Web Information Systems and based on
the concept that each Web source provides a globally or-
dered score list, that can be accessed by sorted and ran-
dom access. This concept is hardly applicable to P2P sys-
tems because instead of dealing with only a few peers, that
the central processing unit has direct access to, we have to
deal with many peers that are situated in a distance of sev-
eral hops and that might only be accessible indirectly using
other peers for message forwarding. Moreover, providing a
list in globally sorted order requires global knowledge that
is not available in P2P systems.

None of the existing algorithms provides an efficient so-
lution for processing skyline queries in P2P systems. In
summary, the main problems consist in:
• the necessity of a central unit that processes the query

with all data being available locally.
• the dependency on specialized index structures that

represent global knowledge.
• the need for several round-trips that result in rather

large execution costs in P2P systems.
Keeping these problems of existing approaches in mind,
our research focuses on developing an approximative strat-
egy for use in P2P systems in general and PDMS in particu-
lar. This strategy only needs one round-trip and gives prob-
abilistic guarantees for the result’s correctness and reduces
costs based on decentralized routing optimization and in-
dex structures with limited horizons. We present this strat-
egy more detailedly in the following section.

3 New Approaches for Efficiently Processing
Skyline Queries in P2P Systems

After having presented why existing algorithms cannot (or
at least cannot easily) be applied to P2P systems, this
section comprises new approaches for processing skyline
queries. These approaches are based on two main demands
that we make on an efficient skyline algorithm for applica-
tion in P2P systems: (i) no reliance on global knowledge
and (ii) efficient processing of skyline queries in terms of
execution cost, i.e., ask only some peers, and ask those only
once.
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3.1 Strategies
Our research on computing skylines in P2P systems led
us to the following classes of processing strategies, each
of them describes one main principle and thus one gen-
eral class of more detailed processing techniques. The first
three of them can be directly derived from existing ap-
proaches and have been introduced in section 2.

1. Naive: Collecting all data at the initiator and comput-
ing skylines locally using any algorithm for central-
ized processing.

2. Nearest Neighbor: Computing a nearest neighbor
(NN) by flooding the network (first round-trip), par-
titioning the data space according to NN, recursively
looking for NN in each partition (several round-trips).

3. D&C : Flooding the network, each peer processes the
skyline query locally, merging skylines when sending
answers to the initiator.

4. Probabilistic: Using routing filters for determining
which peers to forward the query to in a probabilis-
tic manner, computing local skyline points, checking
answer data for dominance.

A general approach for reducing costs is not to ask all those
peers that cannot contribute to the final result. This re-
quires an index structure that describes the data of neigh-
boring peers. We will present such an index structure in
subsection 3.2. Though index structures like DHTs could
be used for processing skyline queries, an algorithm based
on such structures can be applied only in a few P2P sys-
tems. Since we are aiming at a more general approach, we
will not pursue this aspect any further, but concentrate on
a local index structure that is designed for dynamic envi-
ronments (having a limited horizon and being maintained
using query feedback).

In order to decide which neighboring peers cannot con-
tribute to the final result, we assume that each peer pos-
sesses indexes that are defined on the queried attributes (di-
mensions respectively). Note that this approach is also ap-
plicable to super peer architectures, where we can regard
the backbone network (formed by the super peers) as P2P
network such that each super peer and its clients are treated
as one unit with regard to index creation and maintenance.
According to such indexes queries are routed only to those
peers that might provide relevant data. Considering the fact
that indexes always represent an approximation of reality a
peer might not exactly know whether its neighbor can actu-
ally contribute to the result or not. Forwarding the query to
all such peers results in being on the safe side but in most
cases ends up in flooding the network. Consequently, in
addition to reducing message volume and the number of
round-trips further cost reduction can be achieved by tak-
ing the risk of missing relevant data by not forwarding the
query to questionable peers. This, of course, means a trade-
off between correctness and efficiency.

Our strategy is based on this consideration and quan-
tifies the risk of having missed relevant data in a proba-
bilistic manner. This results in statements like ”the out-
put meets the exact result with a probability of 96%”, i.e.,

with a probability of 96% there exists no data point resid-
ing at any non-involved peer that dominates any point of
the algorithm’s result. In order to be able to make routing
decisions that guarantee for example a user-specified input
probability of 90%, we need indexes that allow for calcu-
lating such probabilistic guarantees. Based on the concept
of routing filters [7] that we developed for indexing XML
data on both index and schema level, the following subsec-
tion briefly presents how to enhance that concept for giving
probabilistic guarantees.

3.2 Advanced Routing Filters
Routing filters mainly represent a combination of local in-
dex structures, XML synopsis, and histograms. Local in-
dex structures have been shown to be suitable for efficient
routing in P2P environments [4]. Histograms are success-
fully used in a wide variety of optimization and estimation
techniques. So we decided to combine them resulting in
the concept of routing filters that allow for approximating
the distribution of attribute values. At each peer one filter
is maintained for each established connection to a neigh-
bor. The filter describes all XML data (schema and instance
level) that can be accessed by forwarding a query to the
neighbor. Routing filters are built and maintained using a
query feedback approach. If they are not limited to any fi-
nite horizon (e.g., by applying the concept of hop counts
[4]) and if we assume that no peers leave the network, they
will converge to global knowledge as time passes by.

Since the problem of indexing data on schema level is
not the focus of this paper, we will only consider how to
index data on instance level and how to give probabilistic
guarantees. Histograms approximate data distributions by
partitioning a sort parameter into intervals (buckets) and
approximating the source parameter in each of them. In
case of routing filters this means that for each bucketBi

(defined by lower and upper boundariesli andui) we keep
the average frequencyhi of all its attribute values. Being
inspired byV-Optimal histograms[5] that try to minimize
the variance of source parameter values, i.e., frequencies,
within each bucket, we additionally store a characteristical
value (maximum errorei) per bucket that describes the er-
ror of the assumed frequency distribution.hi and ei are
calculated according to the following equations:

hi :=

∑ui

k=li
F (k)

ui − li + 1
, ei := max

k=li..ui

{|F (k)− hi|}

where givenn data values, represented by functionR :
{1..N} → N, we can determine the frequencyF (k) for
any sort parameter valuek with F (k) = |{e|R(e) = k}|.
For simplicity we only consider discrete attribute values.

Figure 1 shows a part of a routing filter that only con-
tains one-dimensional histograms. The figure shows sim-
ple histograms defined on attribute ’x’ for two neighbors of
the filter owning peer. The solid line represents the filters’
assumed frequency (hi) and the dashed lines the maximum
and minimum frequencies (hi±ei) that the neighbors’ data
might actually meet.
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Figure 1: Histograms on ‘x’ for two neighbors

When applying our strategy, each peer according to its local
routing filters has to decide independently from other peers
which neighbors to forward the query to. Thus, facing the
question whether a neighbor possesses relevant data in a
specified range of interest, we have to adopt one indepen-
dent random variable for each relevant data point and thus,
a probability distribution for each of these random vari-
ables and calculate the convolution. As described in [14]
this calculation is expensive in general, but rather efficient
in case of normal distributions. For this purpose we keep
the following information per bucket: average frequency
hi, maximum absolute errorei, and standard deviationσi.

3.3 Probabilistic Approach
Considering the two demands mentioned in the beginning
of this section (efficiency and no dependency on global
knowledge), we developed a probabilistic strategy that can
be characterized as follows:
• only one round-trip for answering a query: reduces ex-

ecution costs and the impact of the network’s dynamic
behavior

• working incrementally: first results can be output at
an early stage, the impact of the network’s dynamic
behavior is reduced (as shown in [6])

• reducing costs: minimizing the number of queried
peers, pruning query paths that cannot contribute or
at least are not likely to contribute to the final result
(using routing filters)

• giving probabilistic guarantees for describing the re-
sult’s correctness (using routing filters)

Input : QD: query definition,Pin: probability,pred predecessor
RF : routing filters,Spred: predecessor’s skyline points

1 SL = process-local-skyline(QD);
2 SA, SG = check-for-dominance(QD, SL, Spred);
3 RN, PL = calc-relevant-neighbors(QD, RF, SG, Pin);
4 send-answer(pred, SA, PL);
5 PC = divide-probability(PL, |RN |);
6 forward-query(RN, QD, PC , SG);

Figure 2: Basic algorithm for the probabilistic approach

Figure 2 depicts the algorithm’s basic workflow. A query
does not only contain the query definitionQD, i.e., which
attributes to minimize and maximize, but also the user’s
input probabilityPin, i.e., (1 - the risk of missing skyline
pointsthat the user is willing to take). Furthermore, a query
contains those skyline pointsSpred that have already been
determined by the peer that the query has been received
from (calledpredecessorin the following).

At first, each peer that receives a query processes its lo-
cal skylineSL based on its local data (line 1). Afterwards,
all points inSL are checked for dominance bySpred (line

2) resulting in:SA = {p ∈ SL|¬dominated(p, Spred)},
SG = {p ∈ SL ∪ Spred|¬dominated(p, SL ∪ Spred)}.
dominated(x, y) is true when pointx is dominated by
any point in y. In line 3 a set of relevant neighbors
RN is computed according to the routing filtersRF . A
peer is inRN when it is likely to contribute to the fi-
nal result, i.e., possesses pointspdom, so that∃p ∈ SG :
dominated(p, pdom). Trying to reduce costs by minimiz-
ing the size ofRN the algorithm takes the risk of miss-
ing such dominating points (by not asking a neighbor) as
long asPin can be guaranteed. As mentioned above, this
risk arises from the approximative nature of histograms that
form the basis of routing filters.Pin represents the mini-
mum guarantee andPL represents the actual guarantee. In-
equationPL ≤ Pin always holds. In order to present first
results at an early stage an answer containingSA andPL

is sent to the predecessorpred (line 4). The remaining al-
lowed risk is divided among all peers inRN (line 5). In the
last step (line 6) the query is forwarded to all peers inRN .

When receiving an answer the received probability and
result values are combined with the local ones and either
forwarded to the next peer or output to the user.

3.4 Preliminary Results: Processing Top-N Queries
Skylines can be regarded as a multidimensional extension
of the top-N paradigm. Thus, we applied the idea of giving
probabilistic guarantees on processing top-N queries.Pout

describes the probability that at mostCout percent (spec-
ified correctness) of the result belongs to the global result
that we would retrieve when we asked all the peers in the
system. WhilePout andCout describe the quality of the
result,Pin andCin describe the boundaries that the algo-
rithm must not exceed. The algorithm applies routing fil-
ters based on one-dimensional histograms as presented in
subsection 3.2.

Due to limited space we will only present the algo-
rithm’s basic workflow and omit details: (1) According to
the routing filters calculate a range [x− dist,x + dist] that
is expected to contain the topN result items. (2) Calcu-
late the set of neighbors that are most likely contribute to
the final result. (3) Forward the query to these neighbors.
Since answers are routed to the initiator in an incremental
manner, first results can be output at an early stage. Ev-
ery time a peer receives an answer it merges its local result
RL with the one received with the answer messageRA:
RL = RL ∪RA. Afterwards,RL is pruned toN elements
and only those elements that were received with the answer
message and that are still contained inRL are routed to the
initiator.

Along with an answer comes a probabilityPA as well
as a correctnessCA. PA describes how likely the answer
fulfills the correctness ofCA. A peer combinesPA andCA

with its local valuesPL (the value ofPL is only 1 when
asking all neighbors) andCL. At the initiatorPL andCL

might now be output to the user for describing the correct-
ness of the currently output result items.

The benefits of this strategy are quite obvious: incre-
mentality, restriction to one round-trip, minimizing the
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number of queried peers, and giving probabilistic guaran-
tees for the result. These are the four characteristics that
our skyline strategy also complies with.

Based on the averages of several test runs in a network
of 100 peers figure 3 shows the influence of the specified
correctnessCin on the number of queried peers, on the
correctness and on the probabilistic guarantee (C-act rep-
resents the ratio of global result items that are contained
in the output result). The y-axis not only represents the
correctness and probability but also the number of queried
peers (scaled between 0 and 1, 1 meaning that all peers
have been asked).
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Figure 3: Influence ofCin on top-N query processing

Having applied routing filters for processing top-N queries
we proved the applicability of our approach for describing
result quality by means of probabilistic guarantees. So far,
we have only considered one-dimensional top-N queries
on the basis of routing filters with one-dimensional his-
tograms. As a natural consequence, there is need for more
sophisticated routing filters that can be applied for multidi-
mensional top-N queries and skyline queries. More aspects
of our future work are presented in section 4.

4 Conclusion and Outlook
Most existing algorithms for processing skyline queries
have been developed and optimized for use in RDBMS and
cannot be applied to P2P systems. They try to reduce main
memory consumption, IO cost and CPU time at a central
processing unit with global knowledge. Since we are devel-
oping an efficient strategy for computing skylines distribut-
edly, the problem we are facing resists at a higher level.
Dealing with peculiarities of P2P systems, e.g., dynamics
and limited knowledge, our focus is developing an efficient
strategy for processing skyline queries distributedly over
many peers in a network. The basis of that strategy is built
by a top-N strategy whose applicability we could already
show and whose results we shortly outlined in this paper.

Having presented our current state of work, we now enu-
merate the main aspects of our future work that will con-
centrate on improving and implementing our basic proba-
bilistic approach:
• ensuring that data points are not to be removed once

they have been output to the user (this might be possi-
ble due to the incrementality)

• developing either routing filters on the basis of multi-
dimensional histograms or adapting the algorithm for
work with the existing variants

• modifying routing filters for indexing text data
• applying more sophisticated cost models
• for PDMS: taking the goodness of mappings into con-

sideration
• finding optimal rules for sharing the allowed input risk

Pin among those peers that the query is forwarded to
• examining the impact of dynamics and limited knowl-

edge

Considering all these elements of future work as well as
the basic strategy we are expecting our approach to work
quite efficiently in P2P systems in general and in PDMS in
particular.
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